Skip to main content

Using Peptide Array to Identify Binding Motifs and Interaction Networks for Modular Domains

  • Protocol
  • First Online:
Peptide Microarrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 570))

Abstract

Specific protein–protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein–protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein–protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein–protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield, R.B., (1963) Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc, 85, 2149–54.

    Article  CAS  Google Scholar 

  2. Frank, R. and Overwin, H., (1996) SPOT-synthesis epitope analysis with arrays of synthetic peptides prepared on cellulose membranes, Methods Mol Biol, 66, 149–169.

    PubMed  CAS  Google Scholar 

  3. Wegner, G.J., Lee, H.J., and Corn, R.M., (2002) Characterization and optimization of peptide arrays for the study of epitope–antibody interactions using surface plasmon resonance imaging. Anal Chem, 74, 5161–8.

    Article  PubMed  CAS  Google Scholar 

  4. Jia, C.Y., Nie, J., Wu, C., Li, C., and Li, S.S., (2005) Novel Src homology 3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Mol Cell Proteomics, 4, 1155–66.

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez, M., Li, S.S., Harper, J.W., and Songyang, Z., (2004) An oriented peptide array library (OPAL) strategy to study protein–protein interactions. J Biol Chem, 279, 8802–7.

    Article  PubMed  CAS  Google Scholar 

  6. Huang, H., Li, L., Wu, C., Schibli, D., Colwill, K., Ma, S., et al., (2008) Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics, 7, 768–84.

    PubMed  CAS  Google Scholar 

  7. Frank, R., (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217–32.

    Article  CAS  Google Scholar 

  8. Beyer, M., Nesterov, A., Block, I., Konig, K., Felgenhauer, T., Fernandez, S., et al., (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science, 318, 1888.

    Article  PubMed  CAS  Google Scholar 

  9. Pellois, J.P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., and Gao, X., (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol, 20, 922–6.

    Article  PubMed  CAS  Google Scholar 

  10. Shin, D.S., Kim, D.H., Chung, W.J., and Lee, Y.S., (2005) Combinatorial solid phase peptide synthesis and bioassays. J Biochem Mol Biol, 38, 517–25.

    Article  PubMed  CAS  Google Scholar 

  11. Falsey, J.R., Renil, M., Park, S., Li, S., and Lam, K.S., (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem, 12, 346–53.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi, M., Nokihara, K. and Mihara, H., (2003) Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem Biol, 10, 53–60.

    Article  PubMed  CAS  Google Scholar 

  13. Salisbury, C.M., Maly, D.J., and Ellman, J.A., (2002) Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc, 124, 14868–70.

    Article  PubMed  CAS  Google Scholar 

  14. Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y., and Yao, S.Q., (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett, 12, 2079–83.

    Article  PubMed  CAS  Google Scholar 

  15. Schultz, J., Hoffmuller, U., Krause, G., Ashurst, J., Macias, M.J., Schmieder, P., et al., (1998) Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat Struct Biol, 5, 19–24.

    Article  PubMed  CAS  Google Scholar 

  16. Cestra, G., Castagnoli, L., Dente, L., Minenkova, O., Petrelli, A., Migone, N., et al., (1999) The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin 1 at distinct sites that display an unconventional binding specificity. J Biol Chem, 274, 32001–7.

    Article  PubMed  CAS  Google Scholar 

  17. Knoblauch, N.T., Rudiger, S., Schonfeld, H.J., Driessen, A.J., Schneider-Mergener, J., and Bukau, B., (1999) Substrate specificity of the SecB chaperone. J Biol Chem, 274, 34219–25.

    Article  PubMed  CAS  Google Scholar 

  18. Pullen, S.S., Labadia, M.E., Ingraham, R.H., McWhirter, S.M., Everdeen, D.S., Alber, T., et al., (1999) High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry, 38, 10168–77.

    Article  PubMed  CAS  Google Scholar 

  19. Landgraf, C., Panni, S., Montecchi-Palazzi, L., Castagnoli, L., Schneider-Mergener, J., Volkmer-Engert, R., et al., (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol, 2, E14.

    Article  PubMed  Google Scholar 

  20. Smith, M.J., Hardy, W.R., Murphy, J.M., Jones, N., and Pawson, T., (2006) Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol Cell Biol, 26, 8461–74.

    Article  PubMed  CAS  Google Scholar 

  21. Wu, C., Ma, M.H., Brown, K.R., Geisler, M., Li, L., Tzeng, E., et al., (2007) Systematic identification of SH3 domain-mediated human protein–protein interactions by peptide array target screening. Proteomics, 7, 1775–85.

    Article  PubMed  CAS  Google Scholar 

  22. Weiler, J., Gausepohl, H., Hauser, N., Jensen, O.N., and Hoheisel, J.D., (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res, 25, 2792–9.

    Article  PubMed  CAS  Google Scholar 

  23. Reineke, U., Kramer, A., and Schneider-Mergener, J., (1999) Antigen sequence- and library-based mapping of linear and discontinuous protein–protein-interaction sites by spot synthesis. Curr Top Microbiol Immunol, 243, 23–36.

    Article  PubMed  CAS  Google Scholar 

  24. Buss, H., Dorrie, A., Schmitz, M.L., Frank, R., Livingstone, M., Resch, K., et al., (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem, 279, 49571–4.

    Article  PubMed  CAS  Google Scholar 

  25. Szallasi, Z., Denning, M.F., Chang, E.Y., Rivera, J., Yuspa, S.H., Lehel, C., et al., (1995) Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochem Biophys Res Commun, 214, 888–94.

    Article  PubMed  CAS  Google Scholar 

  26. Espanel, X., Huguenin-Reggiani, M., and Van Huijsduijnen, R.H., (2002) The SPOT technique as a tool for studying protein tyrosine phosphatase substrate specificities. Protein Sci, 11, 2326–34.

    Article  PubMed  CAS  Google Scholar 

  27. Sparks, A.B., Rider, J.E., and Kay, B.K., (1998) Mapping the specificity of SH3 domains with phage-displayed random-peptide libraries. Methods Mol Biol, 84, 87–103.

    PubMed  CAS  Google Scholar 

  28. Songyang, Z., Shoelson, S.E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X.R., et al., (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol, 14, 2777–85.

    Article  PubMed  CAS  Google Scholar 

  29. Songyang, Z. and Cantley, L.C., (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci, 20, 470–5.

    Article  PubMed  CAS  Google Scholar 

  30. Songyang, Z. and Liu, D., (2001) Peptide library screening for determination of SH2 or phosphotyrosine-binding domain sequences. Methods Enzymol, 332, 183–95.

    Article  PubMed  CAS  Google Scholar 

  31. Turk, B.E. and Cantley, L.C., (2003) Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr Opin Chem Biol, 7, 84–90.

    Article  PubMed  CAS  Google Scholar 

  32. Hutti, J.E., Jarrell, E.T., Chang, J.D., Abbott, D.W., Storz, P., Toker, A., et al., (2004) A rapid method for determining protein kinase phosphorylation specificity. Nat Methods, 1, 27–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sadowski, I., Stone, J.C. and Pawson, T., (1986) A noncatalytic domain conserved among cytoplasmic protein–tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol, 6, 4396–408.

    PubMed  CAS  Google Scholar 

  34. Anderson, D., Koch, C.A., Grey, L., Ellis, C., Moran, M.F., and Pawson, T., (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science, 250, 979–82.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuda, M., Mayer, B.J., Fukui, Y., and Hanafusa, H., (1990) Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science, 248, 1537–9.

    Article  PubMed  CAS  Google Scholar 

  36. Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., et al., (1993) SH2 domains recognize specific phosphopeptide sequences. Cell, 72, 767–78.

    Article  PubMed  CAS  Google Scholar 

  37. Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B., (1994) A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem, 269, 32031–4.

    PubMed  CAS  Google Scholar 

  38. Kavanaugh, W.M. and Williams, L.T., (1994) An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science, 266, 1862–5.

    Article  PubMed  CAS  Google Scholar 

  39. van der Geer, P., Wiley, S., Lai, V.K., Olivier, J.P., Gish, G.D., Stephens, R., et al., (1995) A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr Biol, 5, 404–12.

    Article  PubMed  Google Scholar 

  40. Li, L., Wu, C., Huang, H., Zhang, K., Gan, J., and Li, S.S., (2008) Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach. Nucleic Acids Res, 36, 3263–73.

    Google Scholar 

  41. Pawson, T. and Nash, P., (2003) Assembly of cell regulatory systems through protein interaction domains. Science, 300, 445–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, S.SC., Wu, C. (2009). Using Peptide Array to Identify Binding Motifs and Interaction Networks for Modular Domains. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology™, vol 570. Humana Press. https://doi.org/10.1007/978-1-60327-394-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-394-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-393-0

  • Online ISBN: 978-1-60327-394-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics