Skip to main content

Quantification of mRNA Using Real Time RT-PCR

The SYBR Solution

  • Protocol
Molecular Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang AM, Doyle MV, Mark DF (1989) Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86:9717–9721

    Article  PubMed  CAS  Google Scholar 

  2. Foley KP, Leonard MW, Engel JD (1993) Quantitation of RNA using the polymerase chain reaction. Trends Genet 9:380–385

    Article  PubMed  CAS  Google Scholar 

  3. Eidne KA (1991) The polymerase reaction and its uses in Endocrinology. Trends Endo Med 2:69–175

    Google Scholar 

  4. Becker-Andre M, Hahlbrock K (1989) Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res 17:9437–9446

    Article  PubMed  CAS  Google Scholar 

  5. McDowell DG, Burns NA, Parkes HC (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res 26:3340–3347

    Article  PubMed  CAS  Google Scholar 

  6. Wiesner RJ (1992) Direct quantification of picomolar concentrations of mRNAs by mathematical analysis of a reverse transcription/exponential polymerase chain reaction assay. Nucleic Acids Res 20:5863–5864

    Article  PubMed  CAS  Google Scholar 

  7. Freeman WM, Walker SI, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–122, 124–125

    PubMed  CAS  Google Scholar 

  8. Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245: 154–160

    Article  PubMed  CAS  Google Scholar 

  9. Siebert PD, Larrick JW (1992) Competitive PCR. Nature 359:557–558

    Article  PubMed  CAS  Google Scholar 

  10. Sugden D, McArthur AJ, Ajpru S, Duniec K, Piggins H (1999) Expression of mt1 melatonin receptor mRNA in the entrained rat suprachiasmatic nucleus: a quantitative study across the diurnal cycle. Brain Res Mol Brain Res 72:176–182

    Article  PubMed  CAS  Google Scholar 

  11. McArthur AJ, Coogan AN, Ajpru S, Sugden D, Biello SM, Piggins HD (2000) Gastrin-releasing peptide shifts suprachiasmatic nuclei neuronal rhythms in vitro. J Neurosci 20:5496–5502

    PubMed  CAS  Google Scholar 

  12. Ajpru S, McArthur AJ, Piggins HD, Sugden D (2002) Identification of PAC1 receptor isoform mRNAs by real-time PCR in rat suprachiasmatic nucleus. Mol Brain Res 105:29–37

    Article  PubMed  CAS  Google Scholar 

  13. Bustin SA (2004) A–Z of Quantitative PCR. IUL Biotechnology Series, IUL, USA

    Google Scholar 

  14. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RCR. Nature Protocols 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  15. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  16. Schroeder A, Mueller O, Stocker S, Salowsky S, Leiber M, Gassmann M, Lightfoot S., Menzel W., Granzow M., and Ragg T. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  Google Scholar 

  17. Fleige S, Walf V, Huch S, Prgomet C, Sehn J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601–1613

    Article  PubMed  CAS  Google Scholar 

  18. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  PubMed  CAS  Google Scholar 

  19. Jones LJ, Yue ST, Cheung CY, Singer VL (1998) RNA quantitation by fluorescence-based solution assay: RiboGreen reagent characterization. Anal Biochem 265:368–374

    Article  PubMed  CAS  Google Scholar 

  20. Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24: 954–958, 960, 962

    PubMed  CAS  Google Scholar 

  21. Paul TM, Steven G, Christopher PS (2005) Comparison of SYTO9 and SYBR Green 1 for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  Google Scholar 

  22. Wang W, Chen K, Xu C (2006) DNA quantification using EvaGreen and a realtime PCR instrument. Anal Biochem 356:303–305

    Article  PubMed  CAS  Google Scholar 

  23. Karlsson HJ, Bergqvist MH, Lincoln P, Westman G (2004) Syntheses and DNA-binding studies of a series of unsymmetrical cyanine dyes: structural influence on the degree of minor groove binding to natural DNA. Bioorg Med Chem 12: 2369–2384

    Article  PubMed  CAS  Google Scholar 

  24. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49: 853–860

    Article  PubMed  CAS  Google Scholar 

  25. Herrman MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52:494–503

    Article  Google Scholar 

  26. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  PubMed  CAS  Google Scholar 

  27. Sugden D (2003) Comparison of circadian expression of tryptophan hydroxylase isoform mRNAs in the rat pineal gland using real-time PCR. J Neurochem 86: 1308–1311

    Article  PubMed  CAS  Google Scholar 

  28. Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125– 128

    Article  PubMed  CAS  Google Scholar 

  29. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  Google Scholar 

  30. Wilhelm J, Pingoud A, Hahn M (2003) Validation of an algorithm for automatic quantification of nucleic acid copy numbers by real-time polymerase chain reaction. Anal Biochem 317:218–225

    Article  PubMed  CAS  Google Scholar 

  31. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  32. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  33. Goidin D, Mamessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O (2001) Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal Biochem 295, 17–21

    Article  PubMed  CAS  Google Scholar 

  34. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  35. Solanas M, Moral R, Escrich E (2001) Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal Biochem 288: 99–102

    Article  PubMed  CAS  Google Scholar 

  36. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034

    Article  Google Scholar 

  37. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 509–515

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sugden, D., Winter, P.d. (2008). Quantification of mRNA Using Real Time RT-PCR. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics