Skip to main content

The Liabilities of Iron Deficiency

  • Chapter
  • First Online:
Iron Physiology and Pathophysiology in Humans

Part of the book series: Nutrition and Health ((NH))

Abstract

The overt physical manifestations of iron deficiency include the generic symptoms of anemia, which are tiredness, lassitude, and general feelings of lack of energy [1, 2]. Clinical manifestations of iron deficiency are glossitis, angular stomatitis, koilonychia (spoon nails), blue sclera, esophageal webbing (Plummer-Vinson Syndrome), and microcytic hypochromic anemia. Behavioral disturbances such as pica, which is characterized by abnormal consumption of nonfood items such as dirt (geophagia) and ice (pagophagia), are often present in iron deficiency, but clear biological explanations for these abnormalities are lacking. More recently, restless legs syndrome (RLS) has been described as being causally related to iron deficiency anemia [3]. This aphasic involuntary muscle contraction appears related to altered movement of iron to and within motor-control centers in the brain and is treatable in most cases with either iron or levodopa [4]. Neuro-maturational delays have been described by many research groups and will be discussed in detail in a later section. Physiological manifestations of iron deficiency have also been noted in immune function, thermoregulatory performance, energy metabolism, and exercise or work performance [2]. The current understanding of the iron biology underlying deficits in the neurobiology, muscle and energy metabolism, and consequences specific to pregnancy outcomes will be discussed in the remaining sections of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bothwell TH. Overview and mechanisms of iron regulation. Nutr Rev. 1995;53:237–45.

    PubMed  CAS  Google Scholar 

  2. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131:568S–80.

    PubMed  CAS  Google Scholar 

  3. Allen RP, Earley CJ. The role of iron in restless legs syndrome. Mov Disord. 2007;22(S18):S440–8.

    PubMed  Google Scholar 

  4. Gamaldo CE, Benbrook AR, Allen RP, Oguntimein O, Earley CJ. A further evaluation of the cognitive deficits associated with restless legs syndrome (RLS). Sleep Med. 2008;9:500–5.

    PubMed  Google Scholar 

  5. Beard JL, Borel MJ, Derr J. Impaired thermoregulation and thyroid function in iron-deficiency anemia. Am J Clin Nutr. 1990;52:813–9.

    PubMed  CAS  Google Scholar 

  6. Beard J, Finch CA, Mackler B. Deleterious effects of iron deficiency. Prog Clin Biol Res. 1981;77:305–10.

    PubMed  CAS  Google Scholar 

  7. Woodson RD. Hemoglobin concentration and exercise capacity. Am Rev Respir Dis. 1984;129:S72–5.

    PubMed  CAS  Google Scholar 

  8. Davies KJ, Donovan CM, Refino CJ, Brooks GA, Packer L, Dallman PR. Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat. Am J Physiol. 1984;246:E535–43.

    PubMed  CAS  Google Scholar 

  9. Finch CA, Huebers H. Perspectives in iron metabolism. N Engl J Med. 1982;306:1520–8.

    PubMed  CAS  Google Scholar 

  10. Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr. 1986;6:13–40.

    PubMed  CAS  Google Scholar 

  11. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3:41–51.

    PubMed  CAS  Google Scholar 

  12. Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13:158–65.

    PubMed  Google Scholar 

  13. Earley CJ, Barker PB, Horska A, Allen RP. MRI-determined regional brain iron concentrations in early- and late-onset restless legs syndrome. Sleep Med. 2006;7:458–61.

    PubMed  Google Scholar 

  14. Earley CJ, Connor JR, Beard JL, Malecki EA, Epstein DK, Allen RP. Abnormalities in CSF concentrations of ferritin and transferrin in restless legs syndrome. Neurology. 2000;54:1698–700.

    PubMed  CAS  Google Scholar 

  15. O’Keeffe ST. Iron deficiency with normal ferritin levels in restless legs syndrome. Sleep Med. 2005;6:281–2.

    PubMed  Google Scholar 

  16. Clardy SL, Earley CJ, Allen RP, Beard JL, Connor JR. Ferritin subunits in CSF are decreased in restless legs syndrome. J Lab Clin Med. 2006;147:67–73.

    PubMed  CAS  Google Scholar 

  17. Mizuno S, Mihara T, Miyaoka T, Inagaki T, Horiguchi J. CSF iron, ferritin and transferrin levels in restless legs syndrome. J Sleep Res. 2005;14:43–7.

    PubMed  Google Scholar 

  18. Earley CJ, Heckler D, Allen RP. The treatment of restless legs syndrome with intravenous iron dextran. Sleep Med. 2004;5:231–5.

    PubMed  Google Scholar 

  19. Wang XS, Lee S, Simmons Z, et al. Increased incidence of the Hfe mutation in amyotrophic lateral sclerosis and related cellular consequences. J Neurol Sci. 2004;227:27–33.

    PubMed  CAS  Google Scholar 

  20. Wang XS, Simmons Z, Liu W, Boyer PJ, Connor JR. Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph Lateral Scler. 2006;7:201–10.

    PubMed  CAS  Google Scholar 

  21. Goodall EF, Greenway MJ, van Marion I, Carroll CB, Hardiman O, Morrison KE. Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS. Neurology. 2005;65:934–7.

    PubMed  CAS  Google Scholar 

  22. Levenson CW. Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav. 2005;86:399–406.

    PubMed  CAS  Google Scholar 

  23. Sutedja NA, Sinke RJ, Van Vught PW, et al. The association between H63D mutations in HFE and amyotrophic lateral sclerosis in a Dutch population. Arch Neurol. 2007;64:63–7.

    PubMed  Google Scholar 

  24. Burdo JR, Antonetti DA, Wolpert EB, Connor JR. Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system. Neuroscience. 2003;121:883–90.

    PubMed  CAS  Google Scholar 

  25. Burdo JR, Connor JR. Brain iron uptake and homeostatic mechanisms: an overview. Biometals. 2003;16:63–75.

    PubMed  CAS  Google Scholar 

  26. Burdo JR, Simpson IA, Menzies S, Beard J, Connor JR. Regulation of the profile of iron-management proteins in brain microvasculature. J Cereb Blood Flow Metab. 2004;24:67–74.

    PubMed  CAS  Google Scholar 

  27. Moos T, Skjoerringe T, Gosk S, Morgan EH. Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem. 2006;98:1946–58.

    PubMed  CAS  Google Scholar 

  28. Han J, Day JR, Connor JR, Beard JL. Gene expression of transferrin and transferrin receptor in brains of control vs. iron-deficient rats. Nutr Neurosci. 2003;6:1–10.

    PubMed  CAS  Google Scholar 

  29. Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20:77–95.

    PubMed  CAS  Google Scholar 

  30. Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem. 2007;103:1730–40.

    PubMed  CAS  Google Scholar 

  31. Surguladze N, Thompson KM, Beard JL, Connor JR, Fried MG. Interactions and reactions of ferritin with DNA. J Biol Chem. 2004;279:14694–702.

    PubMed  CAS  Google Scholar 

  32. Fisher J, Devraj K, Ingram J, et al. Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol. 2007;293:C641–9.

    PubMed  CAS  Google Scholar 

  33. Erikson KM, Pinero DJ, Connor JR, Beard JL. Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. J Nutr. 1997;127:2030–8.

    PubMed  CAS  Google Scholar 

  34. Siddappa AJ, Rao RB, Wobken JD, et al. Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain. Pediatr Res. 2003;53:800–7.

    PubMed  CAS  Google Scholar 

  35. Burdo JR, Menzies SL, Simpson IA, et al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res. 2001;66:1198–207.

    PubMed  CAS  Google Scholar 

  36. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR. The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res. 2007;32:1884–90.

    PubMed  CAS  Google Scholar 

  37. Wu LJ, Leenders AG, Cooperman S, et al. Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res. 2004;1001:108–17.

    PubMed  CAS  Google Scholar 

  38. Earley CJ, Connor JR, Beard JL, Clardy SL, Allen RP. Ferritin levels in the cerebrospinal fluid and restless legs syndrome: effects of different clinical phenotypes. Sleep. 2005;28:1069–75.

    PubMed  Google Scholar 

  39. Wang X, Wiesinger J, Beard J, et al. Thy1 expression in the brain is affected by iron and is decreased in restless legs syndrome. J Neurol Sci. 2004;220:59–66.

    PubMed  CAS  Google Scholar 

  40. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;64:S34–43. S72–S91.

    PubMed  Google Scholar 

  41. Jorgenson LA, Sun M, O’Connor M, Georgieff MK. Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus. 2005;15:1094–102.

    PubMed  CAS  Google Scholar 

  42. Jorgenson LA, Wobken JD, Georgieff MK. Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci. 2003;25:412–20.

    PubMed  CAS  Google Scholar 

  43. McEchron MD, Alexander DN, Gilmartin MR, Paronish MD. Perinatal nutritional iron deficiency impairs hippocampus-dependent trace eyeblink conditioning in rats. Dev Neurosci. 2008;30:243–54.

    PubMed  CAS  Google Scholar 

  44. McEchron MD, Cheng AY, Liu H, Connor JR, Gilmartin MR. Perinatal nutritional iron deficiency permanently impairs hippocampus-dependent trace fear conditioning in rats. Nutr Neurosci. 2005;8:195–206.

    PubMed  CAS  Google Scholar 

  45. McEchron MD, Paronish MD. Perinatal nutritional iron deficiency reduces hippocampal synaptic transmission but does not impair short- or long-term synaptic plasticity. Nutr Neurosci. 2005;8:277–85.

    PubMed  CAS  Google Scholar 

  46. Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. J Nutr. 2003;133:3215–21.

    PubMed  CAS  Google Scholar 

  47. Yu GS, Steinkirchner TM, Rao GA, Larkin EC. Effect of prenatal iron deficiency on myelination in rat pups. Am J Pathol. 1986;125:620–4.

    PubMed  CAS  Google Scholar 

  48. Beard JL, Wiesinger JA, Connor JR. Pre- and postweaning iron deficiency alters myelination in Sprague-Dawley rats. Dev Neurosci. 2003;25:308–15.

    PubMed  CAS  Google Scholar 

  49. Morath DJ, Mayer-Proschel M. Iron deficiency during embryogenesis and consequences for oligodendrocyte generation in vivo. Dev Neurosci. 2002;24:197–207.

    PubMed  CAS  Google Scholar 

  50. Ortiz E, Pasquini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004;77:681–9.

    PubMed  CAS  Google Scholar 

  51. Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia. 1996;17:83–93.

    PubMed  CAS  Google Scholar 

  52. Pinero DJ, Li NQ, Connor JR, Beard JL. Variations in dietary iron alter brain iron metabolism in developing rats. J Nutr. 2000;130:254–63.

    PubMed  CAS  Google Scholar 

  53. Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem. 1997;69:443–54.

    PubMed  CAS  Google Scholar 

  54. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL. Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann NY Acad Sci. 2004;1012:224–36.

    PubMed  CAS  Google Scholar 

  55. Dwork AJ. Effects of diet and development upon the uptake and distribution of cerebral iron. J Neurol Sci. 1995;134(Suppl):45–51.

    PubMed  CAS  Google Scholar 

  56. Miller MW, Roskams AJ, Connor JR. Iron regulation in the developing rat brain: effect of in utero ethanol exposure. J Neurochem. 1995;65:373–80.

    PubMed  CAS  Google Scholar 

  57. Chen Q, Connor JR, Beard JL. Brain iron, transferrin and ferritin concentrations are altered in developing iron-deficient rats. J Nutr. 1995;125:1529–35.

    PubMed  CAS  Google Scholar 

  58. Han J, Day JR, Connor JR, Beard JL. H and L ferritin subunit mRNA expression differs in brains of control and iron-deficient rats. J Nutr. 2002;132:2769–74.

    PubMed  CAS  Google Scholar 

  59. Iii AM, Mitchell TR, Neely EB, Connor JR. Metabolic analysis of mouse brains that have compromised iron storage. Metab Brain Dis. 2006;21:77–87.

    Google Scholar 

  60. Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia. 2006;54:795–804.

    PubMed  CAS  Google Scholar 

  61. Dallman PR, Spirito RA. Brain iron in the rat: extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J Nutr. 1977;107:1075–81.

    PubMed  CAS  Google Scholar 

  62. Dallman PR, Siimes MA, Manies EC. Brain iron: persistent deficiency following short-term iron deprivation in the young rat. Br J Haematol. 1975;31:209–15.

    PubMed  CAS  Google Scholar 

  63. Rao C, Murthy V, Hegde R, Asha, Vishwanath. Hallervorden Spatz disease. Indian J Pediatr. 2003;70:513–514.

    Google Scholar 

  64. Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

    PubMed  Google Scholar 

  65. Morath DJ, Mayer-Proschel M. Iron modulates the differentiation of a distinct population of glial precursor cells into oligodendrocytes. Dev Biol. 2001;237:232–43.

    PubMed  CAS  Google Scholar 

  66. Roncagliolo M, Garrido M, Walter T, Peirano P, Lozoff B. Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr. 1998;68:683–90.

    PubMed  CAS  Google Scholar 

  67. Burden MJ, Westerlund AJ, Armony-Sivan R, et al. An event-related potential study of attention and recognition memory in infants with iron-deficiency anemia. Pediatrics. 2007;120:e336–45.

    PubMed  Google Scholar 

  68. Peirano P, Algarin C, Garrido M, Algarin D, Lozoff B. Iron-deficiency anemia is associated with altered characteristics of sleep spindles in NREM sleep in infancy. Neurochem Res. 2007;32:1665–72.

    PubMed  CAS  Google Scholar 

  69. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105:E51.

    PubMed  CAS  Google Scholar 

  70. Mackler B, Person R, Miller LR, Finch CA. Iron deficiency in the rat: effects on phenylalanine metabolism. Pediatr Res. 1979;13:1010–1.

    PubMed  CAS  Google Scholar 

  71. Ward KL, Tkac I, Jing Y, et al. Gestational and lactational iron deficiency alters the developing striatal metabolome and associated behaviors in young rats. J Nutr. 2007;137:1043–9.

    PubMed  CAS  Google Scholar 

  72. Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133:1468S–72.

    PubMed  CAS  Google Scholar 

  73. Ashkenazi R, Ben-Shachar D, Youdim MB. Nutritional iron and dopamine binding sites in the rat brain. Pharmacol Biochem Behav. 1982;17(Suppl 1):43–7.

    PubMed  CAS  Google Scholar 

  74. Li D. Effects of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues. Hokkaido Igaku Zasshi. 1998;73:215–25.

    PubMed  CAS  Google Scholar 

  75. Erikson KM, Shihabi ZK, Aschner JL, Aschner M. Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations. Biol Trace Elem Res. 2002;87:143–56.

    PubMed  CAS  Google Scholar 

  76. Yehuda S, Youdim MB. Brain iron: a lesson from animal models. Am J Clin Nutr. 1989;50:618–29.

    PubMed  CAS  Google Scholar 

  77. Hill JM. Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GABA. Brain Res. 1985;342:18–25.

    PubMed  CAS  Google Scholar 

  78. Taneja V, Mishra KP, Agarwal KN. Effect of maternal iron deficiency on GABA shunt pathway of developing rat brain. Indian J Exp Biol. 1990;28:466–9.

    PubMed  CAS  Google Scholar 

  79. Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–58.

    PubMed  CAS  Google Scholar 

  80. Erikson KM, Jones BC, Beard JL. Iron deficiency alters dopamine transporter functioning in rat striatum. J Nutr. 2000;130:2831–7.

    PubMed  CAS  Google Scholar 

  81. Erikson KM, Jones BC, Hess EJ, Zhang Q, Beard JL. Iron deficiency decreases dopamine D1 and D2 receptors in rat brain. Pharmacol Biochem Behav. 2001;69:409–18.

    PubMed  CAS  Google Scholar 

  82. Youdim MB, Ben-Shachar D, Ashkenazi R, Yehuda S. Brain iron and dopamine receptor function. Adv Biochem Psychopharmacol. 1983;37:309–21.

    PubMed  CAS  Google Scholar 

  83. Nelson C, Erikson K, Pinero DJ, Beard JL. In vivo dopamine metabolism is altered in iron-deficient anemic rats. J Nutr. 1997;127:2282–8.

    PubMed  CAS  Google Scholar 

  84. Wiesinger JA, Buwen JP, Cifelli CJ, Unger EL, Jones BC, Beard JL. Down-regulation of dopamine transporter by iron chelation in vitro is mediated by altered trafficking, not synthesis. J Neurochem. 2007;100:167–79.

    PubMed  CAS  Google Scholar 

  85. Lubach GR, Coe CL. Preconception maternal iron status is a risk factor for iron deficiency in infant rhesus monkeys (Macaca mulatta). J Nutr. 2006;136:2345–9.

    PubMed  CAS  Google Scholar 

  86. Golub MS, Hogrefe CE, Germann SL, Capitanio JP, Lozoff B. Behavioral consequences of developmental iron deficiency in infant rhesus monkeys. Neurotoxicol Teratol. 2006;28:3–17.

    PubMed  CAS  Google Scholar 

  87. Youdim MB, Green AR. Biogenic monoamine metabolism and functional activity in iron-deficient rats: behavioural correlates. Ciba Found Symp. 1976;51:201–25.

    PubMed  Google Scholar 

  88. Youdim MB, Green AR. Iron deficiency and neurotransmitter synthesis and function. Proc Nutr Soc. 1978;37:173–9.

    PubMed  CAS  Google Scholar 

  89. Morse AC, Beard JL, Jones BC. A genetic developmental model of iron deficiency: biological aspects. Proc Soc Exp Biol Med. 1999;220:147–52.

    PubMed  CAS  Google Scholar 

  90. Burhans MS, Dailey C, Beard Z, et al. Iron deficiency: differential effects on monoamine transporters. Nutr Neurosci. 2005;8:31–8.

    PubMed  CAS  Google Scholar 

  91. Miranda M, Sorkin A. Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol Interv. 2007;7:157–67.

    PubMed  CAS  Google Scholar 

  92. Melikian HE. Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation. Pharmacol Ther. 2004;104:17–27.

    PubMed  CAS  Google Scholar 

  93. Lozoff B, Kaciroti N, Walter T. Iron deficiency in infancy: applying a physiologic framework for prediction. Am J Clin Nutr. 2006;84:1412–21.

    PubMed  CAS  Google Scholar 

  94. Beard JL, Unger EL, Bianco LE, Paul T, Rundle SE, Jones BC. Early postnatal iron repletion overcomes lasting effects of gestational iron deficiency in rats. J Nutr. 2007;137:1176–82.

    PubMed  CAS  Google Scholar 

  95. Unger EL, Paul T, Murray-Kolb LE, Felt B, Jones BC, Beard JL. Early iron deficiency alters sensorimotor development and brain monoamines in rats. J Nutr. 2007;137:118–24.

    PubMed  CAS  Google Scholar 

  96. Brigham D, Beard J. Iron and thermoregulation: a review. Crit Rev Food Sci Nutr. 1996;36:747–63.

    PubMed  CAS  Google Scholar 

  97. Beard J, Green W, Miller L, Finch C. Effect of iron-deficiency anemia on hormone levels and thermoregulation during cold exposure. Am J Physiol. 1984;247:R114–9.

    PubMed  CAS  Google Scholar 

  98. Lukaski HC, Hall CB, Nielsen FH. Thermogenesis and thermoregulatory function of iron-deficient women without anemia. Aviat Space Environ Med. 1990;61:913–20.

    PubMed  CAS  Google Scholar 

  99. Dillman E, Gale C, Green W, Johnson DG, Mackler B, Finch C. Hypothermia in iron deficiency due to altered triiodothyronine metabolism. Am J Physiol. 1980;239:R377–81.

    PubMed  CAS  Google Scholar 

  100. Beard J, Tobin B, Smith SM. Norepinephrine turnover in iron deficiency at three environmental temperatures. Am J Physiol. 1988;255:R90–6.

    PubMed  CAS  Google Scholar 

  101. Beard J, Tobin B, Green W. Evidence for thyroid hormone deficiency in iron-deficient anemic rats. J Nutr. 1989;119:772–8.

    PubMed  CAS  Google Scholar 

  102. Martinez-Torres C, Cubeddu L, Dillmann E, et al. Effect of exposure to low temperature on normal and iron-deficient subjects. Am J Physiol. 1984;246:R380–3.

    PubMed  CAS  Google Scholar 

  103. Borel MJ, Beard JL, Farrell PA. Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol. 1993;264:E380–90.

    PubMed  CAS  Google Scholar 

  104. Borel MJ, Smith SH, Brigham DE, Beard JL. The impact of varying degrees of iron nutriture on several functional consequences of iron deficiency in rats. J Nutr. 1991;121:729–36.

    PubMed  CAS  Google Scholar 

  105. Voorhess ML, Stuart MJ, Stockman JA, Oski FA. Iron deficiency anemia and increased urinary norepinephrine excretion. J Pediatr. 1975;86:542–7.

    PubMed  CAS  Google Scholar 

  106. Beard JL, Wiesinger JA, Jones BC. Iron chelation decreases norepinephrine transporter concentrations in PC12 cells and iron deficient rat brain. Brain Res. 2006;1092:47–58.

    PubMed  CAS  Google Scholar 

  107. Beard JL. Neuroendocrine alterations in iron deficiency. Prog Food Nutr Sci. 1990;14:45–82.

    PubMed  CAS  Google Scholar 

  108. Brigham DE, Beard JL. Effect of thyroid hormone replacement in iron-deficient rats. Am J Physiol. 1995;269:R1140–7.

    PubMed  CAS  Google Scholar 

  109. Beard JL, Brigham DE, Kelley SK, Green MH. Plasma thyroid hormone kinetics are altered in iron-deficient rats. J Nutr. 1998;128:1401–8.

    PubMed  CAS  Google Scholar 

  110. Tienboon P, Unachak K. Iron deficiency anaemia in childhood and thyroid function. Asia Pac J Clin Nutr. 2003;12:198–202.

    PubMed  CAS  Google Scholar 

  111. Eftekhari MH, Keshavarz SA, Jalali M, Elguero E, Eshraghian MR, Simondon KB. The relationship between iron status and thyroid hormone concentration in iron-deficient adolescent Iranian girls. Asia Pac J Clin Nutr. 2006;15:50–5.

    PubMed  CAS  Google Scholar 

  112. Hess SY, Zimmermann MB, Arnold M, Langhans W, Hurrell RF. Iron deficiency anemia reduces thyroid peroxidase activity in rats. J Nutr. 2002;132:1951–5.

    PubMed  CAS  Google Scholar 

  113. Beard J. Feed efficiency and norepinephrine turnover in iron deficiency. Proc Soc Exp Biol Med. 1987;184:337–44.

    PubMed  CAS  Google Scholar 

  114. Wegmuller R, Camara F, Zimmermann MB, Adou P, Hurrell RF. Salt dual-fortified with iodine and micronized ground ferric pyrophosphate affects iron status but not hemoglobin in children in Cote d’Ivoire. J Nutr. 2006;136:1814–20.

    PubMed  CAS  Google Scholar 

  115. Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr. 2006;26:367–89.

    PubMed  CAS  Google Scholar 

  116. Zimmermann M, Adou P, Torresani T, Zeder C, Hurrell R. Persistence of goiter despite oral iodine supplementation in goitrous children with iron deficiency anemia in Cote d’Ivoire. Am J Clin Nutr. 2000;71:88–93.

    PubMed  CAS  Google Scholar 

  117. Ramirez G, Bittle PA, Sanders H, Bercu BB. Hypothalamo-hypophyseal thyroid and gonadal function before and after erythropoietin therapy in dialysis patients. J Clin Endocrinol Metab. 1992;74:517–24.

    PubMed  CAS  Google Scholar 

  118. Schmidauer C, Sojer M, Seppi K, et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann Neurol. 2005;58:630–4.

    PubMed  Google Scholar 

  119. Celsing F, Blomstrand E, Werner B, Pihlstedt P, Ekblom B. Effects of iron deficiency on endurance and muscle enzyme activity in man. Med Sci Sports Exerc. 1986;18:156–61.

    PubMed  CAS  Google Scholar 

  120. Edgerton VR, Ohira Y, Hettiarachchi J, Senewiratne B, Gardner GW, Barnard RJ. Elevation of hemoglobin and work tolerance in iron-deficient subjects. J Nutr Sci Vitaminol (Tokyo). 1981;27:77–86.

    CAS  Google Scholar 

  121. Gardner GW, Edgerton VR, Barnard RJ, Bernauer EM. Cardiorespiratory, hematological and physical performance responses of anemic subjects to iron treatment. Am J Clin Nutr. 1975;28:982–8.

    PubMed  CAS  Google Scholar 

  122. Gardner GW, Edgerton VR, Senewiratne B, Barnard RJ, Ohira Y. Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr. 1977;30:910–7.

    PubMed  CAS  Google Scholar 

  123. Ohira Y, Edgerton VR, Gardner GW, Senewiratne B, Barnard RJ, Simpson DR. Work capacity, heart rate and blood lactate responses to iron treatment. Br J Haematol. 1979;41:365–72.

    PubMed  CAS  Google Scholar 

  124. Tufts DA, Haas JD, Beard JL, Spielvogel H. Distribution of hemoglobin and functional consequences of anemia in adult males at high altitude. Am J Clin Nutr. 1985;42:1–11.

    PubMed  CAS  Google Scholar 

  125. Woodson RD, Wills RE, Lenfant C. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol. 1978;44:36–43.

    PubMed  CAS  Google Scholar 

  126. Finch CA, Deubelbeiss K, Cook JD, et al. Ferrokinetics in man. Medicine (Baltimore). 1970;49:17–53.

    CAS  Google Scholar 

  127. Klingshirn LA, Pate RR, Bourque SP, Davis JM, Sargent RG. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med Sci Sports Exerc. 1992;24:819–24.

    PubMed  CAS  Google Scholar 

  128. Newhouse IJ, Clement DB, Taunton JE, McKenzie DC. The effects of prelatent/latent iron deficiency on physical work capacity. Med Sci Sports Exerc. 1989;21:263–8.

    PubMed  CAS  Google Scholar 

  129. Rowland TW, Deisroth MB, Green GM, Kelleher JF. The effect of iron therapy on the exercise capacity of nonanemic iron-deficient adolescent runners. Am J Dis Child. 1988;142:165–9.

    PubMed  CAS  Google Scholar 

  130. Zhu YI, Haas JD. Altered metabolic response of iron-depleted nonanemic women during a 15-km time trial. J Appl Physiol. 1998;84:1768–75.

    PubMed  CAS  Google Scholar 

  131. Davies KJ, Maguire JJ, Brooks GA, Dallman PR, Packer L. Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Physiol. 1982;242:E418–27.

    PubMed  CAS  Google Scholar 

  132. Edgerton VR, Bryant SL, Gillespie CA, Gardner GW. Iron deficiency anemia and physical performance and activity of rats. J Nutr. 1972;102:381–99.

    PubMed  CAS  Google Scholar 

  133. Perkkio MV, Jansson LT, Henderson S, Refino C, Brooks GA, Dallman PR. Work performance in the iron-deficient rat: improved endurance with exercise training. Am J Physiol. 1985;249:E306–11.

    PubMed  CAS  Google Scholar 

  134. Finch CA, Miller LR, Inamdar AR, Person R, Seiler K, Mackler B. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest. 1976;58:447–53.

    PubMed  CAS  Google Scholar 

  135. LaManca JJ, Haymes EM. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sports Exerc. 1993;25:1386–92.

    PubMed  CAS  Google Scholar 

  136. Haas JD, Brownlie T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr. 2001;131:676S–90.

    PubMed  CAS  Google Scholar 

  137. Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr. 2003;77:441–8.

    PubMed  CAS  Google Scholar 

  138. Brownlie T, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr. 2002;75:734–42.

    PubMed  CAS  Google Scholar 

  139. Brownlie T, Utermohlen V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79:437–43.

    PubMed  CAS  Google Scholar 

  140. Hinton PS, Giordano C, Brownlie T, Haas JD. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol. 2000;88:1103–11.

    PubMed  CAS  Google Scholar 

  141. Jensen CA, Weaver CM, Sedlock DA. Iron supplementation and iron status in exercising young women. J Nutr Biochem. 1991;2:368–73.

    CAS  Google Scholar 

  142. Zhu YI, Haas JD. Iron depletion without anemia and physical performance in young women. Am J Clin Nutr. 1997;66:334–41.

    PubMed  CAS  Google Scholar 

  143. Hinton PS, Sinclair LM. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur J Clin Nutr. 2007;61:30–9.

    PubMed  CAS  Google Scholar 

  144. Li R, Chen X, Yan H, Deurenberg P, Garby L, Hautvast JG. Functional consequences of iron supplementation in iron-deficient female cotton mill workers in Beijing, China. Am J Clin Nutr. 1994;59:908–13.

    PubMed  CAS  Google Scholar 

  145. Basta SS, Soekirman DS, Karyadi D, Scrimshaw NS. Iron deficiency anemia and the productivity of adult males in Indonesia. Am J Clin Nutr. 1979;32:916–25.

    PubMed  CAS  Google Scholar 

  146. Edgerton VR, Gardner GW, Ohira Y, Gunawardena KA, Senewiratne B. Iron-deficiency anaemia and its effect on worker productivity and activity patterns. Br Med J. 1979;2:1546–9.

    PubMed  CAS  Google Scholar 

  147. Edgerton VR, Diamond LB, Olson J. Voluntary activity, cardiovascular and muscular responses to anemia in rats. J Nutr. 1977;107:1595–601.

    PubMed  CAS  Google Scholar 

  148. Hunt JR, Zito CA, Erjavec J, Johnson LK. Severe or marginal iron deficiency affects spontaneous physical activity in rats. Am J Clin Nutr. 1994;59:413–8.

    PubMed  CAS  Google Scholar 

  149. Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001. http://www.iom.edu/Reports.aspx?Search  =  Dietary%20Reference%20Intakes%20for%20Micronutrients&Date  =  1/1/2001 t1/12/2001.

    Google Scholar 

  150. De Leeuw NK, Lowenstein L, Hsieh YS. Iron deficiency and hydremia in normal pregnancy. Medicine (Baltimore). 1966;45:291–315.

    Google Scholar 

  151. Beaton GH. Iron needs during pregnancy: do we need to rethink our targets? Am J Clin Nutr. 2000;72:265S–71.

    PubMed  CAS  Google Scholar 

  152. Milman N. Iron prophylaxis in pregnancy-general or individual and in which dose? Ann Hematol. 2006;85:821–8.

    PubMed  CAS  Google Scholar 

  153. Casanueva E, Viteri FE, Mares-Galindo M, et al. Weekly iron as a safe alternative to daily supplementation for nonanemic pregnant women. Arch Med Res. 2006;37:674–82.

    PubMed  CAS  Google Scholar 

  154. Pena-Rosas JP, Nesheim MC, Garcia-Casal MN, et al. Intermittent iron supplementation regimens are able to maintain safe maternal hemoglobin concentrations during pregnancy in Venezuela. J Nutr. 2004;134:1099–104.

    PubMed  CAS  Google Scholar 

  155. Allen LH. Pregnancy and iron deficiency: unresolved issues. Nutr Rev. 1997;55:91–101.

    PubMed  CAS  Google Scholar 

  156. Murphy JF, O’Riordan J, Newcombe RG, Coles EC, Pearson JF. Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet. 1986;1:992–5.

    PubMed  CAS  Google Scholar 

  157. Steer P, Alam MA, Wadsworth J, Welch A. Relation between maternal haemoglobin concentration and birth weight in different ethnic groups. BMJ. 1995;310:489–91.

    PubMed  CAS  Google Scholar 

  158. Barrett JF, Whittaker PG, Williams JG, Lind T. Absorption of non-haem iron from food during normal pregnancy. BMJ. 1994;309:79–82.

    PubMed  CAS  Google Scholar 

  159. O’Brien KO. Regulation of mineral metabolism from fetus to infant: metabolic studies. Acta Paediatr Suppl. 1999;88:88–91.

    PubMed  Google Scholar 

  160. O’Brien KO, Zavaleta N, Caulfield LE, Yang DX, Abrams SA. Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant Peruvian women. Am J Clin Nutr. 1999;69:509–15.

    PubMed  Google Scholar 

  161. Gambling L, Charania Z, Hannah L, Antipatis C, Lea RG, McArdle HJ. Effect of iron deficiency on placental cytokine expression and fetal growth in the pregnant rat. Biol Reprod. 2002;66:516–23.

    PubMed  CAS  Google Scholar 

  162. Hindmarsh PC, Geary MP, Rodeck CH, Jackson MR, Kingdom JC. Effect of early maternal iron stores on placental weight and structure. Lancet. 2000;356:719–23.

    PubMed  CAS  Google Scholar 

  163. Allen LH. Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J Nutr. 2001;131:581S–9.

    PubMed  CAS  Google Scholar 

  164. Jones BC, Reed CL, Hitzemann R, et al. Quantitative genetic analysis of ventral midbrain and liver iron in BXD recombinant inbred mice. Nutr Neurosci. 2003;6:369–77.

    PubMed  CAS  Google Scholar 

  165. Beard J. Iron. In: Bowman BA, Russell RM, editors. Present knowledge in nutrition. 9th ed. Washington, DC: International Life Sciences Press; 2006.

    Google Scholar 

  166. Allen LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr. 2000;71:1280S–4.

    PubMed  CAS  Google Scholar 

  167. Allen LH. Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr. 2005;81:1206S–12.

    PubMed  CAS  Google Scholar 

  168. Brabin BJ, Hakimi M, Pelletier D. An analysis of anemia and pregnancy-related maternal mortality. J Nutr. 2001;131:604S–15.

    PubMed  CAS  Google Scholar 

  169. Scholl TO. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81:1218S–22.

    PubMed  CAS  Google Scholar 

  170. Yip R. Significance of an abnormally low or high hemoglobin concentration during pregnancy: special consideration of iron nutrition. Am J Clin Nutr. 2000;72:272S–9.

    PubMed  CAS  Google Scholar 

  171. Rasmussen K. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? J Nutr. 2001;131:590S–603.

    PubMed  CAS  Google Scholar 

  172. Rasmussen KM, Stoltzfus RJ. New evidence that iron supplementation during pregnancy improves birth weight: new scientific questions. Am J Clin Nutr. 2003;78:673–4.

    PubMed  CAS  Google Scholar 

  173. Verhoeff FH, Brabin BJ, van Buuren S, et al. An analysis of intra-uterine growth retardation in rural Malawi. Eur J Clin Nutr. 2001;55:682–9.

    PubMed  CAS  Google Scholar 

  174. Brabin BJ, Premji Z, Verhoeff F. An analysis of anemia and child mortality. J Nutr. 2001;131:636S–48.

    PubMed  CAS  Google Scholar 

  175. Scholl TO, Reilly T. Anemia, iron and pregnancy outcome. J Nutr. 2000;130:443S–7.

    PubMed  CAS  Google Scholar 

  176. Zhou LM, Yang WW, Hua JZ, Deng CQ, Tao X, Stoltzfus RJ. Relation of hemoglobin measured at different times in pregnancy to preterm birth and low birth weight in Shanghai, China. Am J Epidemiol. 1998;148:998–1006.

    PubMed  CAS  Google Scholar 

  177. Rush D. Nutrition and maternal mortality in the developing world. Am J Clin Nutr. 2000;72:212S–40.

    PubMed  CAS  Google Scholar 

  178. Goldenberg RL, Tamura T. Prepregnancy weight and pregnancy outcome. J Am Med Assoc. 1996;275:1127–8.

    CAS  Google Scholar 

  179. Tamura T, Goldenberg RL, Johnston KE, Cliver SP, Hickey CA. Serum ferritin: a predictor of early spontaneous preterm delivery. Obstet Gynecol. 1996;87:360–5.

    PubMed  CAS  Google Scholar 

  180. Beard JL, Murray-Kolb LE, Rosales FJ, Solomons NW, Angelilli ML. Interpretation of serum ferritin concentrations as indicators of total-body iron stores in survey populations: the role of biomarkers for the acute phase response. Am J Clin Nutr. 2006;84:1498–505.

    PubMed  CAS  Google Scholar 

  181. Lao TT, Tam KF, Chan LY. Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod. 2000;15:1843–8.

    PubMed  CAS  Google Scholar 

  182. Ramsey PS, Tamura T, Goldenberg RL, et al. The preterm prediction study: elevated cervical ferritin levels at 22 to 24 weeks of gestation are associated with spontaneous preterm delivery in asymptomatic women. Am J Obstet Gynecol. 2002;186:458–63.

    PubMed  CAS  Google Scholar 

  183. Siega-Riz AM, Hartzema AG, Turnbull C, Thorp J, McDonald T, Cogswell ME. The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obstet Gynecol. 2006;194:512–9.

    PubMed  CAS  Google Scholar 

  184. Milman N, Byg KE, Bergholt T, Eriksen L. Side effects of oral iron prophylaxis in pregnancy–myth or reality? Acta Haematol. 2006;115:53–7.

    PubMed  CAS  Google Scholar 

  185. Tamura T, Goldenberg RL, Hou J, et al. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J Pediatr. 2002;140:165–70.

    PubMed  CAS  Google Scholar 

  186. Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr. 1997;66:1178–82.

    PubMed  CAS  Google Scholar 

  187. Beard JL, Hendricks MK, Perez EM, et al. Maternal iron deficiency anemia affects postpartum emotions and cognition. J Nutr. 2005;135:267–72.

    PubMed  CAS  Google Scholar 

  188. Perez EM, Hendricks MK, Beard JL, et al. Mother-infant interactions and infant development are altered by maternal iron deficiency anemia. J Nutr. 2005;135:850–5.

    PubMed  CAS  Google Scholar 

  189. Zhou SJ, Gibson RA, Crowther CA, Baghurst P, Makrides M. Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 y of age: long-term follow-up of a randomized controlled trial. Am J Clin Nutr. 2006;83:1112–7.

    PubMed  CAS  Google Scholar 

  190. Milman N. Iron and pregnancy-a delicate balance. Ann Hematol. 2006;85:559–65.

    PubMed  CAS  Google Scholar 

  191. Savoie N, Rioux FM. Impact of maternal anemia on the infant’s iron status at 9 months of age. Can J Public Health. 2002;93:203–7.

    PubMed  Google Scholar 

  192. Kilbride J, Baker TG, Parapia LA, Khoury SA, Shuqaidef SW, Jerwood D. Anaemia during pregnancy as a risk factor for iron-deficiency anaemia in infancy: a case-control study in Jordan. Int J Epidemiol. 1999;28:461–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Durward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beard, J.L., Durward, C. (2012). The Liabilities of Iron Deficiency. In: Anderson, G., McLaren, G. (eds) Iron Physiology and Pathophysiology in Humans. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-485-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-485-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-484-5

  • Online ISBN: 978-1-60327-485-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics