Skip to main content

Intracoronary Hemodynamic Assessment: Coronary Flow Reserve (CFR) and Fractional Flow Reserve (FFR)

  • Chapter
  • First Online:
  • 3480 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Selective coronary angiography is the gold standard for evaluating the presence and extent of epicardial coronary artery disease. Despite advances in fluoroscopic imaging and catheterization techniques, the evaluation of the intermediate coronary stenosis (luminal diameter narrowing between 40 and 70 %) remains a challenge for invasive cardiologists secondary to multiple issues. Angiography provides only a 2D projection of the arterial lumen along the length of the vessel. Vessel characteristics (e.g., significant angulation and tortuosity) as well as limitations related to image acquisition (e.g., vessel overlap, inability to obtain a true perpendicular projection of the lesion, and the visualization of a focal short stenosis) impair the accuracy of lesion severity assessment through the traditional technique of obtaining coronary angiograms in multiple fluoroscopic views. Studies comparing coronary angiography and postmortem histopathological analysis have demonstrated the discrepancy between angiographic and actual anatomic findings [1–3]. Significant intra- and inter-observer variability is also a factor when determining the percent narrowing of a stenosis by angiography [4]. The application of quantitative coronary angiography (QCA) may minimize this discrepancy but it does not eradicate the limitations of coronary angiography. Intravascular visualization techniques such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT), augment anatomical analysis but do not necessarily provide information on the functional significance of a lesion. Thus, cardiologists have focuses on physiologic assessment of a lesion to aid in management decisions. Noninvasive testing (i.e., stress testing) to determine objective evidence of ischemia is frequently conducted prior to performing coronary angiography and subsequent percutaneous coronary intervention (PCI). However, these studies not always feasible nor are the results always reliable; therefore a physiologic method of evaluating an intermediate coronary lesion while in the catheterization suite is desirable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation. 1974;49:703–8.

    Article  PubMed  CAS  Google Scholar 

  2. Hutchins GM, Bulkley BH, Ridolfi RL, Griffith LS, Lohr FT, Piasio MA. Correlation of coronary arteriograms and left ventriculograms with postmortem studies. Circulation. 1977;56:32–7.

    Article  PubMed  CAS  Google Scholar 

  3. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med. 1979;91:350–6.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher LD, Judkins MP, Lesperance J, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn. 1982;8:565–75.

    Article  PubMed  CAS  Google Scholar 

  5. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  6. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459–74.

    Article  PubMed  CAS  Google Scholar 

  7. Doucette JW, Corl PD, Payne HM, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85:1899–911.

    Article  PubMed  CAS  Google Scholar 

  8. Labovitz AJ, Anthonis DM, Cravens TL, Kern MJ. Validation of volumetric flow measurements by means of a Doppler-tipped coronary angioplasty guide wire. Am Heart J. 1993;126:1456–61.

    Article  PubMed  CAS  Google Scholar 

  9. Miller DD, Donohue TJ, Younis LT, et al. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation. 1994;89:2150–60.

    Article  PubMed  CAS  Google Scholar 

  10. Heller LI, Cates C, Popma J, et al. Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201Tl imaging and coronary angiography. FACTS Study Group. Circulation. 1997;96:484–90.

    Article  PubMed  CAS  Google Scholar 

  11. Akasaka T, Yoshida K, Hozumi T, et al. Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol. 1997;30:935–41.

    Article  PubMed  CAS  Google Scholar 

  12. Lorenzoni R, Gistri R, Cecchi F, et al. Coronary vasodilator reserve is impaired in patients with hypertrophic cardiomyopathy and left ventricular dysfunction. Am Heart J. 1998;136:972–81.

    Article  PubMed  CAS  Google Scholar 

  13. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88:62–9.

    Article  PubMed  CAS  Google Scholar 

  14. Schafer S, Kelm M, Mingers S, Strauer BE. Left ventricular remodeling impairs coronary flow reserve in hypertensive patients. J Hypertens. 2002;20:1431–7.

    Article  PubMed  CAS  Google Scholar 

  15. Voudris V, Avramides D, Koutelou M, et al. Relative coronary flow velocity reserve improves correlation with stress myocardial perfusion imaging in assessment of coronary artery stenoses. Chest. 2003;124:1266–74.

    Article  PubMed  Google Scholar 

  16. Bugiardini R, Bairey Merz CN. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005;293:477–84.

    Article  PubMed  CAS  Google Scholar 

  17. Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am Heart J. 2001;141:735–41.

    Article  PubMed  CAS  Google Scholar 

  18. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.

    Article  PubMed  CAS  Google Scholar 

  19. Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kern MJ, de Bruyne B, Pijls NH. From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol. 1997;30:613–20.

    Article  PubMed  CAS  Google Scholar 

  21. Di Segni E, Higano ST, Rihal CS, Holmes Jr DR, Lennon R, Lerman A. Incremental doses of intracoronary adenosine for the assessment of coronary velocity reserve for clinical decision making. Catheter Cardiovasc Interv. 2001;54:34–40.

    Article  PubMed  Google Scholar 

  22. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986;73:444–51.

    Article  PubMed  CAS  Google Scholar 

  23. Bartunek J, Wijns W, Heyndrickx GR, de Bruyne B. Effects of dobutamine on coronary stenosis physiology and morphology: comparison with intracoronary adenosine. Circulation. 1999;100:243–9.

    Article  PubMed  CAS  Google Scholar 

  24. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94:1842–9.

    Article  PubMed  Google Scholar 

  25. Caymaz O, Fak AS, Tezcan H, et al. Correlation of myocardial fractional flow reserve with thallium-201 SPECT imaging in intermediate-severity coronary artery lesions. J Invasive Cardiol. 2000;12:345–50.

    PubMed  CAS  Google Scholar 

  26. Leesar MA, Abdul-Baki T, Akkus NI, Sharma A, Kannan T, Bolli R. Use of fractional flow reserve versus stress perfusion scintigraphy after unstable angina. Effect on duration of hospitalization, cost, procedural characteristics, and clinical outcome. J Am Coll Cardiol. 2003;41:1115–21.

    Article  PubMed  Google Scholar 

  27. Bech GJ, De Bruyne B, Bonnier HJ, et al. Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol. 1998;31:841–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bech GJ, De Bruyne B, Pijls NH, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.

    Article  PubMed  CAS  Google Scholar 

  29. Kern MJ, Donohue TJ, Aguirre FV, et al. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol. 1995;25:178–87.

    Article  PubMed  CAS  Google Scholar 

  30. Chamuleau SA, Meuwissen M, Koch KT, et al. Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate stenosis. Am J Cardiol. 2002;89:377–80.

    Article  PubMed  Google Scholar 

  31. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  PubMed  CAS  Google Scholar 

  32. Pijls NH, De Bruyne B, Bech GJ, et al. Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation. 2000;102:2371–7.

    Article  PubMed  CAS  Google Scholar 

  33. De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101:1840–7.

    Article  PubMed  Google Scholar 

  34. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation. 1997;95:1791–8.

    Article  PubMed  CAS  Google Scholar 

  35. Bech GJ, Droste H, Pijls NH, et al. Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart. 2001;86:547–52.

    Article  PubMed  CAS  Google Scholar 

  36. Ziaee A, Parham WA, Herrmann SC, Stewart RE, Lim MJ, Kern MJ. Lack of relation between imaging and physiology in ostial coronary artery narrowings. Am J Cardiol 2004;93:1404–7, A9.

    Google Scholar 

  37. Engler RL, Schmid-Schonbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983;111:98–111.

    PubMed  CAS  Google Scholar 

  38. Claeys MJ, Bosmans JM, Hendrix J, Vrints CJ. Reliability of fractional flow reserve measurements in patients with associated microvascular dysfunction: importance of flow on translesional pressure gradient. Catheter Cardiovasc Interv. 2001;54:427–34.

    Article  PubMed  CAS  Google Scholar 

  39. De Bruyne B, Pijls NH, Bartunek J, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104:157–62.

    Article  PubMed  Google Scholar 

  40. Hanekamp CE, Koolen JJ, Pijls NH, Michels HR, Bonnier HJ. Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation. 1999;99:1015–21.

    Article  PubMed  CAS  Google Scholar 

  41. Pijls NH, Klauss V, Siebert U, et al. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation. 2002;105:2950–4.

    Article  PubMed  Google Scholar 

  42. Rieber J, Schiele TM, Erdin P, et al. Fractional flow reserve predicts major adverse cardiac events after coronary stent implantation. Z Kardiol. 2002;91 Suppl 3:132–6.

    Article  PubMed  Google Scholar 

  43. Koo BK, Kang HJ, Youn TJ, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46:633–7.

    Article  PubMed  Google Scholar 

  44. Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004;109:1244–9.

    Article  PubMed  Google Scholar 

  45. Jeremias A, Filardo SD, Whitbourn RJ, et al. Effects of intravenous and intracoronary adenosine 5’-triphosphate as compared with adenosine on coronary flow and pressure dynamics. Circulation. 2000;101:318–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harvey, J.E., Ellis, S.G. (2013). Intracoronary Hemodynamic Assessment: Coronary Flow Reserve (CFR) and Fractional Flow Reserve (FFR). In: Anwaruddin, S., Martin, J., Stephens, J., Askari, A. (eds) Cardiovascular Hemodynamics. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-195-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-195-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-194-3

  • Online ISBN: 978-1-60761-195-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics