Skip to main content

Pharmacology of Acute Lymphoblastic Leukemia Therapy

  • Chapter
  • First Online:
Adult Acute Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1367 Accesses

Abstract

In 1948, Farber and colleagues demonstrated that the administration of the folate analog aminopterin led to transient remissions in acute lymphoblastic leukemia (ALL) ushering in the modern era of chemotherapy and laying the foundation for the treatment of ALL [1]. With the development of additional active agents, including microtubule active agents, purine analogs, and glucocorticosteroids,there soon developed the rational basis for combination chemotherapy using multiple agents with different mechanisms of action to produce additive or synergistic antileukemic effects without compounding toxicity [2–4]. Another important strategic development in the treatment of ALL was the realization that while combination chemotherapy could result in the disappearance of all clinicaland laboratory evidence of disease [4, 5], this so-called complete remission was soon followed by disease relapse indicating the persistence of leukemic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farber, S., et al. (1948). Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroylglutamic acid (aminopterin). The New England Journal of Medicine, 238(787), 787–793.

    Article  PubMed  CAS  Google Scholar 

  2. Frei, E., 3rd. (1985). Curative cancer chemotherapy. Cancer Research, 45(12 Pt 1), 6523–6537.

    PubMed  Google Scholar 

  3. Chabner, B. A., et al. (1984). Cancer chemotherapy. Progress and expectations. Cancer, 54(11 Suppl), 2599–2608.

    Article  PubMed  CAS  Google Scholar 

  4. Freireich, E., Karon, M., & Frei, I. E. (1964). Quadruple combination therapy (VAMP) for acute lymphocytic leukemia of childhood. Proceedings of the American Association for Cancer Research, 5, 20.

    Google Scholar 

  5. Rivera, G., et al. (1976). Recurrent childhood lymphocytic leukemia following cessation of therapy: Treatment and response. Cancer, 37(4), 1679–1686.

    Article  PubMed  CAS  Google Scholar 

  6. Evans, A. E., Gilbert, E. S., & Zandstra, R. (1970). The increasing incidence of central nervous system leukemia in children. (Children’s Cancer Study Group A). Cancer, 26(2), 404–409.

    Article  PubMed  CAS  Google Scholar 

  7. Holland, J. F. (1983). Karnofsky Memorial Lecture. Breaking the cure barrier. Journal of Clinical Oncology, 1(2), 75–90.

    PubMed  CAS  Google Scholar 

  8. Aur, R. J., et al. (1972). A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer, 29(2), 381–391.

    Article  PubMed  CAS  Google Scholar 

  9. Gaynon, P. S., & Carrel, A. L. (1999). Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. Advances in Experimental Medicine and Biology, 457, 593–605.

    Article  PubMed  CAS  Google Scholar 

  10. Distelhorst, C. W. (2002). Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death and Differentiation, 9(1), 6–19.

    Article  PubMed  CAS  Google Scholar 

  11. Green, O. C., et al. (1978). Plasma levels, half-life values, and correlation with physiologic assays for growth and immunity. Journal de Pediatria, 93(2), 299–303.

    Article  CAS  Google Scholar 

  12. Hill, M. R., et al. (1990). Monitoring glucocorticoid therapy: A pharmacokinetic approach. Clinical Pharmacology and Therapeutics, 48(4), 390–398.

    Article  PubMed  CAS  Google Scholar 

  13. Richter, O., et al. (1983). Pharmacokinetics of dexamethasone in children. Pediatric Pharmacology (New York), 3(3–4), 329–337.

    CAS  Google Scholar 

  14. Yang, L., et al. (2008). Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. Journal of Clinical Oncology, 26(12), 1932–1939.

    Article  PubMed  CAS  Google Scholar 

  15. Leikin, S. L., et al. (1968). Varying prednisone dosage in remission induction of previously untreated childhood leukemia. Cancer, 21(3), 346–351.

    Article  PubMed  CAS  Google Scholar 

  16. Bannwarth, B., et al. (1997). Prednisolone concentrations in cerebrospinal fluid after oral prednisone. Preliminary data. Revue du Rhumatisme. English Edition, 64(5), 301–304.

    CAS  Google Scholar 

  17. Balis, F. M., et al. (1987). Differences in cerebrospinal fluid penetration of corticosteroids: Possible relationship to the prevention of meningeal leukemia. Journal of Clinical Oncology, 5(2), 202–207.

    PubMed  CAS  Google Scholar 

  18. Bostrom, B. C., et al. (2003). Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: A report from the Children’s Cancer Group. Blood, 101(10), 3809–3817.

    Article  PubMed  CAS  Google Scholar 

  19. Dale, D. C., & Petersdorf, R. G. (1973). Corticosteroids and infectious diseases. The Medical Clinics of North America, 57(5), 1277–1287.

    PubMed  CAS  Google Scholar 

  20. Jugert, F. K., et al. (1994). Multiple cytochrome P450 isozymes in murine skin: Induction of P450 1A, 2B, 2E, and 3A by dexamethasone. Journal of Investigative Dermatology, 102(6), 970–975.

    Article  PubMed  CAS  Google Scholar 

  21. Chabner, B., & Longo, D. L. (2006). Cancer chemotherapy and biotherapy (4th ed., pp. 91–124). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  22. Balis, F. M., Savitch, J. L., & Bleyer, W. A. (1983). Pharmacokinetics of oral methotrexate in children. Cancer Research, 43(5), 2342–2345.

    PubMed  CAS  Google Scholar 

  23. Stuart, J. F., et al. (1979). Bioavailability of methotrexate: Implications for clinical use. Cancer Chemotherapy and Pharmacology, 3(4), 239–241.

    Article  PubMed  CAS  Google Scholar 

  24. Price, E. M., & Freisheim, J. H. (1987). Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells. Biochemistry, 26(15), 4757–4763.

    Article  PubMed  CAS  Google Scholar 

  25. Allegra, C. J., et al. (1987). Evidence for direct inhibition of de novo purine synthesis in human MCF-7 breast cells as a principal mode of metabolic inhibition by methotrexate. The Journal of Biological Chemistry, 262(28), 13520–13526.

    PubMed  CAS  Google Scholar 

  26. Stoller, R. G., et al. (1977). Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. The New England Journal of Medicine, 297(12), 630–634.

    Article  PubMed  CAS  Google Scholar 

  27. Evans, W. E., et al. (1986). Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. The New England Journal of Medicine, 314(8), 471–477.

    Article  PubMed  CAS  Google Scholar 

  28. Von Hoff, D. D., et al. (1977). Incidence of drug-related deaths secondary to high-dose methotrexate and citrovorum factor administration. Cancer Treatment Reports, 61(4), 745–748.

    Google Scholar 

  29. Ackland, S. P., & Schilsky, R. L. (1987). High-dose methotrexate: A critical reappraisal. Journal of Clinical Oncology, 5(12), 2017–2031.

    PubMed  CAS  Google Scholar 

  30. Blaney, S. M., Balis, F. M., & Poplack, D. G. (1991). Current pharmacological treatment approaches to central nervous system leukaemia. Drugs, 41(5), 702–716.

    Article  PubMed  CAS  Google Scholar 

  31. Susan, M. W., et al. (1996). Effective clearance of methotrexate using high-flux hemodialysis membranes. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 28(6), 846–854.

    Google Scholar 

  32. Widemann, B. C., et al. (1997). Carboxypeptidase-G2, thymidine, and leucovorin rescue in cancer patients with methotrexate-induced renal dysfunction. Journal of Clinical Oncology, 15(5), 2125–2134.

    PubMed  CAS  Google Scholar 

  33. Buchen, S., et al. (2005). Carboxypeptidase G2 rescue in patients with methotrexate intoxication and renal failure. British Journal of Cancer, 92(3), 480–487.

    PubMed  CAS  Google Scholar 

  34. Dalle, J. H., et al. (2002). Interaction between methotrexate and ciprofloxacin. Journal of Pediatric Hematology/Oncology, 24(4), 321–322.

    Article  PubMed  Google Scholar 

  35. Iven, H., & Brasch, H. (1988). The effects of antibiotics and uricosuric drugs on the renal elimination of methotrexate and 7-hydroxymethotrexate in rabbits. Cancer Chemotherapy and Pharmacology, 21(4), 337–342.

    Article  PubMed  CAS  Google Scholar 

  36. Iven, H., & Brasch, H. (1990). Cephalosporins increase the renal clearance of methotrexate and 7-hydroxymethotrexate in rabbits. Cancer Chemotherapy and Pharmacology, 26(2), 139–143.

    Article  PubMed  CAS  Google Scholar 

  37. Thyss, A., et al. (1986). Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet, 1(8475), 256–258.

    Article  PubMed  CAS  Google Scholar 

  38. Chabner, B., & Longo, D. L. (2006). Cancer chemotherapy and biotherapy (4th ed., pp. 212–228). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  39. Balis, F. M., et al. (1987). The effect of methotrexate on the bioavailability of oral 6-mercaptopurine. Clinical Pharmacology and Therapeutics, 41(4), 384–387.

    Article  PubMed  CAS  Google Scholar 

  40. LePage, G. A., & Whitecar, J. P., Jr. (1971). Pharmacology of 6-thioguanine in man. Cancer Research, 31(11), 1627–1631.

    PubMed  CAS  Google Scholar 

  41. Koren, G., et al. (1990). Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. The New England Journal of Medicine, 323(1), 17–21.

    Article  PubMed  CAS  Google Scholar 

  42. Lennard, L., & Lilleyman, J. S. (1989). Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. Journal of Clinical Oncology, 7(12), 1816–1823.

    PubMed  CAS  Google Scholar 

  43. Chan, G. L., et al. (1990). Azathioprine metabolism: Pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. Journal of Clinical Pharmacology, 30(4), 358–363.

    PubMed  CAS  Google Scholar 

  44. Lennard, L., Van Loon, J. A., & Weinshilboum, R. M. (1989). Pharmacogenetics of acute azathioprine toxicity: Relationship to thiopurine methyltransferase genetic polymorphism. Clinical Pharmacology and Therapeutics, 46(2), 149–154.

    Article  PubMed  CAS  Google Scholar 

  45. Lennard, L., et al. (1990). Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet, 336(8709), 225–229.

    Article  PubMed  CAS  Google Scholar 

  46. Zimm, S., et al. (1983). Inhibition of first-pass metabolism in cancer chemotherapy: Interaction of 6-mercaptopurine and allopurinol. Clinical Pharmacology and Therapeutics, 34(6), 810–817.

    Article  PubMed  CAS  Google Scholar 

  47. Singleton, J. D., & Conyers, L. (1992). Warfarin and azathioprine: An important drug interaction. The American Journal of Medicine, 92(2), 217.

    Article  PubMed  CAS  Google Scholar 

  48. Roberts, W. K., & Dekker, C. A. (1967). A convenient synthesis of arabinosylcytosine (cytosine arabinoside). The Journal of Organic Chemistry, 32(3), 816–817.

    Article  PubMed  CAS  Google Scholar 

  49. Howard, J. P., Albo, V., & Newton, W. A., Jr. (1968). Cytosine arabinoside. Results of a cooperative study in acute childhood leukemia. Cancer, 21(3), 341–345.

    Article  PubMed  CAS  Google Scholar 

  50. Ellison, R. R., et al. (1968). Arabinosyl cytosine: A useful agent in the treatment of acute leukemia in adults. Blood, 32(4), 507–523.

    PubMed  CAS  Google Scholar 

  51. Kufe, D. W., et al. (1980). Correlation of cytotoxicity with incorporation of ara-C into DNA. The Journal of Biological Chemistry, 255(19), 8997–9000.

    PubMed  CAS  Google Scholar 

  52. Jamieson, G. P., Snook, M. B., & Wiley, J. S. (1990). Saturation of intracellular cytosine arabinoside triphosphate accumulation in human leukemic blast cells. Leukemia Research, 14(5), 475–479.

    Article  PubMed  CAS  Google Scholar 

  53. Wiley, J. S., et al. (1982). Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. Journal of Clinical Investigation, 69(2), 479–489.

    Article  PubMed  CAS  Google Scholar 

  54. Slevin, M. L., et al. (1983). Effect of dose and schedule on pharmacokinetics of high-dose cytosine arabinoside in plasma and cerebrospinal fluid. Journal of Clinical Oncology, 1(9), 546–551.

    PubMed  CAS  Google Scholar 

  55. Breithaupt, H., et al. (1982). Clinical results and pharmacokinetics of high-dose cytosine arabinoside (HD ARA-C). Cancer, 50(7), 1248–1257.

    Article  PubMed  CAS  Google Scholar 

  56. Ho, D. H., & Frei, E., III. (1971). Clinical pharmacology of 1-beta-d-arabinofuranosyl cytosine. Clinical Pharmacology and Therapeutics, 12(6), 944–954.

    PubMed  CAS  Google Scholar 

  57. Chamberlain, M. C., et al. (1995). Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Archives of Neurology, 52(9), 912–917.

    PubMed  CAS  Google Scholar 

  58. Kim, S., et al. (1993). Extended CSF cytarabine exposure following intrathecal administration of DTC 101. Journal of Clinical Oncology, 11(11), 2186–2193.

    PubMed  CAS  Google Scholar 

  59. Andersson, B. S., et al. (1990). Fatal pulmonary failure complicating high-dose cytosine arabinoside therapy in acute leukemia. Cancer, 65(5), 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  60. George, C. B., et al. (1984). Hepatic dysfunction and jaundice following high-dose cytosine arabinoside. Cancer, 54(11), 2360–2362.

    Article  PubMed  CAS  Google Scholar 

  61. Flynn, T. C., et al. (1984). Neutrophilic eccrine hidradenitis: A distinctive rash associated with cytarabine therapy and acute leukemia. Journal of the American Academy of Dermatology, 11(4 Pt 1), 584–590.

    Article  PubMed  CAS  Google Scholar 

  62. Rubin, E. H., et al. (1992). Risk factors for high-dose cytarabine neurotoxicity: An analysis of a cancer and leukemia group B trial in patients with acute myeloid leukemia. Journal of Clinical Oncology, 10(6), 948–953.

    PubMed  CAS  Google Scholar 

  63. Kleinschmidt-DeMasters, B. K., & Yeh, M. (1992). “Locked-in syndrome” after intrathecal cytosine arabinoside therapy for malignant immunoblastic lymphoma. Cancer, 70(10), 2504–2507.

    Article  PubMed  CAS  Google Scholar 

  64. Gandhi, V., et al. (1997). Minimum dose of fludarabine for the maximal modulation of 1-beta-D-arabinofuranosylcytosine triphosphate in human leukemia blasts during therapy. Clinical Cancer Research, 3(9), 1539–1545.

    PubMed  CAS  Google Scholar 

  65. Cadman, E., & Eiferman, F. (1979). Mechanism of synergistic cell killing when methotrexate precedes cytosine arabinoside: Study of L1210 and human leukemic cells. Journal of Clinical Investigation, 64(3), 788–797.

    Article  PubMed  CAS  Google Scholar 

  66. Fu, C. H., et al. (2001). Reversal of cytosine arabinoside (ara-C) resistance by the synergistic combination of 6-thioguanine plus ara-C plus PEG-asparaginase (TGAP) in human leukemia lines lacking or expressing p53 protein. Cancer Chemotherapy and Pharmacology, 48(2), 123–133.

    Article  PubMed  CAS  Google Scholar 

  67. Nandy, P., Periclou, A. P., & Avramis, V. I. (1998). The synergism of 6-mercaptopurine plus cytosine arabinoside followed by PEG-asparaginase in human leukemia cell lines (CCRF/CEM/0 and (CCRF/CEM/ara-C/7A) is due to increased cellular apoptosis. Anticancer Research, 18(2A), 727–737.

    PubMed  CAS  Google Scholar 

  68. Dimarco, A., et al. (1964). Daunomycin: A new antibiotic with antitumor activity. Cancer Chemotherapy Reports, 38, 31–38.

    CAS  Google Scholar 

  69. Estlin, E. J., et al. (2000). The clinical and cellular pharmacology of vincristine, corticosteroids, l-asparaginase, anthracyclines and cyclophosphamide in relation to childhood acute lymphoblastic leukaemia. British Journal Haematology, 110(4), 780–790.

    Article  CAS  Google Scholar 

  70. Johnson, B. A., Cheang, M. S., & Goldenberg, G. J. (1986). Comparison of adriamycin uptake in chick embryo heart and liver cells an murine L5178Y lymphoblasts in vitro: Role of drug uptake in cardiotoxicity. Cancer Research, 46(1), 218–223.

    PubMed  CAS  Google Scholar 

  71. Huffman, D. H., & Bachur, N. R. (1972). Daunorubicin metabolism in acute myelocytic leukemia. Blood, 39(5), 637–643.

    PubMed  CAS  Google Scholar 

  72. Doroshow, J. H., Locker, G. Y., & Myers, C. E. (1980). Enzymatic defenses of the mouse heart against reactive oxygen metabolites: Alterations produced by doxorubicin. Journal of Clinical Investigation, 65(1), 128–135.

    Article  PubMed  CAS  Google Scholar 

  73. Swain, S. M., et al. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15(4), 1318–1332.

    PubMed  CAS  Google Scholar 

  74. Speyer, J. L., et al. (1988). Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. The New England Journal of Medicine, 319(12), 745–752.

    Article  PubMed  CAS  Google Scholar 

  75. Legha, S. S., et al. (1982). Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Annals of Internal Medicine, 96(2), 133–139.

    PubMed  CAS  Google Scholar 

  76. Lipshultz, S. E., et al. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324(12), 808–815.

    Article  PubMed  CAS  Google Scholar 

  77. Alexander, J., et al. (1979). Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. The New England Journal of Medicine, 300(6), 278–283.

    Article  PubMed  CAS  Google Scholar 

  78. Von Hoff, D. D., et al. (1977). Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. The American Journal of Medicine, 62(2), 200–208.

    Article  Google Scholar 

  79. Rowinsky, E. K. (2006). Antimicrotubule Agents. In B. A. Chabner & D. L. Longo (Eds.), Cancer chemotherapy and biotherapy: Principles and practice (4th ed., pp. 237–282). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  80. Gidding, C. E., et al. (1999). Vincristine pharmacokinetics after repetitive dosing in children. Cancer Chemotherapy and Pharmacology, 44(3), 203–209.

    Article  PubMed  CAS  Google Scholar 

  81. Gidding, C. E., et al. (1999). Vincristine revisited. Critical Reviews in Oncology/Hematology, 29(3), 267–287.

    Article  PubMed  CAS  Google Scholar 

  82. Jackson, D. V., Jr., et al. (1981). Pharmacokinetics of vincristine infusion. Cancer Treatment Reports, 65(11–12), 1043–1048.

    PubMed  Google Scholar 

  83. Quasthoff, S., & Hartung, H. P. (2002). Chemotherapy-induced peripheral neuropathy. Journal of Neurology, 249(1), 9–17.

    Article  PubMed  CAS  Google Scholar 

  84. Peltier, A. C., & Russell, J. W. (2002). Recent advances in drug-induced neuropathies. Current Opinion in Neurology, 15(5), 633–638.

    Article  PubMed  Google Scholar 

  85. Colvin, M., Padgett, C. A., & Fenselau, C. (1973). A biologically active metabolite of cyclophosphamide. Cancer Research, 33(4), 915–918.

    PubMed  CAS  Google Scholar 

  86. Yule, S. M., et al. (1995). Cyclophosphamide metabolism in children. Cancer Research, 55(4), 803–809.

    PubMed  CAS  Google Scholar 

  87. Struck, R. F., et al. (1987). Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Research, 47(10), 2723–2726.

    PubMed  CAS  Google Scholar 

  88. Yule, S. M., et al. (1996). Cyclophosphamide pharmacokinetics in children. British Journal of Clinical Pharmacology, 41(1), 13–19.

    Article  PubMed  CAS  Google Scholar 

  89. Tew, K. D., Colvin, O. M., & Jones, R. B. (2006). Clinical and high-dose alkylating agents. In B. A. Chabner & D. L. Longo (Eds.), Cancer chemotherapy and biotherapy: Principles and practice (4th ed., pp. 283–309). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  90. Murphy, S. B., et al. (1986). Results of treatment of advanced-stage Burkitt’s lymphoma and B cell (SIg+) acute lymphoblastic leukemia with high-dose fractionated cyclophosphamide and coordinated high-dose methotrexate and cytarabine. Journal of Clinical Oncology, 4(12), 1732–1739.

    PubMed  CAS  Google Scholar 

  91. Mouridsen, H. T., & Jacobsen, E. (1975). Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacologica et Toxicologica, 36(Suppl 5), 409–414.

    PubMed  CAS  Google Scholar 

  92. Miller, D. G. (1971). Alkylating agents and human spermatogenesis. Journal of the American Medical Association, 217(12), 1662–1665.

    Article  PubMed  CAS  Google Scholar 

  93. Kumar, R., et al. (1972). Cyclophosphamide and reproductive function. Lancet, 1(7762), 1212–1214.

    Article  PubMed  CAS  Google Scholar 

  94. Miller, J. J., 3rd, Williams, G. F., and Leissring, J. C. (1971). Multiple late complications of therapy with cyclophosphamide, including ovarian destruction. The American Journal of Medicine, 50(4), 530–535.

    Google Scholar 

  95. Tucker, M. A., et al. (1988). Risk of second cancers after treatment for Hodgkin’s disease. The New England Journal of Medicine, 318(2), 76–81.

    Article  PubMed  CAS  Google Scholar 

  96. Goldberg, M. A., et al. (1986). Cyclophosphamide cardiotoxicity: An analysis of dosing as a risk factor. Blood, 68(5), 1114–1118.

    PubMed  CAS  Google Scholar 

  97. Jao, J. Y., Jusko, W. J., & Cohen, J. L. (1972). Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Research, 32(12), 2761–2764.

    PubMed  CAS  Google Scholar 

  98. Ho, D. H., et al. (1986). Clinical pharmacology of polyethylene glycol-l-asparaginase. Drug Metabolism and Disposition, 14(3), 349–352.

    PubMed  CAS  Google Scholar 

  99. Hawkins, D. S., et al. (2004). Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated l-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clinical Cancer Research, 10(16), 5335–5341.

    Article  PubMed  CAS  Google Scholar 

  100. Semeraro, N., et al. (1990). Unbalanced coagulation-fibrinolysis potential during l-asparaginase therapy in children with acute lymphoblastic leukaemia. Thrombosis and Haemostasis, 64(1), 38–40.

    PubMed  CAS  Google Scholar 

  101. Asselin, B. L., et al. (1993). Comparative pharmacokinetic studies of three asparaginase preparations. Journal of Clinical Oncology, 11(9), 1780–1786.

    PubMed  CAS  Google Scholar 

  102. Ramsay, N. K., et al. (1977). The effect of l-asparaginase of plasma coagulation factors in acute lymphoblastic leukemia. Cancer, 40(4), 1398–1401.

    Article  PubMed  CAS  Google Scholar 

  103. Gralnick, H. R., & Henderson, E. (1971). Hypofibrinogenemia and coagulation factor deficiencies with l-asparaginase treatment. Cancer, 27(6), 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  104. Bushara, K. O., & Rust, R. S. (1997). Reversible MRI lesions due to pegaspargase treatment of non-Hodgkin’s lymphoma. Pediatric Neurology, 17(2), 185–187.

    Article  PubMed  CAS  Google Scholar 

  105. Leonard, J. V., & Kay, J. D. (1986). Acute encephalopathy and hyperammonaemia complicating treatment of acute lymphoblastic leukaemia with asparaginase. Lancet, 1(8473), 162–163.

    Article  PubMed  CAS  Google Scholar 

  106. Harris, R. E., et al. (1980). Methotrexate/l-asparaginase combination chemotherapy for patients with acute leukemia in relapse: A study of 36 children. Cancer, 46(9), 2004–2008.

    Article  PubMed  CAS  Google Scholar 

  107. Xie, K. C., & Plunkett, W. (1996). Deoxynucleotide pool depletion and sustained inhibition of ribonucleotide reductase and DNA synthesis after treatment of human lymphoblastoid cells with 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl) adenine. Cancer Research, 56(13), 3030–3037.

    PubMed  CAS  Google Scholar 

  108. Bantia, S., et al. (2001). Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H)–a novel potent and orally active immunosuppressive agent. International Immunopharmacology, 1(6), 1199–1210.

    Article  PubMed  CAS  Google Scholar 

  109. Kisor, D. F., et al. (2000). Pharmacokinetics of nelarabine and 9-beta-d-arabinofuranosyl guanine in pediatric and adult patients during a phase I study of nelarabine for the treatment of refractory hematologic malignancies. Journal of Clinical Oncology, 18(5), 995–1003.

    PubMed  CAS  Google Scholar 

  110. Gandhi, V., et al. (1998). Compound GW506U78 in refractory hematologic malignancies: Relationship between cellular pharmacokinetics and clinical response. Journal of Clinical Oncology, 16(11), 3607–3615.

    PubMed  CAS  Google Scholar 

  111. Kisor, D. F. (2005). Nelarabine: A nucleoside analog with efficacy in T-cell and other leukemias. The Annals of Pharmacotherapy, 39(6), 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  112. Kantarjian, H. M., et al. (2003). Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. Journal of Clinical Oncology, 21(6), 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  113. Gandhi, V., et al. (2003). Pharmacokinetics and pharmacodynamics of plasma clofarabine and cellular clofarabine triphosphate in patients with acute leukemias. Clinical Cancer Research, 9(17), 6335–6342.

    PubMed  CAS  Google Scholar 

  114. Gandhi, V., et al. (2005). A proof-of-principle pharmacokinetic, pharmacodynamic, and clinical study with purine nucleoside phosphorylase inhibitor immucillin-H (BCX-1777, forodesine). Blood, 106(13), 4253–4260.

    Article  PubMed  CAS  Google Scholar 

  115. Kantarjian, H., et al. (2003). Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood, 102(7), 2379–2386.

    Article  PubMed  CAS  Google Scholar 

  116. Larson, R. A. (2007). Three new drugs for acute lymphoblastic leukemia: Nelarabine, clofarabine, and forodesine. Seminars in Oncology, 34(6 Suppl 5), S13–S20.

    Article  PubMed  CAS  Google Scholar 

  117. Schiffer, C. A. (2007). BCR-ABL tyrosine kinase inhibitors for chronic myelogenous leukemia. The New England Journal of Medicine, 357(3), 258–265.

    Article  PubMed  CAS  Google Scholar 

  118. O’Hare, T., et al. (2005). In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Research, 65(11), 4500–4505.

    Article  PubMed  Google Scholar 

  119. Druker, B. J., et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. The New England Journal of Medicine, 344(14), 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  120. Druker, B. J., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Natural Medicines, 2(5), 561–566.

    Article  CAS  Google Scholar 

  121. Druker, B. J. (2006). Circumventing resistance to kinase-inhibitor therapy. The New England Journal of Medicine, 354(24), 2594–2596.

    Article  PubMed  CAS  Google Scholar 

  122. Hu, Y., et al. (2006). Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph + leukemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16870–16875.

    Article  PubMed  CAS  Google Scholar 

  123. Deininger, M. W. (2008). Nilotinib. Clinical Cancer Research, 14(13), 4027–4031.

    Article  PubMed  CAS  Google Scholar 

  124. Golemovic, M., et al. (2005). AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clinical Cancer Research, 11(13), 4941–4947.

    Article  PubMed  CAS  Google Scholar 

  125. Keam, S. J. (2008). Dasatinib: In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. BioDrugs, 22(1), 59–69.

    Article  PubMed  CAS  Google Scholar 

  126. Steinberg, M. (2007). Dasatinib: A tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Clinical Therapeutics, 29(11), 2289–2308.

    Article  PubMed  CAS  Google Scholar 

  127. Hazarika, M., et al. (2008). Tasigna for chronic and accelerated phase Philadelphia chromosome–positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clinical Cancer Research, 14(17), 5325–5331.

    Article  PubMed  CAS  Google Scholar 

  128. Brave, M., et al. (2008). Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clinical Cancer Research, 14(2), 352–359.

    Article  PubMed  CAS  Google Scholar 

  129. Talpaz, M., et al. (2006). Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. The New England Journal of Medicine, 354(24), 2531–2541.

    Article  PubMed  CAS  Google Scholar 

  130. Kantarjian, H., et al. (2006). Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. The New England Journal of Medicine, 354(24), 2542–2551.

    Article  PubMed  Google Scholar 

  131. Kantarjian, H. M., et al. (2002). Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood, 99(10), 3547–3553.

    Article  PubMed  CAS  Google Scholar 

  132. Prescribing Information. Gleevec (imatinib mesylate). Novartis Pharmaceuticals Corporation [cited; Available from: www.FDA.gov/cder/foi].

  133. Prescribing Information. Tasigna (nilotinib). Novartis Pharmaceuticals Corporation [cited; Available from: www.fda.gov/cder/foi].

  134. Prescribing Information: Sprycell (Dasatinib). Micromedix [cited; Available from: www.fda/gov/cder/foi/label/2006/021986LbL.pdr].

  135. Brendel, C., et al. (2007). Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia, 21(6), 1267–1275.

    Article  PubMed  CAS  Google Scholar 

  136. Hamada, A., et al. (2003). Interaction of imatinib mesilate with human P-glycoprotein. The Journal of Pharmacology and Experimental Therapeutics, 307(2), 824–828.

    Article  PubMed  CAS  Google Scholar 

  137. Porkka, K., et al. (2008). Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood, 112(4), 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  138. Bujassoum, S., Rifkind, J., & Lipton, J. H. (2004). Isolated central nervous system relapse in lymphoid blast crisis chronic myeloid leukemia and acute lymphoblastic leukemia in patients on imatinib therapy. Leukaemia & Lymphoma, 45(2), 401–403.

    Article  Google Scholar 

  139. Ridruejo, E., et al. (2007). Imatinib-induced fatal acute liver failure. World Journal of Gastroenterology, 13(48), 6608–6611.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barr, P.M., Creger, R.J., Berger, N.A. (2011). Pharmacology of Acute Lymphoblastic Leukemia Therapy. In: Advani, A., Lazarus, H. (eds) Adult Acute Lymphocytic Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-60761-707-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-707-5_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-706-8

  • Online ISBN: 978-1-60761-707-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics