Skip to main content

HIV Therapeutics: Antiretroviral Drugs and Immune-Based Therapies

  • Chapter
Book cover National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 1295 Accesses

By providing valuable information about the human immunodeficiency virus (HIV), basic research is one of the cornerstones of the Division of AIDS (DAIDS) therapeutic clinical research efforts. Research supported by DAIDS has defined treatment guidelines for HIV infection and associated opportunistic infections, prophylactic regimens for secondary infections, and biological markers for predicting the effectiveness of therapeutics and disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stammers, D. K. and Ren, J. (2006) Structural studies on HIV reverse transcriptase related to drug discovery. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden, R., eds.), Humana Press, Totowa, NJ, pp. 1–32.

    Chapter  Google Scholar 

  2. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A. (1992) Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor, Science, 256, 1783–1790.

    Article  PubMed  CAS  Google Scholar 

  3. Jacobo-Molina, A., Ding, J. P., Nanni, R. G., et al. (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA, Proc. Natl. Acad. Sci. U.S.A., 90, 6320–6324.

    Article  PubMed  CAS  Google Scholar 

  4. Ren, J., Esnouf, R., Garman, E., et al. (1995) High resolution structures of HIV-1 RT from four RT-inhibitor complexes, Nat. Struct. Biol., 2, 293–302.

    Article  PubMed  CAS  Google Scholar 

  5. Rodgers, D. W., Gamblin, S. J., Harris, B. A., et al. (1995) The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A., 92, 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  6. Goff, S. P. (1990) Retroviral reverse transcriptase: synthesis, structure, and function, J. Acquir. Immune Defic. Syndr., 3, 817–831.

    PubMed  CAS  Google Scholar 

  7. De Marzo Veronese, F., Copeland, T. D., De Vico, A. L., et al. (1986) Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV, Science, 231, 1289–1291.

    Article  PubMed  Google Scholar 

  8. Davies II, J. F., Hostomska, Z., Hostomsky, Z., Jordan, S. R., and Matthews, D. A. (1991) Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase, Science, 252, 88–95.

    Article  Google Scholar 

  9. Fan, N., Rank, K. B., Poppe, S. M., Tarpley, W. G., and Sharma, S. K. (1996) Characterization of the p68/p58 heterodimer of human immunodeficiency virus type 2 reverse transcriptase, Biochemistry, 35(6), 1911–1917.

    Article  PubMed  CAS  Google Scholar 

  10. Bird, L. E., Chamberlain, P. P., Stewart-Jones, G., Ren, J., Stuart, D. I., and Stammers, D. K. (2003) Cloning, expression, purification and crystallization of HIV-2 reverse transcriptase, Protein Expr. Purif., 27, 8–12.

    Article  Google Scholar 

  11. Ren, J., Bird, L. E., Chamberlain, P. P., Stewart-Jones, G. B., Stuart, D. I., and Stammers, D. K. (2002) Structure of HIV-2 reverse transcriptase at 2.35 Å resolution and the mechanism of resistance to non-nucleoside inhibitors, Proc. Natl. Acad. Sci. U.S.A., 99, 14410–14415.

    Article  PubMed  CAS  Google Scholar 

  12. Goody, R. S., Muller, B., and Restle, T. (1991) Factors contributing to the inhibition of HIV reverse transcriptase by chain-terminating nucleosides in vivo, FEBS Lett., 291, 1–5.

    Article  PubMed  CAS  Google Scholar 

  13. LeLacheur, S. F. and Simon, G. L. (1991) Exacerbation of dideoxycitidine-induced neuropathy with dideoxyinosine, J. Acquir. Immune Defic. Syndr., 4(5), 538–539.

    PubMed  CAS  Google Scholar 

  14. Zemlicka, J., Freisler, J. V., Gasser, R., and Horwitz, J. P. (1973) Nucleosides XVI. The synthesis of 2′, 3′-dideoxy-3′,4′-didehydronucleosides, J. Org. Chem., 38, 990.

    Article  PubMed  CAS  Google Scholar 

  15. Dube, S., Pragnell, I., Kluge, N., Gaedicke, G., Steinheider, G., and Ostertag, W. (1975) Induction of endogenous and of spleen-forming viruses during diethylsulfoxide-induced differentiation of mouse erythroleukemia cells transformed by spleen focus-forming virus, Proc. Natl. Acad. Sci. U.S.A., 72, 1863–1867.

    Article  PubMed  CAS  Google Scholar 

  16. Mitsuya, H., Weinhold, J., Furman, P., et al. (1985) 3′-Azido-3′-deoxythymidine (BW A509U), Proc. Natl. Acad. Sci. U.S.A., 82, 7096–7100.

    Article  PubMed  CAS  Google Scholar 

  17. Carten, M. and Kessler, H. (2006) Zidovidine, lamivudine, and abacavir. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Scowron, G. and Ogden, R, eds.) Humana Press, Totowa, NJ, pp. 33–76.

    Chapter  Google Scholar 

  18. Birkus, G., Hitchcock, M., and Cihlar, T. (2002) Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors, Antimicrob. Agents Chemother., 46, 716–723.

    Article  PubMed  CAS  Google Scholar 

  19. Hayashi, S., Fine, R. L., Chou, T. C., et al. (1990) In vitro inhibition of the infectivity and replication of human immuno- deficiency virus type 1 by combination of antiretroviral 2′, 3′-dideoxynucleosides and virus-binding inhibitors, Antimicrob. Agents Chemother., 34, 82–88.

    PubMed  CAS  Google Scholar 

  20. Dornsife, R. E., St. Clair, M. H., Huang, A. T., et al. (1991) Anti-human immunodeficiency virus synergism by zidovudine (3′-azidothymidine) and didanosine (dideoxyinosine) contrasts with their additive inhibition or normal human marrow progenitor cells, Antimicrob. Agents Chemother., 35, 322–328.

    PubMed  CAS  Google Scholar 

  21. Eron, J. J., Jr., Johnson, V. A., Merrill, D. P., et al. (1992) Synergistic inhibition of replication of human immunodeficiency virus type 1, including that of a zidovudine-resistant isolate, by zidovudine and 2′, 3′-dideoxycytidine in vitro, Antimicrob. Agents Chemother., 36, 1559–1562.

    PubMed  CAS  Google Scholar 

  22. Merrill, D. P., Moonis, M., Chou, T.-C., and Hirsch, M. S. (1996) Lamivudine (3TC) or stavudine (d4T) in two- and three-drug combinations against HIV-1 replication in vitro, J. Infect. Dis., 173, 355–364.

    PubMed  CAS  Google Scholar 

  23. Richman, D., Rosenthal, A. S., Skoog, M., et al. (1991) BI-RG-587 is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine, Antimicrob. Agents Chemother., 35, 305–308.

    PubMed  CAS  Google Scholar 

  24. Johnson, V. A., Merrill, D. P., Chou, T.-C., and Hirsch, M. S. (1992) Human immunodeficiency virus type 1 (HIV-1) inhibitory interactions between protease inhibitor Ro 31-8959 and zidovudine, 2′,3′-dideoxycytidine, or recombinant interferon-α against zidovudine-sensitive or -resistant HIV-1 in vitro, J. Infect. Dis., 166, 1143–1146.

    PubMed  CAS  Google Scholar 

  25. Havlir, D., Tierney, C., Friedland, G., et al. (2000) In vivo antagonism with zidovudine plus stavudine combination therapy, J. Infect. Dis., 182, 321–325.

    Article  PubMed  CAS  Google Scholar 

  26. Vogt, M. W., Hartshorn, K. L., Furman, P. A., et al. (1987) Ribavirin antagonizes the effect of azidothymidine on HIV replication, Science, 235, 1376–1379.

    Article  PubMed  CAS  Google Scholar 

  27. Darbyshire, J. H. and Aboulker, J.-P. (1996) Delta: a randomized double-blind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals, Lancet, 348, 2–5.

    Article  Google Scholar 

  28. Hammer, S. M., Katzenstein, D. A., Hughes, M. D., et al. for the AIDS Clinical Trial Group Study 175 Study Team (1996) A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter, N. Engl. J. Med., 335, 1081–1089.

    Google Scholar 

  29. Connor, E. M., Sperling, R. S., Gelbert, R., et al. (1994) Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment, N. Engl. J. Med., 331(18), 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  30. Yarchoan, R., Mitsuya, H., Myers, C., and Broder, S. (1989) Clinical pharmacology of 3′-azido-2′,3′-dideoxythymidine (zidovudine) and related dideoxynucleosides, N. Engl. J. Med., 321(11), 726–738.

    PubMed  CAS  Google Scholar 

  31. The AVANTI Study Group (2000) AVANTI 2: a randomized, double-blind trial to evaluate the efficacy and safety of zidovudine plus lamivudine versus zidovudine plus lamivudine plus indinavir in HIV-infected antiretroviral-naïve patients, AIDS, 14, 367–373.

    Google Scholar 

  32. Hammer, S. M., Squires, K. E., Hughes, M. D., et al. for the AIDS Clinical Trials Group 320 Study Team (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic milliliter or less, N. Engl. J. Med., 337, 725–732.

    Google Scholar 

  33. Skowron, G., Bratberg, J., and Pauwels, R. (2006) Emtricitabine. In: Reverse Transcriptase Inhibitors of HIV/AIDS Therapy (Skowron, G. and Ogden, R., eds.), Humana Press, Totowa, NJ, pp. 133–156.

    Chapter  Google Scholar 

  34. Gilead Sciences (2004) Emtriva (Emtricitabine) product information, Gilead Sciences, Foster City, CA.

    Google Scholar 

  35. Shewach, D. S., Liotta, D. C., and Schinazi, R. F. (1993) Affinity of the antiviral enantiomers of oxathiolane cytosine nucleosides for human 2′-deoxycytidine kinase, Biochem. Pharmacol., 45(7), 1540–1543.

    Article  PubMed  CAS  Google Scholar 

  36. Panel on Clinical Practices for Treatment of HIV Infection (2005) Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents, October 6. U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  37. Daluge, S. M., Good, S. S., Faletto, M. B., et al. (1997) 159U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity, Antimicrob. Agents Chemother., 41, 1082–1093.

    PubMed  CAS  Google Scholar 

  38. Vince, R., Hua, M., Brownell, J., et al. (1988) Potent and selective activity of a new carbocyclic nucleoside analog (carbovir: NSC 614846) against human immunodeficiency virus in vitro, Biochem. Biophys. Res. Commun., 156, 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  39. Faletto, M. B., Miller, W. H., Garvey, E. P., St. Clair, M. H., Daluge, S. M., and Good, S. S. (1997) Unique intracellular activation of the potent anti-human immunodeficiency virus agent 159U89, Antimicrob. Agents Chemother., 41(5), 1099–1107.

    PubMed  CAS  Google Scholar 

  40. Carter, S. G., Kessler, J. A., and Rankin, C. D. (1990) Activities of (−)-carbovir and 3′-azido-3′-deoxythymidine against human immunodeficiency virus in vitro, Antimicrob. Agents Chemother., 34(6), 1297–1300.

    PubMed  CAS  Google Scholar 

  41. Tisdale, M., Alnadaf, T., and Cousens, D. (1997) Combination of mutations in human immunodeficiency virus type 1 reverse transcriptase required for resistance to the carbocyclic nucleoside 1592U89, Antimicrob. Agents Chemother., 41, 1094–1098.

    PubMed  CAS  Google Scholar 

  42. St. Clair, M. H., Millard, J., Rooney, J., et al. (1996) In vitro antiviral activity of 41W94 (VX-478) in combination with other antiretroviral agent, Antivir. Res., 29(1), 53–56.

    Article  CAS  Google Scholar 

  43. Gallant, J. E., Rodriguez, A., Weinberg, W., et al. (2003) Early non-response to tenefovir DF + abacavir and lamivudine in a randomized trial compared to rm efavirenz + abacavir + lamivudine: ESS 30009 an unplanned interim analysis, 43th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 14–17 [abstract H-1722a].

    Google Scholar 

  44. Bristol-Myers Squibb Company (2004) Videx and Videx EC delayed-release capsules enteric-coated beadlets product information, Bristol-Myers Squibb Company, Princeton, NJ.

    Google Scholar 

  45. Skowron, G., Chowdhry, S., and Stevens, M. R. (2006) Stavudine, didanosine, and zalcitabine. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden R., eds.), Humana Press, Totowa, NJ, pp. 77–132.

    Chapter  Google Scholar 

  46. Plagemann, P. G., Wohlhueter, R. M., and Woffendin, C. (1988) Nucleoside and nucleobase transport in animal cells, Biochem. Biophys. Acta, 947(3), 405–443.

    PubMed  CAS  Google Scholar 

  47. Cooney, D. A., Dalal, M., Mitsuya, H., et al. (1986) Initial studies on the cellular pharmacology of 2′,3′-dideoxycytidine, an inhibitor of HTLV-III infectivity, Biochem. Pharmacol., 35(13), 2065–2068.

    Article  PubMed  CAS  Google Scholar 

  48. Starnes, M. C. and Cheng, Y. C. (1987) Cellular metabolism of 2′,3′-dideoxycytidine, a compound active against human immunodeficiency virus in vitro, J. Biol. Chem., 262(3), 988–991.

    PubMed  CAS  Google Scholar 

  49. Faraj, A., Fowler, D. A., Bridges, E. G., and Sommadossi, J. P. (1994) Effects of 2′,3′-dideoxynucleosides on proliferation and differentiation of human pluripotent progenitors in liquid culture and their effects on mitochondrial DNA synthesis, Antimicrob. Agents Chemother., 38(5), 924–930.

    PubMed  CAS  Google Scholar 

  50. Keilbaugh, S. A., Hobbs, G. A., and Simpson, M. V. (1993) Anti-human immunodeficiency virus type 1 therapy and peripheral neuropathy: prevention of 2′,3′-dideoxycytidine toxicity in PC12 cells, a neuronal model, by uridine and pyruvate, Mol. Pharmacol., 44(4), 702–706.

    PubMed  CAS  Google Scholar 

  51. Medina, D. J., Tsai, C. H., Hsiung, G. D., and Cheng, Y. C. (1994) Comparison of mitochondrial morphology, mitochondrial DNA content, and cell viability in cultured cells treated with three anti-human immunodeficiency virus dideoxynucleosides, Antimicrob. Agents Chemother., 38(8), 1824–1828.

    PubMed  CAS  Google Scholar 

  52. Roche Laboratories (2002) HIVID (Zalcitabine) product information, Roche Laboratories, Nutley, NJ.

    Google Scholar 

  53. Merigan, T. C., Skowron, G., Bozzette, S. A., et al. (1989) Circulating p24 antigen levels and responses to dideoxycytidine in human immunodeficiency virus (HIV) infections. A phase I and II study, Ann. Intern. Med., 110(3), 189–194.

    PubMed  CAS  Google Scholar 

  54. Bristol-Myers Squibb Company (2002) Zerit®g (Stavudine) product information, Bristol-Myers Squibb Company, Princeton, NJ.

    Google Scholar 

  55. Ho, H. T. and Hitchcock, M. J. (1989) Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus, Antimicrob. Agents Chemother., 33(6), 844–849.

    PubMed  CAS  Google Scholar 

  56. Hoggard, P. G., Kewn, S., Barry, M. G., Khoo, S. H., and Back, D. J. (1997) Effects of drugs on 2′,3′-dideoxy-2′,3′-didehydrothymidine phosphorylation in vitro, Antimicrob. Agents Chemother., 41(6), 1231–1236.

    PubMed  CAS  Google Scholar 

  57. Squires, K. E., Gulick, R., Tebas, P., et al. (2000) A comparison of stavudine plus lamivudine versus zidovudine plus lamivudine in combination with indinavir in antiretroviral naïve individuals with HIV infection: selection of thymidine analog regimen therapy (START I), AIDS, 24(11), 1591–1600.

    Article  Google Scholar 

  58. Eron, J. J., Jr., Murphy, R. L., Peterson, D., et al. (2000) A comparison of stavudine, didanosine and indinavir with zidovudine, lamivudine and indinavir for the initial treatment of HIV-1 infected individuals: selection of thymidine analog regimen therapy (START II), AIDS, 14(11), 1601–1610.

    Article  PubMed  CAS  Google Scholar 

  59. Carr, A., Chuah, J., Hudson, J., et al. (2000) A randomized, open-label comparison of three highly active antiretroviral therapy regimens including two nucleoside analogues and indinavir for previously untreated HIV-1 infection: the OzCombo 1 study, AIDS, 14(9), 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  60. Murphy, R. L., Brun, S., Hicks, C., et al. (2001) ABT-378/ritonavir plus stavudine and lamivudine for the treatment of antiretroviral-naïve adults with HIV-1 infection: 48-week results, AIDS, 15(1), F1–F9.

    Article  Google Scholar 

  61. Robbins, G. K., De Gruttola, V., Shafer, R. W., et al. (2003) Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection, N. Engl. J. Med., 349(24), 2293–2303.

    Article  PubMed  CAS  Google Scholar 

  62. Siegfried, N. L., Van Deventer, P. J. U., Mahomed, F. A., and Rutherford, G. W. (2006) Stavudine, lamivudine and nevirapine combination therapy for treatment of HIV infection and AIDS in adults, Cochrane Database of Systematic Reviews 2006, Issue 2. Art. No.: CD004535. DOI: 10.1002/14651858.CD004535.pub2.

    Google Scholar 

  63. Gallant, J. E., Staszewski, S., Pozniak, A. L., et al. (2004) Efficacy and safety of tenofovir DF vs. stavudine in combination therapy in antiretroviral-naïve patients: a 3-year randomized trial, J. Am. Med. Assoc., 292(2), 191–201.

    Article  CAS  Google Scholar 

  64. French, M., Amin, J., Roth, N., et al. (2002) Randomized, open-label, comparative trial to evaluate the efficacy and safety of three antiretroviral drug combinations including two nucleoside analogues and nevirapine for previously untreated HIV-1 infection: the OzCombo 2 study, HIV Clin. Trials, 3(3), 177–185.

    Article  PubMed  Google Scholar 

  65. Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children (2003) Guidelines for the use of antiretroviral agents in pediatric HIV infection. Bethesda (MD): U.S. Department of Health and Human services, December 14, 2003.

    Google Scholar 

  66. Monpoux, F., Sirvent, N., Cottalorda, J., Mariani, R., and Lefbvre, J. C. (1997) Stavudine, lamivudine and indinavir in children with advanced HIV-1 infection: preliminary experience, AIDS, 11(12), 1523–1525.

    PubMed  CAS  Google Scholar 

  67. Kakuda, T. N. (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity, Clin. Ther., 22(6), 685–708.

    Article  PubMed  CAS  Google Scholar 

  68. Mitsuya, H. and Broder, S. (1986) Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphodenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides, Proc. Natl. Acad. Sci. U.S.A., 83(6), 1911–1915.

    Article  PubMed  CAS  Google Scholar 

  69. Shulman, N. and Winters, M. (2006) Resistance to nucleoside and nucleotide reverse transcriptase inhibitors. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden, R., eds.), Humana Press, Totowa, NJ, pp. 179–207.

    Chapter  Google Scholar 

  70. Gallant, J. E., Rodriguez, A. E., Weinberg, W. G., et al. (2005) Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects, J. Infect. Dis., 192, 1921–1930.

    Article  PubMed  CAS  Google Scholar 

  71. Huang, H., Chopra, R., Verdine, G. L., and Harrison, S. C. (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance, Science, 282(5394), 1669–1675.

    Article  PubMed  CAS  Google Scholar 

  72. Sarafianos, S. G., Das, K., Clark, A. D., et al. (1999) Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids, Proc. Natl. Acad. Sci. U.S.A., 96(18), 10027–10032.

    Article  PubMed  CAS  Google Scholar 

  73. Gao, H. Q., Boyer, P. L., Sarafianos, S. G., Arnold, E., and Hughes, S. H. (2000) The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase, J. Mol. Biol., 300(2), 403–418.

    Article  PubMed  CAS  Google Scholar 

  74. Lennerstrand, J., Hertogs, K., Stammers, D. K., and Larder, B. A. (2001) Correlation between viral resistance to zidovudine and resistance at the reverse transcriptase level for a panel of immunodeficiency virus type 1 mutants, J. Virol., 75(15), 7202–7205.

    Article  PubMed  CAS  Google Scholar 

  75. Deval, J., Selmi, B., Boretto, J., et al. (2002) The molecular mechanism of multidrug resistance by the q151m human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues, J. Biol. Chem., 277(44), 42097–42104.

    Article  PubMed  CAS  Google Scholar 

  76. Kaushik, N., Talele, T. T., Pandey, P. K., Harris, D., Yadav, P. N., and Pandey, V. N. (2000) Role of glutamine 151 of human immunodeficiency virus type-1 reverse transcriptase in substrate selection as assessed by site-directed mutagenesis, Biochemistry, 39(11), 2912–2920.

    Article  PubMed  CAS  Google Scholar 

  77. Ray, A. S., Basavapathruni, A., and Anderson, K. S. (2002) Mechanistic studies to understand the progressive development of resistance in human immunodeficiency virus type 1 reverse transcriptase to abacavir, J. Biol. Chem., 277(43), 40479–40490.

    Article  PubMed  CAS  Google Scholar 

  78. Martin, J. L., Wilson, J. E., Haynes, R. L., and Furman, P. A. (1993) Mechanism of resistance of human immunodeficiency virus type 1 to 2′,3′-dideoxyinosine, Proc. Natl. Acad. Sci. U.S.A., 90(13), 6135–6139.

    Article  PubMed  CAS  Google Scholar 

  79. Lennerstrand, J., Stammers, D. K., and Larder, B. A. (2001) Biochemical mechanism of human immunodeficiency virus type 1 reverse transcriptase resistance to stavudine, Antimicrob. Agents Chemother., 45(7), 2144–2146.

    Article  PubMed  CAS  Google Scholar 

  80. Selmi, B., Boretto, J., Sarfati, S. R., Guerreiro, C., and Canard, B. (2001) Mechanism-based suppression of dideoxynucleotide resistance by K65R human immunodeficiency virus reverse transcriptase using an alpha-boranophosphate nucleoside analogue, J. Biol. Chem., 276(51), 48466–48472.

    PubMed  CAS  Google Scholar 

  81. Sluis-Cremer, N., Arion, D., Kaushik, N., Lim, H., and Parniak, M. A. (2000) Mutational analysis of Lys65 of HIV-1 reverse transcriptase, Biochem. J., 348(Part 1), 77–82.

    Article  PubMed  CAS  Google Scholar 

  82. White, K. L., Margot, N. A., Chen, S., et al. (2004) The HIV-1 K65R RT mutant utilizes a combination of decreased incorporation and decreased excision to evade NRTI, 11th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, February 8–11 [abstract 55].

    Google Scholar 

  83. Girouard, M., Diallo, K., Marchand, B., Suzanne, M., and Gotte, M. (2003) Mutations E44D and V118I in the reverse transcriptase of HIV-1 play distinct mechanistic roles in dual resistance to AZT and 3TC, J. Biol. Chem., 278(36), 34403–34410.

    Article  PubMed  CAS  Google Scholar 

  84. Richman, D. D., Guatelli, J. C., Grimes, J., Tsiatis, A., and Gingeras, T. (1991) Detection of mutations associated with zidovudine resistance in human immunodeficiency virus by use of the polymerase chain reaction, J. Infect. Dis., 164(6), 1075–1081.

    PubMed  CAS  Google Scholar 

  85. Boucher, C., O’Sullivan, E., Mulder, J., et al. (1992) Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive patients, J. Infect. Dis., 165(1), 105–110.

    PubMed  CAS  Google Scholar 

  86. Masquelier, B., Descamps, D., Carriere, I., et al. (1999) Zidovudine resensitization and dual HIV-1 resistance to zidovudine and lamivudine in the delta lamivudine roll-over study, Antivir. Ther., 4, 69–77.

    PubMed  CAS  Google Scholar 

  87. Naeger, L. K., Margot, N. A., and Miller, R. D. (2001) Increased drug susceptibility of HIV-1 reverse transcriptase mutants containing M184V and zidovudine-associated mutations: analysis of enzyme processivity, chain-terminator removal and viral replication, Antivir. Ther., 6, 115–126.

    PubMed  CAS  Google Scholar 

  88. Meyer, P. R., Matsuura, S. E., Mian, A. M., So, A. G., and Scott, W. A. (1999) A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase, Moll. Cell, 4, 35–43.

    Article  CAS  Google Scholar 

  89. Arion, D., Kaushik, N., McCormick, S., et al. (1998) Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase, Biochemistry, 37, 15908–15917.

    Article  PubMed  CAS  Google Scholar 

  90. Larder, B. A., Kemp, S. D., and Harrigan, P. R. (1995) Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy, Science, 269, 696–699.

    Article  PubMed  CAS  Google Scholar 

  91. Tisdale, M., Alnadaf, T., and Cousens, D. (1997) Combination of mutations in human immunodeficiency virus type reverse transcriptase required for resistance to the carbocyclic nucleoside 1592U89, Antimicrob. Agents Chemother., 41, 1094–1098.

    PubMed  CAS  Google Scholar 

  92. Zhang, D., Caliendo, A. M., Eron, J. J., et al. (1994) Resistance to 2′,3′-dideoxycytidine conferred by a mutation in codon 65 of the human immunodeficiency virus type 1 reverse transcriptase, Antimicrob. Agents Chemother., 38(2), 282–287.

    PubMed  CAS  Google Scholar 

  93. Shirasaka, T., Yarchoan, R., O’Brien, M. C., et al. (1993) Changes in drug sensitivity of human immunodeficiency virus type 1 during therapy with azidothymidine, dideoxycytidine, and dideoxyinosine: an in vitro comparative study, Proc. Natl. Acad. Sci. U.S.A., 90(2), 562–566.

    Article  PubMed  CAS  Google Scholar 

  94. Fitzgibbon, J. E., Howell, R. M., Haberzettl, C. A., {Sperber, S. J.,} Kim, H., and Dubin, D. T. (1993) Human immunodeficiency virus type 1 pol gene mutations which cause decreased susceptibility to 2′,3′-dideoxycytidine, Antimicrob. Agents Chemother., 36(1), 153–157.

    Google Scholar 

  95. Wainberg, M. A., Gu, Z., Gao, Q., et al. (1993) Clinical correlates and molecular basis of HIV drug resistance, J. Acquir. Immune Defic. Syndr., 6(Suppl. 1), S36–S46.

    PubMed  Google Scholar 

  96. Shirasaka, T., Kavlick, M. F., Ueno, T., et al. (1995) Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides, Proc. Natl. Acad. Sci. U.S.A., 92(6), 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  97. Craig, C. and Moyle, G. (1997) The development of resistance of HIV-1 to zalcitabine, AIDS, 11(3), 271–279.

    Article  PubMed  CAS  Google Scholar 

  98. Bossi, P., Yvon, A., Mouroux, M., Huraux, J. M., Agut, H., and Calvez, V. (1998) Mutations in the human immunodeficiency virus type 1 reverse transcriptase gene observed in stavudine and didanosine strains obtained by in vitro passages, Res. Virol., 149(6), 355–361.

    Article  PubMed  CAS  Google Scholar 

  99. Lin, P. F., Gonzalez, C. J., Griffith, B., et al. (1999) Stavudine resistance: an update on susceptibility following prolonged therapy, Antivir. Ther., 4(1), 21–28.

    PubMed  CAS  Google Scholar 

  100. Coakley, E. P., Gillis, J. M., and Hammer, S. M. (2000) Phenotypic and genotypic resistance patterns of HIV-1 isolates derived from individuals treated with didanosine and stavudine, AIDS, 14(2), F9–F15.

    Article  PubMed  CAS  Google Scholar 

  101. Deminie, C. A., Bechtold, C. M., Riccardi, K., et al. (1998) Clinical HIV-1 isolates remain sensitive to stavudine following prolonged therapy, AIDS, 12(1), 110–112.

    PubMed  CAS  Google Scholar 

  102. Mayers, D. L., Japour, A. J., Arduino, J. M., Hammer, M. S., et al. (1994) Dideoxynucleoside resistance emerges with prolonged zidovudine monotherapy. The RV43 Study Group, Antimicrob. Agents Chemother., 38(2), 307–314.

    PubMed  CAS  Google Scholar 

  103. Whitcomb, J. M., Huang, W., Limoli, K., et al. (2002) Hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in HIV-1: clinical, phenotypic and genotypic correlates, AIDS, 16(15), F41–F47.

    Article  PubMed  CAS  Google Scholar 

  104. Jeffrey, J. L., Feng, J. Y., Qi, C. C. R., Anderson, K. S., and Furman, P. A. (2003) Dioxolane guanosine 5′-triphosphate, an alternative substrate inhibitor of wild-type and mutant HIV-1 reverse transcriptase: steady state and pre-steady state kinetic analyses, J. Biol. Chem., 278(21), 18971–18979.

    Article  PubMed  CAS  Google Scholar 

  105. Mewshaw, J. P., Myrick, F. T., Wakefield, D. A., Hooper, B. J., Harris, J. L., McCreedy, B., and Borroto-Esoda, K. (2002) Dioxolane guanosine, the active form of the prodrug diaminopurine dioxolane, is a potent inhibitor of drug-resistant HIV-1 isolates from patients for whom standard nucleoside therapy fails, AIDS, 29, 11–20.

    CAS  Google Scholar 

  106. Gu, Z., Wainberg, M. A., Nguyen-Ba, N., L’Heureux, L., de Muys, J.-M., Bowlin, T. L., and Rando, R. F. (1999) Mechanism of action and in vitro activity of 1′,3′-dioxolanylpurine nucleoside analogues against sensitive and drug-resistant human immunodeficiency virus type 1 variants, Antimicrob. Agents Chemother., 43, 2376–2382.

    PubMed  CAS  Google Scholar 

  107. Bazmi, H. Z., Hammond, J. L., Cavalcanti, S. C. H., Chu, C. K., Schinazi, R. F., and Mellors, J. W. (2000) In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (−)-β-D-dioxolane-guanosine and suppress resistance to 3′-azido-3′-deoxythymidine, Antimicrob. Agents Chemother., 44, {1783–1788.}

    Article  PubMed  CAS  Google Scholar 

  108. Mellors, J. W., Bazmi, H., Chu, C. K., and Schinazi, R. F. (1996) K65R mutation in HIV-1 reverse transcriptase causes resistance to (−)-b-D-dioxolane-guanosine and reverses AZT resistance, 5th International Workshop on HIV Drug Resistance, Whistler, Canada, July 3–6 [abstract 7].

    Google Scholar 

  109. Gu, Z., Gao, Q., Fang, H., Salomon, H., Parniak, M. A., Goldberg, E., Cameron, J., and Wainberg, M. A. (1994) Identification of a mutation at codon 65 in the IKKK motif of reverse transcriptase that encodes human immunodeficiency virus resistance to 2′,3′-dideoxycytidine and 2′,3′-dideoxy-3′-thiacytidine, Antimicrob. Agents Chemother., 38, 275–281.

    PubMed  CAS  Google Scholar 

  110. St. Clair, M. H., Martin, J. L., Tudor-Williams, G., Bach, M. C., Vavro, C. L., King, D. M., Kellam, P., Kemp, S. D., and Larder, B. A. (1991) Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase, Science, 253, 1557–1559.

    Article  Google Scholar 

  111. Shirasaka, T., Kavlick, M. F., Ueno, T., Gao, W. Y., Kojima, E., Alcaide, M. L., Chokekijchai, S., Roy, B. M., Arnold, E., and Yarchoan, R. (1995) Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides, Proc. Natl. Acad. Sci. U.S.A., 92, 2398–2402.

    Article  PubMed  CAS  Google Scholar 

  112. Bacheler, L. T. (1999) Resistance to non-nucleoside inhibitors of HIV-1 reverse transcriptase, Drug Resistance Update, 2(1), {56–67}.

    Article  CAS  Google Scholar 

  113. Avexa Press Release (2007) Avexa reports positive Phase IIb result: ATC shows superior activity, Avexa Melbourne, Australia.

    Google Scholar 

  114. Eron, J. J., Kessler, H., Thompson, M., et al. (2000) Clinical HIV suppression after short term monotherapy with DAPD, 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, September 17–20 [abstract 690].

    Google Scholar 

  115. Thompson, M., Richmond, G., Kessler, H., et al. (2003) Preliminary results of dosing of amdoxovir in treatment-experienced patients, 10th Conference on Retroviruses and Opportunistic Infections, Boston, February 10–14 [abstract 554].

    Google Scholar 

  116. Holdich, T., Shiveley, L. A., and Sawyer, J. (2007) Effect of lamivudine on the plasma and intracellular pharmacokinetics of apricitabine, a novel nucleoside reverse transcriptase inhibitor, in healthy volunteers, Antimicrob. Agents Chemother., 51(8), 2943–2947.

    Article  PubMed  CAS  Google Scholar 

  117. Bethell, R. C., Lie, Y. S., and Parkin, N. T. (2005) In vitro activity of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor (NRTI), against 215 HIV-1 isolates resistant to other NRTIs, Antivir. Chem. Chemother., 16, 295–302.

    PubMed  CAS  Google Scholar 

  118. de Muys, J. M., Gourdeau, H., Nguyen-Ba, N., Taylor, D. L., Ahmed, P. S., Mansour, T., Locas, C., Richard, N., Wainberg, M. A., and Rando, R. F. (1999) Anti-human immunodeficiency virus type 1 activity, intracellular metabolism, and pharmacokinetic evaluation of 2′-deoxy-3′-oxa-4′-thiocytidine, Antimicrob. Agents Chemother., 43, 1835–1844.

    PubMed  Google Scholar 

  119. Dutschman, G. E., Grill, S. P., Gullen, E. A., et al. (2004) Novel 4′-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity, Antimicrob. Agents Chemother., 48(5), 1640–1646.

    Article  PubMed  CAS  Google Scholar 

  120. Bridges, E. G., Dutschman, G. E., Gullen, E. A., and Cheng, Y.-C. (1996) Favorable interaction of βL(-) nucleoside analogues with clinically approved anti-HIV nucleoside analogues for the treatment of human immunodeficiency virus, Biochem. Pharmacol., 51, 731–736.

    Article  PubMed  CAS  Google Scholar 

  121. Coates, J. A., Cammack, N., Jenkinson, H. J., Mutton, I. M., Pearson, B. A., Storer, R., Cameron, J. M., and Penn, C. R. (1992) The separated enantiomers of 2′-deoxy-3′-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro, Antimicrob. Agents Chemother., 36, 202–205.

    PubMed  CAS  Google Scholar 

  122. Doong, S. L., Tsai, C. H., Schinazi, R. F., Liotta, D. C., and Cheng, Y.-C. (1991) Inhibition of the replication of hepatitis B virus in vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues, Proc. Natl. Acad. Sci. U.S.A., 88, 8495–8499.

    Article  PubMed  CAS  Google Scholar 

  123. Dutschman, G. E., Bridges, E. G., Liu, S.-H., Gullen, E., Guo, X., Kukhanova, M., and Cheng, Y.-C. (1998) Metabolism of 2′,3′-dideoxy-2′,3′-didehydro-βL(-)-5-fluorocytidine and its activity in combination with clinically approved anti-human immunodeficiency virus βD(+) nucleoside analogs in vitro, Antimicrob. Agents Chemother., 42, 1799–1804.

    PubMed  CAS  Google Scholar 

  124. Lin, T. S., Luo, M. Z., Liu, M. C., Pai, S. B., Dutschman, G. E., and Cheng, Y.-C. (1994) Antiviral activity of 2′,3′-dideoxy-beta-L-5-fluorocytidine (beta-L-FddC) and 2′,3′-dideoxy-beta-L-cytidine (beta-L-ddC) against hepatitis B virus and human immunodeficiency virus type 1 in vitro, Biochem. Pharmacol., 47, 171–174.

    PubMed  CAS  Google Scholar 

  125. Lin, T. S., Luo, M. Z., Liu, M. C., Pai, S. B., Dutschman, G. E., and Cheng, Y.-C. (1994) Synthesis and biological evaluation of 2′,3′-dideoxy-L-pyrimidine nucleosides as potential antiviral agents against human immunodeficiency virus (HIV) and hepatitis B virus (HBV), J. Med. Chem., 37, 798–803.

    Article  PubMed  CAS  Google Scholar 

  126. Lin, T. S., Luo, M. Z., Liu, M. C., Zhu, Y. L., Gullen, E., Dutschman, G. E., and Cheng, Y.-C. (1996) Design and synthesis of 2′,3′-dideoxy-2′,3′-didehydro-beta-L-cytidine (beta-L-d4C) and 2′,3′-dideoxy 2′,3′-didehydro-beta-L-5-fluorocytidine (beta-L-Fd4C), two exceptionally potent inhibitors of human hepatitis B virus (HBV) and potent inhibitors of human immunodeficiency virus (HIV) in vitro, J. Med. Chem., 9, 1757–1759.

    Article  Google Scholar 

  127. Gosselin, G., Schinazi, R. F., Sommadossi, J.-P., Mathé, C., Bergogne, M.-C., Aubertin, A.-M., Kirn, A., and Imbach, J.-L. (1994) Anti-human immunodeficiency virus activities of the \upbeta-L-enantiomer of 2′,3′-dideoxycytidine and its 5-fluoro derivative in vitro, Antimicrob. Agents Chemother., 38, 1292–1297.

    PubMed  CAS  Google Scholar 

  128. Schinazi, R. F., Chu, C. K., Peck, A., McMillan, A., et al. (1992) Activities of the four optical isomers of 2′,3′-dideoxy-3′-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes, Antimicrob. Agents Chemother., 36, 672–676.

    PubMed  CAS  Google Scholar 

  129. Coates, J. A., Cammack, N., Jenkinson, H. J., Jowett, A. J., et al. (1992) (−)-2′-Deoxy-3′-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro, Antimicrob. Agents Chemother., 36, 733–739.

    PubMed  CAS  Google Scholar 

  130. De Clercq, E. (1994) HIV resistance to reverse transcriptase inhibitors, Biochem. Pharmacol., 47, 155–169.

    Article  PubMed  Google Scholar 

  131. Larder, B. A. (1995) Viral resistance and the selection of antiretroviral combinations, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 10(Suppl. 1), S28-S33.

    PubMed  CAS  Google Scholar 

  132. Richman, D. D. (1993) Resistance of clinical isolates of human immunodeficiency virus to antiretroviral agents, Antimicrob. Agents Chemother., 37, 1207–1213.

    PubMed  CAS  Google Scholar 

  133. Colucci, P., Pottage, J., Robison, H., et al. (2005) The different clinical pharmacology of elvucitabine (beta-L-Fd4C) enables the drug to be given in a safe and effective manner with innovative drug dosing, 45th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D.C., December 16–19 [abstract LB-27].

    Google Scholar 

  134. Hoesley, C. J. (2006) Nucleotide analogs. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Scowron, G. and Ogden, R., eds.), Humana Press, Totowa, NJ, pp. 157–178.

    Chapter  Google Scholar 

  135. Naesens, I., Snocek, R., Andrei, G., et al. (1997) HPMC (adefovir), PMEA (adefovir), and related acyclic nucleoside phosphonate analogues: a review of their pharmacology and clinical potential in the treatment of viral infections, Antivir. Chem. Chemother., 8, 1–23.

    CAS  Google Scholar 

  136. Balzarini, J. and De Clerq, E. (1991) 5-Phosphoribosyl-1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active phosphate derivatives, J. Biol. Chem., 266, 8686–8689.

    PubMed  CAS  Google Scholar 

  137. Srinivas, R., Robbins, B., Connelly, M., Gong, Y. F., et al. (1993) Metabolism and in vitro antiretroviral activities of bis(pivaloyloxymethyl) prodrugs of acyclic nucleoside phosphonates, Antimicrob. Agents Chemother., 37(10), 2247–2250.

    PubMed  CAS  Google Scholar 

  138. De Clerq, E. (1997) Acyclic nucleoside phosphonates in the chemotherapy of DNA virus and retrovirus infections, Intervirology, 40, 295–303.

    Article  Google Scholar 

  139. Hartmann, K., Balzarini, J., Higgins, J, et al. (1994) In vitro activity of acyclic nucleoside phosphonate derivatives against feline immunodeficiency virus in Crandall feline kidney cells and feline peripheral blood lymphocytes, Antivir. Chem. Chemother., 5, 13–18.

    CAS  Google Scholar 

  140. Thormar, H., Balzarini, J., Holý, A., et al. (1993) Inhibition of visna virus replication by 2′,3′-dideoxynucleosides and acyclic nucleoside phosphonate analogs, Antimicrob. Agents Chemother., 37, 2540–2544.

    PubMed  CAS  Google Scholar 

  141. Haesens, L., Balzarini, J., Rosenberg, I., Holý, A., et al. (1989) 9-(2-Phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP): a novel agent with anti-human immunodeficiency virus activity in vitro and potent anti-moloney murine sarcoma virus activity in vivo, Eur. J. Clin. Microbiol., 8, 1043–1047.

    Article  Google Scholar 

  142. Barditch-Crovo, P., Deeks, S., Collier, A., et al. (2001) Phase I/II trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults, Antimicrob. Agents Chemother., 45, 2733–2739.

    Article  PubMed  CAS  Google Scholar 

  143. Farthing, C., Khanlou, H., and Yeh, V. (2003) Early virologic failure in a pilot study evaluating the efficacy of abacavir, lamivudine, and tenofovir in the treatment of naïve HIV-infected patients, 2nd International AIDS Society Conference on HIV Pathogenesis and Treatment, Paris, France, July 13–16 [abstract 43].

    Google Scholar 

  144. Squires, K., Pozniak, A., Pierone, G., et al. (2003) Tenofovir disoproxil fumarate in nucleoside-resistant HIV-1 infection: a randomized trial, Ann. Intern. Med., 139, 313–320.

    PubMed  CAS  Google Scholar 

  145. Gu, Z., Gao, I., Fang, H., et al. (1994) Identification of a mutation at codon 65 in the JKKK motif of reverse transcriptase that encodes resistance to 2′,3′-dideoxycytidine and 2′,3′-dideoxythiacytidine, Antimicrob. Agents Chemother., 38, 275–281.

    PubMed  CAS  Google Scholar 

  146. Gu, Z., Salomon, H., Cherrington, J., et al. (1995) K65R mutation of human immunodeficiency virus type 1 reverse transcriptose encodes cross-resistance to 9-(2-phosphonyl- methoxyethyl)adenine, Antimicrob. Agents Chemother., 39, 1888–1891.

    PubMed  CAS  Google Scholar 

  147. Wainberg, M. A., Miller, M. D., Quan, Y., et al. (1999) In vitro selection and characterization of HIV-1 with reduced susceptibility to PMPA, Antivir. Ther., 4, 87–94.

    PubMed  CAS  Google Scholar 

  148. Rhee, S. Y., Taylor, J., Wadhera, G., et al. (2006) Genotypic predictors of human immunodeficiency virus type 1 drug resistance, Proc. Natl. Acad. Sci. U.S.A., 103, 17355–17360.

    Article  PubMed  CAS  Google Scholar 

  149. Whitcomb, J. M., Parkin, N. T., Chappey, C., Hellmann, N. S., and Petropoulos, C. J. (2003) Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates, J. Infect. Dis., 188, 992–1000.

    Article  PubMed  CAS  Google Scholar 

  150. Delaunay, C., Brun-Vezinet, F., Landman, R., et al. (2005) Comparative selection of the K65R and M184V/I mutations in human immunodeficiency virus type 1-infected patients enrolled in a trial of first-line triple-nucleoside analog therapy (Tonus IMEA 021), J. Virol., 79, 9572–9578.

    Article  PubMed  CAS  Google Scholar 

  151. Gallant, J. E., DeJesus, E., Arribas, J. R., et al. (2006) Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV, N. Engl. J. Med., 354, 251–260.

    Article  PubMed  CAS  Google Scholar 

  152. Gallant, J. E., Staszewski, S., Pozniak, A. L., et al. (2004) Efficacy and safety of tenofovir DF vs. stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial, J. Am. Med. Assoc., 292, 191–201.

    Article  CAS  Google Scholar 

  153. McColl, D. J., Margot, N. A., Wulfsohn, M., et al. (2004) Patterns of resistance emerging in HIV-1 from antiretroviral-experienced patients undergoing intensification therapy with tenofovir disoproxil fumarate, J. Acquir. Immune Defic. Syndr., 37, 1340–1350.

    Article  PubMed  CAS  Google Scholar 

  154. Parikh, U. M., Bacheler, L., Koontz, D., and Mellors, J. W. (2006) The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations, J. Virol., 80, 4971–4977.

    Article  PubMed  CAS  Google Scholar 

  155. Parikh, U. M., Barnas, D. C., Faruki, H., and Mellors, J. W. (2006) Antagonism between the HIV-1 reverse-transcriptase mutation K65R and thymidine-analogue mutations at the genomic level, J. Infect. Dis., 194, 651–660.

    Article  PubMed  CAS  Google Scholar 

  156. Parikh, U. M., Koontz, D. L., Chu, C. K., Schinazi, R. F., and Mellors, J. W. (2005) In vitro activity of structurally diverse nucleoside analogs against human immunodeficiency virus type 1 with the K65R mutation in reverse transcriptase, Antimicrob. Agents Chemother., 49, 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  157. Trotta, M. P., Bonfigli, S., Ceccherini-Silberstein, F., Bellagamba, R., et al. (2006) Clinical and genotypic correlates of mutation K65R in HIV-infected patients failing regimens not including tenofovir, J. Med. Virol., 78, 535–541.

    Article  PubMed  CAS  Google Scholar 

  158. White, K. L., Margot, N. A., Ly, J. K., et al. (2005) A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT, AIDS, 19, 1751–1760.

    Article  PubMed  CAS  Google Scholar 

  159. Wirden, M., Marcelin, A. G., Simon, A., et al. (2005) Resistance mutations before and after tenofovir regimen failure in HIV-1 infected patients, J. Med. Virol., 76, 297–301.

    Article  PubMed  CAS  Google Scholar 

  160. Margot, N. A., Waters, J. M., and Miller, M. D. (2006) In vitro HIV-1 resistance selections with combinations of tenofovir and emtricitabine or abacavir and lamivudine, Antimicrob. Agents Chemother., 50, 4087–4095.

    Article  PubMed  CAS  Google Scholar 

  161. Ross, L. L., Dretler, R., Gerondelis, P., Rouse, E. G., Lim, M. L., and Lanier, E. R. (2006) A rare HIV reverse transcriptase mutation, K65N, confers reduced susceptibility to tenofovir, lamivudine and didanosine, AIDS, 20, 787–789.

    Article  PubMed  Google Scholar 

  162. Delaugerre, C., Roudiere, L., Peytavin, G., et al. (2005) Selection of a rare resistance profile in an HIV-1-infected patient exhibiting a failure to an antiretroviral regimen including tenofovir DF, J. Clin. Virol., 32, 241–244.

    Article  PubMed  Google Scholar 

  163. Van Houtte, M., Staes, M., Geretti, A., Patterry, T., and Bacheler, L. (2006) NRTI resistance associated with the RT mutation K70E in HIV-1, XV International HIV Drug Resistance Workshop, Sitges, Spain, June 13–17.

    Google Scholar 

  164. Ross, L., Gerondelis, P., Liao, Q., et al., (2005) Selection of the HIV-1 reverse transcriptase mutation K70E in antiretroviral-naive subjects treated with tenofovir/abacavir/lamivudine therapy, XIV International HIV Drug Resistance Workshop, Quebec City, Canada, June 7–11 [abstract S102].

    Google Scholar 

  165. Sluis-Cremer, N., Sheen, S. W., Zelina, S., et al. (2007) Molecular mechanism by which K70E in HIV-1 reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors, Antimicrob. Agents Chemother., 51(10), 48–53.

    Article  PubMed  CAS  Google Scholar 

  166. Margot, N. A., Isaacson, E., McGowan, I., Cheng, A., and Miller, M. D. (2003) Extended treatment with tenofovir disoproxil fumarate in treatment-experienced HIV-1-infected patients: genotypic, phenotypic, and rebound analyses, J. Acquir. Immune Defic. Syndr., 33, 15–21.

    PubMed  CAS  Google Scholar 

  167. Masquelier, B., Tamalet, C., Montes, B., et al. (2004) Genotypic determinants of the virological response to tenofovir disoproxil fumarate in nucleoside reverse transcriptase inhibitor-experienced patients, Antivir. Ther., 9, 315–323.

    PubMed  CAS  Google Scholar 

  168. Miller, M. D., Margot, N., Lu, B., et al. (2004) Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients, J. Infect. Dis., 189, 837–846.

    Article  PubMed  CAS  Google Scholar 

  169. Squires, K., Pozniak, A. L., Pierone, Jr., G., et al. (2003) Tenofovir disoproxil fumarate in nucleoside-resistant HIV-1 infection: a randomized trial, Ann. Intern. Med., 139, 313–320.

    PubMed  CAS  Google Scholar 

  170. Barrios, A., de Mendoza, C., Martin-Carbonero, L., et al. (2003) Role of baseline human immunodeficiency virus genotype as a predictor of viral response to tenofovir in heavily pretreated patients, J. Clin. Microbiol., 41, 4421–4423.

    Article  PubMed  CAS  Google Scholar 

  171. Chappey, C., Wrin, T., Deeks, S., and Petropoulos, C. (2003) Evolution of amino acid 215 in HIV-1 reverse transcriptase in response to intermittent drug selection, XII International HIV Drug Resistance Workshop, Los Cabos, Mexico, June 10–14 [abstract 32].

    Google Scholar 

  172. de Ronde, A., van Dooren, M., van Der Hoek, L., et al. (2001) Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus, J. Virol., 75, 595–602.

    Article  PubMed  Google Scholar 

  173. Garcia-Lerma, J. G., Nidtha, S., Blumoff, K., Weinstock, H., and Heneine, W. (2001) Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons, Proc. Natl. Acad. Sci. U.S.A., 98, 13907–13912.

    Article  PubMed  CAS  Google Scholar 

  174. Goudsmit, J., de Ronde, A., de Rooij, E., and de Boer, R. (1997) Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215, J. Virol., 71, 4479–4484.

    PubMed  CAS  Google Scholar 

  175. Yerly, S., Rakik, A., De Loes, S. K., et al. (1998) Switch to unusual amino acids at codon 215 of the human immunodeficiency virus type 1 reverse transcriptase gene in seroconvertors infected with zidovudine-resistant variants, J. Virol., 72, 3520–3523.

    PubMed  CAS  Google Scholar 

  176. Van Laethem, K., De Munter, P., Schrooten, Y., et al. (2007) No response to first-line tenofovir+lamivudine+efavirenz despite optimization according to baseline resistance testing: impact of resistant minority variants on efficacy of low genetic barrier drugs, J. Clin. Virol., 39, 43–47.

    Article  PubMed  CAS  Google Scholar 

  177. Violin, M., Cozzi-Lepri, A., Velleca, R., et al. (2004) Risk of failure in patients with 215 HIV-1 revertants starting their first thymidine analog-containing highly active antiretroviral therapy, AIDS, 18, 227–235.

    Article  PubMed  CAS  Google Scholar 

  178. Cases-Gonzalez, C. E., Franco, S., Martinez, M. A., and Menendez-Arias, L. (2006) Mutational patterns associated with the 69 insertion complex in multi-drug-resistant HIV-1 reverse transcriptase that confer increased excision activity and high-level resistance to zidovudine, J. Mol. Biol., 365(2), 298–309.

    Article  PubMed  CAS  Google Scholar 

  179. Clevenbergh, P., Kirstetter, M., Liotier, J. Y., et al. (2002) Long-term virological outcome in patients infected with multi-nucleoside analogue-resistant HIV-1, Antivir. Ther., 7, 305–308.

    PubMed  Google Scholar 

  180. de Jong, J. J., Goudsmit, J., Lukashov, V. V., et al. (1999) Insertion of two amino acids combined with changes in reverse transcriptase containing tyrosine-215 of HIV-1 resistant to multiple nucleoside analogs, AIDS, 13, 75–80.

    Article  PubMed  Google Scholar 

  181. Eggink, D., Huigen, M. C., Boucher, C. A., et al. (2007) Insertions in the beta3-beta4 loop of reverse transcriptase of human immunodeficiency virus type 1 and their mechanism of action, influence on drug susceptibility and viral replication capacity, Antivir. Res., 75, 93–103.

    Article  PubMed  CAS  Google Scholar 

  182. Gallego, O., de Mendoza, C., Labarga, P., et al. (2003) Long-term outcome of HIV-infected patients with multinucleoside-resistant genotypes, HIV Clin. Trials, 4, 372–381.

    Article  PubMed  Google Scholar 

  183. Kew, Y., Olsen, L. R., Japour, A. J., and Prasad, V. R. (1998) Insertions into the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization, J. Biol. Chem., 273, 7529–7537.

    Article  PubMed  CAS  Google Scholar 

  184. Deval, J., Selmi, B., Boretto, J., et al. (2002) The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its {suppression} using alpha-boranophosphate nucleotide analogues, J. Biol. Chem., 277, 42097–42104.

    Article  PubMed  CAS  Google Scholar 

  185. Feng, J. Y., Myrick, F. T., Margot, N. A., et al. (2006) Virologic and enzymatic studies revealing the mechanism of K65R- and Q151M-associated HIV-1 drug resistance towards emtricitabine and lamivudine, Nucleosides Nucleotides Nucleic Acids, 25, 89–107.

    Article  PubMed  CAS  Google Scholar 

  186. Garcia-Lerma, J. G., Gerrish, P. J., Wright, A. C., Qari, S. H., and Heneine, W. (2000) Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1, J. Virol., 74, 9339–9346.

    Article  PubMed  CAS  Google Scholar 

  187. Iversen, A. K., Shafer, R. W., Wehrly, K., et al. (1996) Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy, J. Virol., 70, 1086–1090.

    PubMed  CAS  Google Scholar 

  188. Matsumi, S., Kosalaraksa, P., Tsang, H., et al. (2003) Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants, AIDS, 17, 1127–1137.

    Article  PubMed  CAS  Google Scholar 

  189. Asmuth, D. and Pollard, R. (2006) Nevirapine. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden R., eds.), Humana Press, Totowa, NJ, pp. 303–344.

    Chapter  Google Scholar 

  190. Merluzzi, V. J., Hargrave, K. D., Labadia, M., et al. (1993) Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor, Science, 250(4986), 1411–1413.

    Article  Google Scholar 

  191. Koup, R. A., Merluzzi, V. J., Hargrave, K. D., et al. (1991) Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by the dipyridodiazepinone BI-RG-587, J. Infect. Dis., 163(5), 966–970.

    PubMed  CAS  Google Scholar 

  192. Gu, Z., Quan, Y., Li, Z., Arts, E. J., and Wainberg, M. A. (1995) Effects of non-nucleoside inhibitors of human immunodeficiency virus type 1 in cell-free recombinant reverse transcriptase assays, J. Biol. Chem., 270(52), 31046–31051.

    Article  PubMed  CAS  Google Scholar 

  193. Grob, P. M., Wu, J. C., Cohen, K. A., et al. (1992) Nonnucleoside inhibitors of HIV-1 reverse transcriptase: nevirapine as a prototype drug, AIDS Res. Hum. Retroviruses, 8(2), 145–152.

    Article  PubMed  CAS  Google Scholar 

  194. Shih, C. K., Rose, J. M., Hansen, G. L., Wu, J. C., Bacolla, A., and Griffin, J. A. (1991) Chimeric human immunodeficiency virus type 1/type 2 reverse transcriptases display reversed sensitivity to nonnucleoside analog inhibitors, Proc. Natl. Acad. Sci. U.S.A., 88(21), 9878–9882.

    Article  PubMed  CAS  Google Scholar 

  195. Wu, J. C., Warren, T. C., Adams, J., et al. (1991) A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site, Biochemistry, 30(8), 2022–2026.

    Article  PubMed  CAS  Google Scholar 

  196. Spence, R. A., Kati, W. M., Anderson, K. S., and Johnson, K. A. (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors, Science, 267(5200), 988–993.

    Article  PubMed  CAS  Google Scholar 

  197. Asfour, F. R. and Haubrich, R. (2006) Resistance to non-nucleoside reverse transcriptase inhibitors. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden, R., eds.), Humana Press, Totowa, NJ, pp. 401–424.

    Chapter  Google Scholar 

  198. Richman, D., Shih, C. K., Lowy, I., et al. (1991) Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture, Proc. Natl. Acad. Sci. U.S.A., 88(24), 11241–11245.

    Article  PubMed  CAS  Google Scholar 

  199. De Clercq, E. (1998) The role of non-nucleoside reverse transcriptase inhibitors (NNRTs) in the therapy of HIV-1 infection, Antivir. Res., 38(3), 153–179.

    Article  PubMed  Google Scholar 

  200. Cheeseman, S. H., Havlir, D., McLaughlin, M. M., et al. (1995) Phase I/II evaluation of nevirapine alone and in combination with zidovudine for infection with human immunodeficiency virus, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 8(2), 141–151.

    PubMed  CAS  Google Scholar 

  201. Guay, L. A., Musoke, P., Fleming, T., et al. (1999) Intrapartum and neonatal sungle-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in {Kampala,} Uganda: HIVNET 012 randomised trial, Lancet, 354(9181), 795–802.

    Article  PubMed  CAS  Google Scholar 

  202. de Jong, M. D., Vella, S., Carr, A., et al. (1997) High-dose nevirapine in previously untreated human immunodeficiency virus type 1-infected persons does not result in sustained suppression of viral replication, J. Infect. Dis., 175(4), 966–970.

    Article  PubMed  Google Scholar 

  203. D’Aquila, R. T., Hughes, M. D., Johnson, V. A., et al. (1996) Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators, Ann. Intern. Med., 124(12), 1019–1030.

    PubMed  Google Scholar 

  204. Baldanti, F., Paolucci, S., Maga, G., et al. (2003) Nevirapine-selected mutations Y181I/C of HIV-1 reverse transcriptase confer cross-resistance to stavudine, AIDS, 17(10), 1568–1570.

    Article  PubMed  Google Scholar 

  205. Gilbert, P. B., Hanna, G. J., De Gruttola, V., et al. (2000) Comparative analysis of HIV type 1 genotypic resistance across antiretroviral trial treatment regimens, AIDS Res. Hum. Retroviruses, 16(14), 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  206. Casado, J. L., Hertogs, K., Ruiz, L., et al. (2000) Non-nucleoside reverse transcriptase inhibitor resistance among patients failing a nevirapine plus protease inhibitor-containing regimen, AIDS, 14(2), F1–F7.

    Article  PubMed  CAS  Google Scholar 

  207. Briones, C., Soriano, V., Dona, C., Barreiro, P., and Gonzalez-Lahoz, J. (2000) Can early failure with nevirapine be rescued with efavirenz? J. Acquir. Immune Defic. Syndr., 24(1), 76–78.

    PubMed  CAS  Google Scholar 

  208. Huang, W., Gamarnik, A., Limoli, K., Petropoulos, C. J., and Whitcomb, J. M. (2003) Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication, J. Virol., 77(2), 1512–1523.

    Article  PubMed  CAS  Google Scholar 

  209. MacArthur, R. D., Kosmyna, J. M., Crane, L. R., and Kovari, L. (1999) The presence or absence of zidovudine in a nevirapine-containing antiretroviral regimen determines which of two nevirapine-limiting mutations occurs on virulogic failure, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–28 [abstract 1171].

    Google Scholar 

  210. Antoniou, T. and Tseng, A. L. (2002) Interactions between recreational drugs and antiretroviral agents, Ann. Pharmacother., 36(10), 1598–1613.

    Article  PubMed  CAS  Google Scholar 

  211. Casado, J. L., Moreno, A., Hertogs, K., Dronda, F., and Moreno, S. (2002) Extent and importance of cross-resistance to efaverenz after nevirapine failure, AIDS Res. Hum. Retroviruses, 18(11), 771–775.

    Article  PubMed  CAS  Google Scholar 

  212. Harris, M. and Montaner, J. S. (2000) Clinical uses of non-nucleoside reverse transcriptase inhibitors, Rev. Med. Virol., 10(4), 217–229.

    Article  PubMed  CAS  Google Scholar 

  213. Podzamczer, D. and Fumero, E. (2001) The role of nevirapine in the treatment of HIV-1 disease, Expert Opin. Pharmacother., 2(12), 2065–2078.

    Article  PubMed  CAS  Google Scholar 

  214. Montaner, J. S., Reiss, P., Cooper, D., et al. (1998) A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS Trial. Italy, The Netherlands, Canada, and Australia Study, J. Am. Med. Assoc., 279(12), 930–937.

    Article  CAS  Google Scholar 

  215. Floridia, M., Bucciardini, R., Ricciardulli, D., et al. (1999) A randomized, double-blind trial on the use of a triple combination including nevirapine, a nonnucleoside reverse transcriptase HIV inhibitor, in antiretroviral-naïve patients with advance disease, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 20(1), 11–19.

    PubMed  CAS  Google Scholar 

  216. Garcia, F., Knobel, H., Sambeat, M. A., et al. (2000) Comparison of twice-daily stavudine plus once- or twice-daily didanosine and nevirapine in early stages of HIV infection: the scan study, AIDS, 14(16), 2485–2494.

    Article  PubMed  CAS  Google Scholar 

  217. Raffi, F., Reliquet, V., Ferre, V., et al. (2000) The VIRGO study: nevirapine, didanosine and stavudine combination therapy in antiretroviral-naïve HIV-1-infected adults, Antivir. Ther., 5(4), 267–272.

    PubMed  CAS  Google Scholar 

  218. Nunez, M., Soriano, V., Martin-Carbonero, L., et al. (2002) SENC (Spanish efavirenz vs. nevirapine comparison) trial: a randomized, open-label study in HIV-infected naïve individuals, HIV Clin. Trials, 3(3), 186–194.

    Article  PubMed  Google Scholar 

  219. Allan, P. S., Arumainayagam, J., Harindra, V., et al. (2003) Sustained efficacy of nevirapine in combination with two nucleoside analogues in the treatment of HIV-infected patients: a 48-week retrospective multicenter study, HIV Clin. Trials, 4(4), 248–251.

    Article  PubMed  CAS  Google Scholar 

  220. Giardiola, J. M., Domingo, P., Gurgui, M., and Vazquez, G. (2000) An open-label, randomized comparative study of stavudine (d4T) + didanosine (ddI) + indinavir versus d4T + ddI + nevirapine (NVP) in treatment of HIV-infected naïve patients, 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 17–20 [abstract 539].

    Google Scholar 

  221. van Leeuwen, R., Katlama, C., Murphy, R. L., et al. (2003) A randomized trial to study first-line combination therapy with or without a protease inhibitor in HIV-1-infected patients, AIDS, 17(7), 987–999.

    Article  PubMed  Google Scholar 

  222. Podzamczer, D., Ferrer, E., Consiglio, E., et al. (2002) A randomized clinical trial comparing nelfinavir or nevirapine associated to zidovudine/lamivudine in HIV-infected naïve patients (the Combine Study), Antivir. Ther., 7(2), 81–90.

    PubMed  CAS  Google Scholar 

  223. Wit, F. W. (2000) Experience with nevirapine in previously treated HIV-1-infected individuals, Antivir. Ther., 5(4), 257–266.

    PubMed  CAS  Google Scholar 

  224. Easterbrook, P. J., Newson, R., Ives, N., Pereira, S., Moyle, G., and Gazzard, B. G. (2001) Comparison of virologic, immunologic, and clinical response to five different initial protease inhibitor-containing and nevirapine-containing regimens, J. Acquir. Immune Defic. Syndr., 27(4), 350–264.

    PubMed  CAS  Google Scholar 

  225. Sabin, C. A., Fisher, M., Churchill, D., et al. (2001) Long-term follow-up of antiretroviral-naïve HIV-positive patients treated with nevirapine, J. Acquir. Immune Defic. Syndr., 26(5), 462–465.

    PubMed  CAS  Google Scholar 

  226. Matthews, G. V., Sabin, C. A., Mandalia, S., et al. (2002) Virological suppression at 6 months is related to choice of initial regi-men in antiretroviral-naïve patients: a cohort study, AIDS, 16(1), 53–61.

    Article  PubMed  CAS  Google Scholar 

  227. Phillips, A. N., Pradier, C., Lazzarin, A., et al. (2001) Viral load outcome of non-nucleoside reverse transcriptase inhibitor regimens for 2203 mainly antiretroviral-experienced patients, AIDS, 15(18), 2385–2395.

    Article  PubMed  CAS  Google Scholar 

  228. Cozzi-Lepri, A., Phillips, A. N., d’Arminio, M. A., et al. (2002) Virologic and immunologic response to regimens containing nevirapine or efavirenz in combination with 2 nucleoside analogues in the Italian Cohort Naïve Antiretrovirals (I.Co.N.A.) study, J. Infect. Dis., 185(8), 1063–1069.

    Article  Google Scholar 

  229. Raboud, J. M., Rae, S., Vella, S., et al. (1999) Meta-analysis of two randomized controlled trials comparing combined zidovudine and didanosine therapy with combined zidovudine, didanosine, and nevirapine therapy in patients with HIV, INCAS study team, J. Acquir. Immune Defic. Syndr., 22(3), 260–266.

    PubMed  CAS  Google Scholar 

  230. Raffi, F., Reliquet, V., Podzamczer, D., and Pollard, R. B. (2001) Efficacy of nevirapine-based HAART in HIV-1-infected treatment-naïve persons with high and low baseline viral loads, HIV Clin. Trials, 2(4), 317–322.

    Article  PubMed  CAS  Google Scholar 

  231. Yozviak, J. L., Doerfler, R. E., and Woodward, W. C. (2001) Effectiveness and tolerability of nevirapine, stavudine, and lamivudine in clinical practice, HIV Clin. Trials, 2(6), 474–476.

    Article  PubMed  CAS  Google Scholar 

  232. Skowron, G., Street, J. C., and Obee, E. M. (2001) CD4(+) cell count, not viral load, correlates with virologic suppression induced by potent antiretroviral therapy, J. Acquir. Immune Defic. Syndr., 28(4), 313–319.

    PubMed  CAS  Google Scholar 

  233. Staszewski, S., Morales-Ramirez, J., Tashima, K. T., et al. (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team, N. Engl. J. Med., 341(25), 1865–1873.

    Article  PubMed  CAS  Google Scholar 

  234. Jordan, W. C., Jefferson, R., Yemofio, F., et al. (2000) Nevirapine + efavirenz + didanosine: a very simple, safe, and effective once-daily regimen, XIIIth International AIDS Conference, Durban, South Africa, July 9–14 [abstract TuPeB3207].

    Google Scholar 

  235. Olivieri, J. (2002) Nevirapine + efavirenz based salvage therapy in heavily pretreated HIV infected patients, Sex. Transm. Infect., 78(1), 72–73.

    Article  PubMed  CAS  Google Scholar 

  236. Veldkamp, A. I., Harris, M., Montaner, J. S., et al. (2001) The steady-state pharmacokinetics of efavirenz and nevirapine when used in combination in human immunodeficiency virus type 1-infected persons, J. Infect. Dis., 184(1), 37–42.

    Article  PubMed  CAS  Google Scholar 

  237. van Leth, F., Phanuphak, P., Ruxrungtham, K., et al. (2004) Comparison of the first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomized open-label trial, the 2NN Study, Lancet, 363(9417), 1253–1263.

    Article  PubMed  CAS  Google Scholar 

  238. Deeks, S. G., Hellmann, N. S., Grant, R. M., et al. (1999) Novel four-drug salvage treatment regimens after failure of a human immunodeficiency virus type 1 protease inhibitor-containing regimen: antiviral activity and correlation of baseline phenotypic drug susceptibility with virologic outcome, J. Infect. Dis., 179(6), 1375–1381.

    Article  PubMed  CAS  Google Scholar 

  239. Manfredi, R. and Chiodo, F. (2001) Limits of deep salvage antiretroviral therapy with nelfinavir plus either efavirenz or nevirapine, in highly pre-treated patients with HIV disease, Int. J. Antimicrob. Agents, 17(6), 511–516.

    Article  PubMed  CAS  Google Scholar 

  240. Jensen-Fangel, S., Thomsen, H. F., Larsen, L., Black, F. T., and Obel, N. (2001) The effect of nevirapine in combination with nelfinavir in heavily pretreated HIV-1-infected patients: a prospective, open-label, controlled, randomized study, J. Acquir. Immune Defic. Syndr., 27(2), 124–129.

    PubMed  CAS  Google Scholar 

  241. Perez-Molina, J. A., Perez, N. R., Miralles, P., et al. (2001) Nelfinavir plus nevirapine plus two NRTIs as salvage therapy for HIV-infected patients receiving long-term retroviral treatment, HIV Clin. Trials, 2(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  242. Benson, C. A., Deeks, S. G., Brun, S. C., et al. (2002) Safety and antiviral activity at 48 weeks of lopinavir/ritonavir plus nevirapine and 2 nucleoside reverse-transcriptase inhibitors in human immunodeficiency virus type 1-infected protease inhibitor-experienced patients, J. Infect. Dis., 185(5), 599–607.

    Article  PubMed  CAS  Google Scholar 

  243. Harris, M., Durakovic, C., Rae, S., et al. (1998) A pilot study of nevirapine, indinavir, and lamivudine among patients with advanced human immunodeficiency virus disease who have had failure of combination nucleoside therapy, J. Infect. Dis., 177(6), 1514–1520.

    Article  PubMed  CAS  Google Scholar 

  244. Casado, J. L., Dronda, F., Hertogs, K., et al. (2001) Efficacy, tolerance, and pharmacokinetics of the combination of stavudine, nevirapine, nelfinavir, and saquinavir as salvage regimen after ritonavir or indinavir failure, AIDS Res. Hum. Retroviruses, 17(2), 93–98.

    Article  PubMed  CAS  Google Scholar 

  245. Gulick, R. M., Smeaton, L. M., D’Aquila, R. T., et al. (2001) Indinavir, nevirapine, stavudine, and lamivudine for human immunodeficiency virus-infected, amprenavir-experienced subjects: AIDS Clinical Trials Group protocol 373, J. Infect. Dis., 183(5), 715–721.

    Article  PubMed  CAS  Google Scholar 

  246. Sullivan, A. K., Nelson, M. R., Shaw, A., et al. (2000) Efficacy of a nelfinavir- and nevirapine-containing salvage regimen, HIV Clin. Trials, 1(1), 7–12.

    Article  PubMed  CAS  Google Scholar 

  247. Parkin, N. T., Deeks, S. G., Wrin, M. T., et al. (2000) Loss of antiretroviral drug susceptibility at low viral load during early virological failure in treatment-experienced patients, AIDS, 14(18), 2877–2887.

    Article  PubMed  CAS  Google Scholar 

  248. Lorenzi, P., Opravil, M., Hirschel, B., et al. (1999) Impact of drug resistance mutations on virologic response to salvage therapy. Swiss HIV Cohort Study, AIDS, 13(2), F17–F21.

    Article  PubMed  CAS  Google Scholar 

  249. Carr, A., Samaras, K., Burton, S., et al. (1998) A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors, AIDS, 12(7), F51–F58.

    Article  PubMed  CAS  Google Scholar 

  250. Mauss, S., Corzillius, M., Wolf, E., et al. (2002) Risk factors for the HIV-associated lipodystrophy syndrome in a closed cohort of patients after 3 years of antiretroviral treatment, HIV Med., 3(1), 49–55.

    Article  PubMed  CAS  Google Scholar 

  251. Amin, J., Moore, A., Carr, A., et al. (2003) Combined analysis of two years follow-up from two open-label randomized trials comparing efficacy of three nucleoside reverse transcriptase inhibitor backbones for previously untreated HIV-1 infection: OzCombo 1 and 2, HIV Clin. Trials, 4(4), 252–261.

    Article  PubMed  CAS  Google Scholar 

  252. Shevitz, A., Wanke, C. A., Falutz, J., and Kotler, D. P. (2001) Clinical perspectives on HIV-associated lipodystrophy syndrome: an update, AIDS, 15(15), 1917–1930.

    Article  PubMed  CAS  Google Scholar 

  253. Martinez, E., Conget, I., Lozano, L., Casamitjana, R., and Gatell, J. M. (1999) Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine, AIDS, 13(7), 805–810.

    Article  PubMed  CAS  Google Scholar 

  254. Barreiro, P., Soriano, V., Blanco, F., Casimiro, C., de la Cruz, J. J., and Gonzalez-Lahoz, J. (2000) Risks and benefits of replacing protease inhibitors by nevirapine in HIV-infected subjects under long-term successful triple combination therapy, AIDS, 14(7), 807–812.

    Article  PubMed  CAS  Google Scholar 

  255. De Lucca, A., Baldini, F., Cingolani, A., et al. (2000) Benefits and risks of switching from protease inhibitors to nevirapine with stable background therapy in patients with low or undetectable viral load: a multicentre study, AIDS, 14(11), 1655–1656.

    Article  Google Scholar 

  256. Carr, A., Hudson, J., Chuah, J., et al. (2001) HIV protease inhibitor substitution in patients with lipodystrophy: a randomized, controlled, open-label, multicentre study, AIDS, 15(14), 1811–1822.

    Article  PubMed  CAS  Google Scholar 

  257. Gonzalez de Requena, D., Nunez, M., Jimenez-Nacher, I., and Soriano, V. (2002) Liver toxicity caused by nevirapine, AIDS, 16(2), 290–291.

    Article  Google Scholar 

  258. Ruiz, L., Negredo, E., Domingo, P., et al. (2001) Antiretroviral treatment simplification with nevirapine in protease inhibitor-experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study, J. Acquir. Immune Defic. Syndr., 27(3), 229–236.

    PubMed  CAS  Google Scholar 

  259. Masquelier, B., Neau, D., Chene, G., et al. (2001) Mechanism of virologic failure after substitution of a protease inhibitor by nevirapine in patients with suppressed plasma HIV-1 RNA, J. Acquir. Immune Defic. Syndr., 28(4), 309–312.

    PubMed  CAS  Google Scholar 

  260. Domingo-P., Matias-Guiu, X., Pujol, R. M., et al. (2001) Switching to nevirapine decreases insulin levels but does not improve subcutaneous adipocyte apoptosis in patients with highly active antiretroviral therapy-associated lipodystrophy, J. Infect. Dis., 184(9), 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  261. Negredo, E., Cruz, L., Paredes, R., et al. (2002) Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression, Clin. Infect. Dis., 34(4), 504–510.

    Article  PubMed  CAS  Google Scholar 

  262. Dieleman, J. P., Sturkenboom, M. C., Wit, F. W., et al. (2002) Low risk of treatment failure after substitution of nevirapine for protease inhibitors among human immunodeficiency virus-infected patients with virus suppression, J. Infect. Dis., 185(9), 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  263. Negredo, E., Ribalta, J., Paredes, R., et al. (2002) Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after {replacing} protease inhibitors by nevirapine, AIDS, 16(10), 1383–1389.

    Article  PubMed  CAS  Google Scholar 

  264. Barreiro, P., Camino, N., De Julian, R., Gonzalez-Lahoz, J., and Soriano, V. (2003) Replacement of protease inhibitors by nevirapine or efavirenz in simplification and rescue interventions: which works better? HIV Clin. Trials, 4(4), 244–247.

    Article  PubMed  Google Scholar 

  265. Bucciardini, R., Wu, A. W., Floridia, M., et al. (2000) Quality of life outcomes of combination zidovudine-didanosine-nevirapine and zidovudine-didanosine for antriretroviral-naïve advanced HIV-infected patients, AIDS, 14(16), 2567–2574.

    Article  PubMed  CAS  Google Scholar 

  266. Conway, B. (2000) Initial therapy with protease inhibitor-sparing regimens: evaluation of nevirapine and delavirdine, Clin. Infect. Dis., 30(Suppl. 2), S130-S134.

    Article  PubMed  CAS  Google Scholar 

  267. Murphy, R. L. and Smith, W. J. (2002) Switch studies: a review, HIV Med., 3(2), 146–155.

    Article  PubMed  CAS  Google Scholar 

  268. Gathe, J. C., Jr., Ive, P., Wood, R., et al. (2004) SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir/ritonavir versus twice-daily nelfinavir in naïve HIV-1-infected patients, AIDS, 18(11), 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  269. Erickson, D. A., Mather, G., Trager, W. F., Levy, R. H., and Keirns, J. J. (1999) Characterization of the in vitro biotransformation of HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochrome P-450, Drug Metab. Dispos., 27(12), 1488–1495.

    PubMed  CAS  Google Scholar 

  270. Sahai, J., Cameron, W., Salgo, M., et al. (1997) Drug interaction study between saquinavir and nevirapine, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 496].

    Google Scholar 

  271. Merry, C., Barry, M. G., Mulcahy, F., et al., (1998) The pharmacokinetics of combination therapy with nelfinavir plus nevirapine, AIDS, 12(10), 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  272. Skowron, G., Leoung, G., Kerr, B., et al. (1998) Lack of pharmacokinetic interaction between nelfinavir and nevirapine, AIDS, 12(10), 1243–1244.

    Article  PubMed  CAS  Google Scholar 

  273. Murphy, R. L., Sommadossi, J. P., Lamson, M., Hall, D. B., Hall, D. B., Myers, M., and Dusek, A. (1999) Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunoderficiency virus type 1, J. Infect. Dis., 179(1), 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  274. Lal, R., Hsu, A., Bertz, R., et al. (1999) Evaluation of the pharmacokinetics of the concurrent administration of ABT-378/ritonavir and nevirapine, 7th European Conference on the Clinical Aspects and Treatment of HIV-Infection, Lisbon, Portugal, October 23–27 [abstract 782].

    Google Scholar 

  275. Luzuriaga, K., Bryson, Y., McSherry, G., et al. (1996) Pharmacokinetics, safety, and activity of nevirapine in human immunodeficiency virus type 1-infected children, J. Infect. Dis., 174(4), 713–721.

    PubMed  CAS  Google Scholar 

  276. Verweel, G., Sharland, M., Lyall, H., et al. (2003) Nevirapine use in HIV-1-infected children, AIDS, 17(11), 1639–1647.

    Article  PubMed  CAS  Google Scholar 

  277. Pollard, R. B., Robinson, P., and Dransfield, K. (1998) Safety profile of nevirapine, a nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus infection, Clin. Ther., 20(6), 1071–1092.

    Article  PubMed  CAS  Google Scholar 

  278. Stern, J., Lanes, S., Love, J., Robinson, P., Imperiale, M., and Mayers, D. (2003) Hepatic safety of nevirapine: results of the Boehringer Ingelheim Viramune®g Hepatic Safety Project, XIV International AIDS Conference, Barcelona, Spain, July 7–12 [abstract LBOR15].

    Google Scholar 

  279. Warren, K. J., Boxwell, D. E., Kim, N. Y., and Drolet, B. A. (1998) Nevirapine-associated Stevens-Johnson syndrome, Lancet, 351(9102), 567.

    Article  PubMed  CAS  Google Scholar 

  280. Dodi, F., Alessandrini, A., Camera, M., Gaffuri, L., Morandi, N., and Pagano, G. (2002) Stevens-Johnson syndrome in HIV patients treated with nevirapine: two case reports, AIDS, 16(8), 1197–1198.

    Article  PubMed  Google Scholar 

  281. Fagot, J. P., Mockenhaupt, M., Bouwes-Bavinck, J. N., Naldi, L., Viboud, C., and Roujeau, J. C. (2001) Nevirapine and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis, AIDS, 15(14), 1843–1848.

    Article  PubMed  CAS  Google Scholar 

  282. Bourezane, Y., Salard, D., Hoen, B., Vandel, S., Drobacheff, C., and Laurent, R. (1998) DRESS (drug rash with eosinophilia and systemic symptoms) syndrome associated with nevirapine therapy, Clin. Infect. Dis., 27(5), 1321–1322.

    Article  PubMed  CAS  Google Scholar 

  283. Lanzafame, M., Rovere, P., De Checchi, G., Trevenzoli, M., Turazzini, M., and Parrinello, A. (2001) Hypersensitivity syndrome (DRESS) and meningoencephalitis associated with nevirapine therapy, Scand. J. Infect. Dis., 33(6), 475–476.

    Article  PubMed  CAS  Google Scholar 

  284. Cattelan, A. M., Erne, E., Salatino, A., et al. (1999) Severe hepatic failure related to nevirapine treatment, Clin. Infect. Dis., 29(2), 455–456.

    Article  PubMed  CAS  Google Scholar 

  285. Jarrousse, B., Cohen, P., Berlureau, P., Bentata, M., Mahr, A., and Guillevin, L. (1999) Nevirapine induced fulminant hepatitis: presentation of case and analysis of risk factors, 7th European Conference on the Clinical Aspects and Treatment of HIV-Infection, Lisbon, Portugal, October 23–27 [abstract 1009].

    Google Scholar 

  286. Mateu, S., Gurgui, M., Sambeat, M. A., et al. (1999) Cholestatic hepatitis by nevirapine: report of five cases, 7th European Conference on the Clinical Aspects and Treatment of HIV-Infection, Lisbon, Portugal, October 23–27 [abstract 1080].

    Google Scholar 

  287. Clarke, S., Harrington, P., Condon, C., Kelleher, D., Smith, O. P., and Mulcahy, F. (2000) Late onset hepatitis and prolonged deterioration in hepatic function associated with nevirapine therapy, Int. J. STD AIDS, 11(5), 336–337.

    Article  PubMed  CAS  Google Scholar 

  288. Nunez, M., Lana, R., Mendoza, J. L., Martin-Carbonero, L., and Soriano, V. (2001) Risk factors for severe hepatic injury after introduction of highly active antiretroviral therapy, J. Acquir. Immune Defic. Syndr., 27(5), 426–431.

    PubMed  CAS  Google Scholar 

  289. Prakash, M., Porredy, V., Tiyyagura, L., and Bonacini, M. (2001) Jaundice and hepatocellular damage associated with nevirapine therapy, Am. J. Gastroenterol., 96(5), 1571–1574.

    Article  PubMed  CAS  Google Scholar 

  290. Johnson, S., Baraboutis, J. G., Sha, B. E., Proia, L. A., and Kessler, H. A. (2000) Adverse effects associated with use of nevirapine in HIV postexposure prophylaxis for 2 health care workers, J. Am. Med. Assoc., 284(21), 2722–2723.

    Article  CAS  Google Scholar 

  291. Benn, P. D., Mercey, D. E., Brink, N., Scott, G., and Williams, I. G. (2001) Prophylaxis with a nevirapine-containing triple regimen after exposure to HIV-1, Lancet, 367(9257), 687–688.

    Article  Google Scholar 

  292. Martinez, E., Blanco, J. L., Arnaiz, J. A., et al. (2001) Hepatotoxicity in HIV-1-infected patients receiving nevirapine-containing antiretroviral therapy, AIDS, 15(10), 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  293. Gonzalez de Requena, D., Nunez, M., Jimenez-Nacher, I., and Soriano, V. (2002) Liver toxicity caused by nevirapine, AIDS, 16(2), 290–291.

    Article  Google Scholar 

  294. Veldkamp, A. I., Meenhorst, P. L., Mulder, J. W., and Beijnen, J. H. (2001) HAART, or just mini-HAART? J. Acquir. Defic. Syndr., 28(5), 495–496.

    CAS  Google Scholar 

  295. Lamson, M., Robinson, P., McDonough, M., Hutman, H. W., MacGregor, T., and Nusrat, R. (2000) The effects of underlying renal or hepatic dysfunction on the pharmacokinetics of nevirapine, XIII International AIDS Conference, Durban, South Africa, July 9–14 [abstract TuPeB3301].

    Google Scholar 

  296. Moyle, G. J. and Conway, B. (2006) Efavirenz. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogden, R, eds.), Humana Press, Totowa, NJ, pp. 345–373.

    Chapter  Google Scholar 

  297. Rabel, S. R., Maurin, M. B., Rowe, S. M., and Hussain, M. (1996) Determination of the pKa and pH-solubility behavior of an ionizable cyclic carbamate, (S)-(−)-6-chloro-4-(cyclopropylethynyl)-4-(trifluoromethyl)-2,4-dihydro-1H-3,1-benzoxazin-2-one (MDP 266), Pharm. Dev. Technol., 1, 91–95.

    Article  PubMed  CAS  Google Scholar 

  298. Starr, S. E., Fletcher, C. V., Spector, S. A., et al., and the PACTG 382 Study Team, for the Pediatric AIDS Clinical Trials Group (2002) Efavirenz liquid formulation in human immunodeficiency virus-infected children, Pediatr. Infect. Dis., 21, 659–663.

    Google Scholar 

  299. Young, S. D., Britcher, S. F., Tran, L. O., et al. (1995) L-743,726 (DMP-266): a novel, highly potent non-nucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase, Antimicrob. Agents Chemother., 39, 2602–2605.

    PubMed  CAS  Google Scholar 

  300. Erickson, J. W. and Burt, S. K. (1996) Structural mechanisms of HIV drug resistance, Ann. Rev. Pharmacol. Toxicol., 36, 545–571.

    Article  CAS  Google Scholar 

  301. D’Aquila, R. T. (1994) HIV-1 drug resistance: molecular pathogenesis and laboratory monitoring, Clin. Lab. Med., 14, 393–423.

    PubMed  Google Scholar 

  302. Arnold, E., Ding, J., Hughes, S. H., and Hostomsky, Z. (1995) Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates, Curr. Opin. Struct. Biol., 5, 27–38.

    Article  PubMed  CAS  Google Scholar 

  303. Winslow, D. L., Garber, S., Reid, C., et al. (1996) Selection conditions affect the evolution of specific mutations in the reverse transcriptase gene associated with resistance to DMP 266, AIDS, 10(11), 1205–1209.

    PubMed  CAS  Google Scholar 

  304. Jeffrey, S., Baker, D., Tritch, R., Rizzo, C., Logue, K., and Bacheler, L. (1998) A resistance and cross-resistance profile for Sustiva (efavirenz, DMP 266), 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 702].

    Google Scholar 

  305. Bacheler, L. T., Anton, E. D., Kudish, P., et al. (2000) Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy, Antimicrob. Agents Chemother., 44(9), 2475–2484.

    Article  PubMed  CAS  Google Scholar 

  306. Jeffrey, S., Corbett, J., and Bacheler, L. (1999) In vitro NNRTI resistance of recombinant HIV carrying mutations observed in efavirenz treatment failures, 6th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, January 31–February 4 [abstract 110].

    Google Scholar 

  307. Bacheler, L. T., Anton, E., Jeffrey, S., George, H., Hollis, G., Abremski, K., and the Sustiva Resistance Study Team (1998) RT gene mutations associated with resistance to efavirenz, 2nd International Workshop on HIV Drug Resistance and Treatment Strategies, Lake Maggiore, Italy, June 24–27 [abstract 19].

    Google Scholar 

  308. Bacheler, L., George, H., Hollis, G., Abremski, K., and the Sustiva Resistance Study Team (1998) Resistance to efavirenz (Sustiva) in vivo, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 703].

    Google Scholar 

  309. Hsiou, Y., Ding, J., Das, K., et al. (2001) The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance, J. Mol. Biol., 309, 437–445.

    Article  PubMed  CAS  Google Scholar 

  310. Bacheler, L., Jeffrey, S., Hanna, G., et al. (2001) Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy, J. Virol., 75, 4999–5008.

    Article  PubMed  CAS  Google Scholar 

  311. Brenner, B., Turner, D., Oliveira, M., et al. (2003) A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors, AIDS, 17, F1–F5.

    Article  PubMed  CAS  Google Scholar 

  312. Shulman, N. S., Bosch, R. J., Mellors, J. W., Albrecht, M. A., and Katzenstein, D. A. (2004) Genetic correlates of efavirenz hypersusceptibility, AIDS, 18(13), 1781–1785.

    Article  PubMed  CAS  Google Scholar 

  313. Shulman, N., Zolopa, A. R., Passaro, D., et al. (2001) Phenotypic hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in treatment-experienced HIV-infected patients: impact on virological response to efavirenz-based therapy, AIDS, 15, 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  314. AIDSinfo (2007) U.S. Department of Health and Human Services: Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents—December 1, 2007 (http://aidsinfo.nih.gov/guidelines/GuidelineDetail.aspx?MenuItem=Guidelines&Search=Off&GuidelineID=7&ClassID=1).

  315. Mayers, D., Jemsek, J., Eyster, E., et al., for the Efavirenz Clinical Development Team and the DMP 266-044 Study Team (1998) A double-blind, placebo-controlled study to assess the safety, tolerability and antiviral activity of efavirenz (EFV, Sustiva, DMP 266) in combination with open-label zidovudine (ZDV) and lamivudine (3TC) in HIV-1 infected patients [DMP 266-004], 12th World AIDS Conference, Geneva, Switzerland, June 28–July 3 [abstract 22340].

    Google Scholar 

  316. Haas, D. W., Seeking, D., Cooper, R., et al., for the Efavirenz Clinical Development Team and the DMP 266-044 Study Team (1998) A Phase II double-blind, placebo-controlled, dose-ranging study to assess the antiretroviral activity and safety of efavirenz (RFV, Sustiva, DMP 266) in combination with open-label zidovudine (ZDV) and lamivudine (3TC) at 36 weeks [DMP 266-005], 12th World AIDS Conference, Geneva, Switzerland, June 28–July 3 [abstract 22334].

    Google Scholar 

  317. Moyle, G. J. (2000) Considerations in the choice of protease inhibitor-sparing regimens in initial therapy for HIV-1 infection, Curr. Opin. Infect. Dis., 13, 19–25.

    PubMed  CAS  Google Scholar 

  318. BHIVA Writing Committee (2001) British HIV Association (BHIVA) guidelines for the treatment of HIV-infected adults with antiretroviral therapy, HIV Med., 2, 276–313.

    Google Scholar 

  319. Yeni, P. G., Hammer, S. M., Carpenter, C. C., et al. (2002) Antiretroviral treatment for adult HIV infection in 2002: updated recommendations of the International AIDS Society-USA Panel, J. Am. Med. Assoc., 288, 222–235.

    Article  CAS  Google Scholar 

  320. Department of Health and Human Services (DHHS) (2005) Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents (http://aidsinfo.nih.gov/guidelines/).

  321. Moyle, G. J., Wilkins, E., Leen, C., Cheesbrough, A., Reynolds, B., and Gazzard, B. G. (2000) Salvage therapy with abacavir plus efavirenz or nevirapine in HIV-1-infected persons with previous nucleoside analogue and protease inhibitor use, AIDS, 14, {1453–1454.}

    Article  PubMed  CAS  Google Scholar 

  322. Keiser, P., Nassar, N., White, C., Koen, G., and Moreno, S. (2001) Comparison of efavirenz-containing regimens to nevirapine-containing regimens in antiretroviral-naive HIV infected patients: a cohort study, 8th European Conference on Clinical Aspects and Treatment of HIV Infection, Athens, Greece, October 28–31 [abstract].

    Google Scholar 

  323. Albrecht, M. A., Borsch, R. J., Liou, S. H., and Katzenstein, D. (2002) ACTG 364: efficacy of nelfinavir (NFV) and/or efavirenz (AFV) in combination with new NRTIs in nucleoside experienced subjects: week-144 study, 9th Conference on Retroviruses and Opportunistic Infections, Seattle, Washington, February {24–28} [abstract 425-W].

    Google Scholar 

  324. Moyle, G., Baldwin, C., Mandalia, S., Comitis, S., Burn, P., and Gazzard, B. (2001) Changes in metabolic parameters and body shape after replacement of protease inhibitor with efavirenz in virologically controlled HIV-1-positive persons: single-arm observational cohort, J. Acquir. Immune Defic. Syndr., 28, {399–401.}

    PubMed  CAS  Google Scholar 

  325. Katlama, C., Rachilis, A., Staszewski, S., and the Study 027 and 049 Teams (2001) Better virologic suppression after substitution of protease inhibitors with efavirenz in patients with unquantifiable viral loads, 8th European Conference on Clinical Aspects and Treatment of HIV Infection, Athens, Greece, October 28–31 [abstract].

    Google Scholar 

  326. Hirschel, B., Flepp, M., Bucher, H. C., et al., and the Swiss HIV Cohort (2002) Switching from protease inhibitors to efavirenz: differences in efficacy and tolerance among risk groups: a case-control study from the Swiss HIV Cohort, AIDS, 16, 381–385.

    Google Scholar 

  327. Starr, S. E., Fletcher, C. V., Spector, S. A., et al., for the Pediatric AIDS Clinical Trials Group 382 Team (1999) Combination therapy with efavirenz, nelfinavir, and nucleoside {reverse-transcriptase} inhibitors in children with human immunodeficiency virus type 1, N. Engl. J. Med., 341, 1874–1881.

    Google Scholar 

  328. McComsey, G., Alvarez, A., Joseph, J., Rathore, P., and Lederman, M. (2001) Is simplification of HAART safe in HIV-infected children? First pediatric swith study, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 4–8 [abstract 679].

    Google Scholar 

  329. Bacheler, L. T., Anton, E., Baker, D., et al. (1997) Impact of mutation, plasma protein binding and pharmacokinetics on clinical efficacy of the HIV-1 non nucleoside reverse transcriptase inhibitor, DMP 266, 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 28–October 1 [abstract I-115].

    Google Scholar 

  330. Joshi, A., Fiske, W. D., Benedek, I. H., White, S. J., Joseph, J. L., and Kornhauser, D. M. (1998) Lack of pharmacokinetic interaction between efavirenz (DMP 266) and ethinyl estradiol in healthy volunteers, 5th Conference on Retroviruses and OpportunisticInfections, Chicago, IL, February 4–8 [abstract 348].

    Google Scholar 

  331. Graul, A., Rabasseda, X., and Castaner, J. (1998) Efavirenz, Drugs Future, 23, 133–141.

    Article  CAS  Google Scholar 

  332. Mayers, D., Riddler, S., Stein, D., Bach, M., Havlir, D., and Kahn, J. (1996) A double blind pilot study to evaluate the antiviral activity, tolerability and pharmacokinetics of DMP 266 alone and in combination with indinavir, 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, September 15–18 [abstract LB8a].

    Google Scholar 

  333. Fiske, W. D., Benedek, I. H., Joseph, J. L., et al. (1998) Pharmacokinetics of efavirenz (EFV) and ritonavir (RTV) after multiple oral doses in healthy volunteers, 12th World AIDS Conference, Geneva, Switzerland, June 28–July 3 [abstract 42269].

    Google Scholar 

  334. Benedek, I. H., Joshi, A., Fiske, W. D., et al. (1998) Pharmacokinetic interaction between efavirenz (EFV) and rifampin (RIF) in healthy volunteers, 12th World AIDS Conference, Geneva, Switzerland, June 28–July 3 [abstract 42280].

    Google Scholar 

  335. Benedek, I. H., Joshi, A., Fiske, W. D., et al. (1998) Pharmacokinetic (PK) interaction studies with efavirenz (EFV) and the macrolide antibiotics azitromycin (AZM) and clarithromycin (CLR), 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 4–8 [abstract 347].

    Google Scholar 

  336. Fiske, W. D., Benedek, I. H., White, S. J., Joseph, J. L., and Kornhauser, D. M. (1997) Pharmacokinetic interaction between DMP 266 and nelfinavir mesylate (NFV) in healthy volunteers, 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 28–October 1 [abstract I-174].

    Google Scholar 

  337. Fiske, W. D., Mayers, D., Wagner, K., et al. and the DMP 266 Development Team (1997) Pharmacokinetics of DMP 266 and indinavir multiple oral doses in HIV-1 infected individuals, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract].

    Google Scholar 

  338. Fiske, W. D., Benedek, I. H., Joshi, A. S., Joseph, J. L., and Kornhauser, D. M. (1998) Summary of pharmacokinetic drug interactions studies with efavirenz, 36th Annual Meeting of the Infectious Disease Society of America, Denver, CO, November 12–15 [abstract 460].

    Google Scholar 

  339. Bristol-Myers Squibb Company (2002) Sustiva package insert, Bristol-Myers Squibb Co., Princeton, NJ.

    Google Scholar 

  340. Hendrix, C. W., Fiske, W. D., Fuchs, E. J., et al. (2000) Pharmacokinetics of the triple combination of saquinavir, ritonavir and efavirenz in HIV positive patients, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 2 [abstract].

    Google Scholar 

  341. Abbott Laboratories (2008) Kaletra package insert, Abbott Laboratories, North Chicago, IL.

    Google Scholar 

  342. Romero, D. L., Busso, M., Tan, C. K., et al. (1991) Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication, Proc. Natl. Acad. Sci. U.S.A., 88, 8806–8810.

    Article  PubMed  CAS  Google Scholar 

  343. Busso, M., Mian, A. M., Hahn, E. F., and Resnick, L. (1988) Nucleotide dimers suppress HIV expression in vitro, AIDS Res. Hum. Retroviruses, 4, 449–455.

    Article  PubMed  CAS  Google Scholar 

  344. Tan, C. K., Zhang, J., Li, Z. Y., Tarpley, W. G., Downey, K. M., and So, A. G. (1991) Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase, Biochemistry, 30, 2651–2655.

    Article  PubMed  CAS  Google Scholar 

  345. Freimuth, W. W. (1996) Delavurdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor, Adv. Exp. Med. Biol., 394, 279–289.

    PubMed  CAS  Google Scholar 

  346. Esnouf, R. M., Ren, J., Hopkins, A. L., et al. (1997) Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor, Proc. Natl. Acad. Sci. U.S.A., 94, 3984–3989.

    Article  PubMed  CAS  Google Scholar 

  347. Althaus, I. W., Chou, J. J., Gonzales, A. J., et al. (1994) Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152S, Biochem. Pharmacol., 47, 2017–2028.

    Article  PubMed  CAS  Google Scholar 

  348. Dueweke, T. J., Poppe, S. M., Romero, D. L., et al. (1993) U-90152, a potent inhibitor of human immunodeficiency virus type 1 replication, Antimicrob. Agents Chemother., 37, 1127–1131.

    PubMed  CAS  Google Scholar 

  349. Conway, B. (2006) Delavirdine. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogde, R., eds.), Humana Press, Totowa, NJ, pp. 375–400.

    Chapter  Google Scholar 

  350. Demeter, L. M., Shafer, R. W., Meehan, P. M., et al. (2000) Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase I/I trial of delavirdine monotherapy (ACTG 260), Antimicrob. Agents Chemother., 44, 794–797.

    Article  PubMed  CAS  Google Scholar 

  351. Gerondelis, P., Archer, R. H., Palaniappan, C., et al. (1999) The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end and DNA 3′-end-directed RNase H activities, J. Virol., 73(7), 5803–5813.

    PubMed  CAS  Google Scholar 

  352. Friedland, G. H., Pollard, R., Griffith, B., et al. (1999) Efficacy and safety of delavirdine mesylate with zidovudine and didanosine compared with two-drug combinations of these agents in persons with HIV disease with CD4 counts of 100 to 500 cells/mm3 (ACTG 261). ACTG 261 Team, J. Acquir. Immune Defic. Syndr., 21, 281–292.

    PubMed  CAS  Google Scholar 

  353. Conway, B. (2000) Initial therapy with protease inhibitor-sparing regimens: evaluation of nevirapine and delavirdine, Clin. Infect. Dis., 30(Suppl. 2), S130–S134.

    Article  PubMed  CAS  Google Scholar 

  354. Wood, R., Hawkins, D. A., Moyle, G., De Cain, W., Ingrosso, A., and Greenwald, C. (1999) Second placebo-controlled study in naïve individuals confirms the role of delavirdine in highly active antiretroviral, protease-sparing treatment, 6th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, January 31–February 4 [abstract 624].

    Google Scholar 

  355. Kuritzkes, D. R., Bassett, R. L., Johnson, V. A., et al. (2000) Continued lamivudine versus delavirdine in combination with indinavir and zidovudine or stavudine in lamivudine-experienced patients: results of Adult AIDS Clinical Trials Group Protocol 370, AIDS, 14, 1553–1561.

    Article  PubMed  CAS  Google Scholar 

  356. Smith, G. H., Boulassel, M. R., Klein, M, et al., (2004) Virulogic and immunologic response to a boosted double-protease inhibitor-based therapy in highly pretreated HIV-1 infected patients, HIV Clin. Trials, 6, 63–72.

    Google Scholar 

  357. Gatell, J., Kuritzkes, D., and Green, S. (1999) Twice daily dosing of delavirdine in combination with nelfinavir, didanosine, and stavudine results in significant decreases in viral burden, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–29 [abstract 520].

    Google Scholar 

  358. Conway, B., Chu, A., Tran, T., et al., for the 0081 Study Group (2001) A pilot study of combinations of delavirdine (DLV), zidovudine (ZDV), lamivudine (3TC), and saquinavir-SGC (Fortovase®, FTV) as initial antiretroviral therapy: virologic and pharmacokinetic considerations, 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 4–8 [abstract 331].

    Google Scholar 

  359. Eron, J., Chu, A., Petersen, C., et al. (2001) 48 week efficacy of triple drug HAART containing delavirdine and reduced dose indinavir is comparable to HAART containing full dose indinavir, 1st IAS Conference on HIVPathogenesis and Treatment, Buenos Aires, Argentina, July 8–11 [abstract 232].

    Google Scholar 

  360. Bellman, P. C. (1998) Clinical experience with adding delavirdine to combination therapy in patients in whom multiple antiretroviral treatment including protease inhibitors has failed, AIDS, 12, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  361. Smith, D., Hales, G., Roth, N., et al. (2001) A randomized trial of nelfinavir, ritonavir, or delavirdine in combination with saquinavir-SGC and stavudine in treatment-experienced HIV-1-infected patients, HIV Clin. Trials, 2, 97–107.

    Article  PubMed  CAS  Google Scholar 

  362. Blanco, J. L., Mallolas, J., Sarasa, M., et al. (2000) A pilot study of a twice daily (BID) combination of indinavir/delavirdine plus two nucleoside analogues for salvage therapy in HIV-1 infected patients, 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 17–20 [abstract 1543].

    Google Scholar 

  363. Baril, J. G., Lefebvre, E. A., Lalonde, R. G., Shafran, S. D., and Conway, B. (2003) Nelfinavir and non-nucleoside reverse transcriptase inhibitor-based salvage regimens in heavily HIV pretreated patients, Can. J. Infect. Dis., 14, 201–205.

    PubMed  Google Scholar 

  364. Tran, J. Q., Gerber, J. G., and Kerr, B. M. (2001) Delavirdine: clinical pharmacokinetics and drug interactions, Clin. Pharmacokinet., 40, 207–226.

    Article  PubMed  CAS  Google Scholar 

  365. Cox, S. R., Schneck, D. W., Herman, B. D., et al. (1998) Delavirdine (DLV) and nelfinavir (NFV): a pharmacokinetic (PK) drug-drug interaction study in healthy adult volunteers, 5th Conferences on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 345].

    Google Scholar 

  366. Morse, G. D., Fischl, M. A., Shelton, M. J., et al. (1997) Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection, Antimicrob. Agents Chemother., 41, 169–174.

    PubMed  CAS  Google Scholar 

  367. Voorman, R. L., Maio, S. M., Hauer, M. J., Sanders, P. E., Payne, M. A., and Ackland, M. J. (1998) Metabolism of delavirdine, a human immunodeficiency virus type 1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A, Drug Metab. Dispos., 26, 631–639.

    PubMed  CAS  Google Scholar 

  368. Freimuth, W. W. (1996) Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor, Adv. Exp. Med. Biol., 394, 279–289.

    PubMed  CAS  Google Scholar 

  369. Gangar, M., Arias, G., O’Brian, J. G., and Kemper, C. A. (2000) Frequency of cutaneous reactions on rechallenge with nevirapine and delavirdine, Ann. Pharmacother., 34, 839–842.

    Article  PubMed  CAS  Google Scholar 

  370. Para, M., Slater, L., Daly, P., et al. (1999) Delavirdine in combination therapy has a favorable liver safety profile in HIV-1 patients, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, September 26–29 [abstract 331].

    Google Scholar 

  371. Reisler, R., Liou, S., Servoos, J., et al. (2001) Incidence of hepatotoxicity and mortality in 21 adult antiretroviral treatment trials, 1st IAS Conference on HIV Pathogenesis and Treatment, Buenos Aires, July 8–11 [abstract 43].

    Google Scholar 

  372. Palmon, R., Koo, B. C., Shoultz, D. A., and Dieterich, D. T. (2002) Lack of hepatotoxicity associated with nonnucleoside reverse transcriptase inhibitors, J. Acquir. Immune Defic. Syndr., 29, 340–345.

    PubMed  CAS  Google Scholar 

  373. Scott, L. J. and Perry, C. M. (2000) Delavirdine: a review of its use in HIV infection, Drugs, 60, 1411–1444.

    Article  PubMed  CAS  Google Scholar 

  374. Clevenbergh, P., Cua, E., Dam, E., et al. (2002) Prevalence of nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance-associated mutations and polymorphisms in NNRTI-naïve HIV-infected patients, HIV Clin. Trials, 3(1), 36–44.

    Article  PubMed  CAS  Google Scholar 

  375. Nissley, D. V., Church, J. D., Guay, L. A., et al. (2006) Phenotypic NNRTI resistance and genetic diversity in drug-naive individuals, XV International HIV Drug Resistance Workshop, Sitges, Spain, June 13–17, abstract 138.

    Google Scholar 

  376. Paolucci, S., Baldani, F., Tinelli, M., et al. (2002) Q145M, a novel HIV-1 reverse transcriptase mutation conferring resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors, Antivir. Ther., 7(2), S35.

    Google Scholar 

  377. Harrigan, P. R., Salim, M., Stammers, D. K., et al. (2002) A mutation in the 3′ region of the human immunodeficiency virus type 1 reverse transcriptase (Y318F) associated with non-nucleoside reverse transcriptase inhibitor resistance, J. Virol., 76(13), 6836–6840.

    Article  PubMed  CAS  Google Scholar 

  378. Kemp, S., Salim, M., Stammers, D., Wynhoven, B., Larder, B., and Harrigan, P. R. (2001) A mutation in HIV-1 RT at codon 318 (Y to F) confers high level NNRTI resistance in clinical samples, 41th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, December 16–19 [abstract 1762].

    Google Scholar 

  379. Huang, W., Parkin, N. T., Lie, Y. S., et al. (2000) A novel HIV-1 RT mutation (M230L) confers NNRTI resistance and dose-dependent stimulation of replication, Antivir. Ther., 5(Suppl. 3), S24–S25.

    Google Scholar 

  380. Little, S. J., Holte, S., Routy, J. P., et al. (2002) Antiretroviral-drug resistance among patients recently infected with HIV, N. Engl. J. Med., 347(6), 385–394.

    Article  PubMed  CAS  Google Scholar 

  381. Pilon, R., Sandstrom, P., Burchell, A., et al. (2002) Transmitted HIV-1 reverse transcriptase inhibitor resistance mutation stability in ART-naïve recent seroconverters: results of the polaris HIV seroconversion study, XIV International AIDS Conference, Barcelona, July 7–12 [abstract TuPeB4611].

    Google Scholar 

  382. Imrie, A., Carr, A., Duncombe, C., et al. (1996) Primary infection with zidovudine-resistant human immunodeficient virus type 1 does not adversely affect outcome at 1 year. Sydney Primary HIV Infection Study group, J. Infect. Dis., 174(1), 195–198.

    PubMed  CAS  Google Scholar 

  383. Conant, M., Brown, S., Cohen, C., et al. (1999) An epidemiological prospective survey assessing the prevalence of HIV-1 drug resistance in 230 HIV-1-positive antiretroviral naïve patients from the USA, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–29 [abstract 443].

    Google Scholar 

  384. Becker, M. I., Haubrich, R., Wesselman, C. W., et al. (2002) HIV-1 genotypic resistance in treatment-naïve subjects enrolled in an observational trial (GAIN), Antivir. Ther., 7(Suppl. 2), S134.

    Google Scholar 

  385. Huang, W., Wrin, T., Gamarnik, A., Beauchaine, J., Whitcomb, J. M., and Petropoulos, C. J. (2002) Reverse transcriptase mutations that confer non-nucleoside reverse transcriptase inhibitor resistance may also impair replication capacity, Antivir. Ther., 7(Suppl. 2), S60.

    Google Scholar 

  386. Soderberg, K., Thompson, M., and Alexander, L. (2002) Impaired in vitro fitness of nevirapine resistant HIV-1 mutants, 9th Conference on Retroviruses and Opportunistic Infections, Seattle WA, February 24–28 [abstract 577].

    Google Scholar 

  387. Archer, R. H., Dykes, C., Gerondeles, P., et al. (2000) Mutants of human immunodeficiency virus type 1 (HIV-1) reverse {transcriptase} resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture, J. Virol., 74(18), 8390–8401.

    Article  PubMed  CAS  Google Scholar 

  388. Whitcomb, J. M., Huang, W., Limoli, K., et al. (2002) Hypersusceptibility to non-nucleoside reverse transcriptase inhibitors in HIV-1: clinical, phenotypic and genotypic correlates, AIDS, 16(15), F41–F47.

    Article  PubMed  CAS  Google Scholar 

  389. Das, K., Clark, A. D., Jr., Lewi, P. J., Heeres, J., et al. (2004) Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants, J. Med. Chem., 47(10), 2550–2560.

    Article  PubMed  CAS  Google Scholar 

  390. Ludovici, D. W., De Corte, B. L., Kukla, M. J., Ye, H., et al. (2001) Evolution of anti-HIV drug candidates. Part 3: diarylpyrimidine (DAPY) analogues, Biorg. Med. Chem. Lett., 11(17), 2235–2239.

    Article  CAS  Google Scholar 

  391. Lewi, P. J., de Jonge, M., Daeyaert, F., Koymans, L., et al. (2003) On the detection of multiple-binding modes of ligands to proteins, from biological, structural, and modeling data, J. Comput. Aided Mol. Des., 17(2–4), 129–134.

    PubMed  Google Scholar 

  392. Grossman, H. A., Hicks, C., Nadler, J., et al. (2005) Efficacy and tolerability of Tmc125 in HIV patients with NNRTI and PI resistance at 24 weeks: Tmc125-c223, 45th Interscience Conference of Antimicrobial Agents and Chemotherapy, Washington, D.C., December 16–19 [abstract H-416c].

    Google Scholar 

  393. Medscape—The continuing promise of TMC125, a second-generation NNRTI (http://www.medscape.com/viewarticle/429091).

  394. Schöller, M., Kraft, M., Hoetelmans, R., et al. (2006) Significant decrease in TMC125 exposures when co-administered with tipranavir boosted with ritonavir in healthy subjects, 13th Conference on Retroviruses and Opportunistic Infections, Denver, CO, February 5–8 [abstract 583].

    Google Scholar 

  395. Kukuda, T., M. Schöller-Gyüre, M., Peeters, M., Woodfall, B., et al. (2006) Pharmacokinetic interaction study with TMC125 and TMC114/RTV in HIV-negative volunteers, 16th International AIDS Conference, Toronto, Canada, August 13–18 [abstract TuPe0086].

    Google Scholar 

  396. Anderson, M. S., Kakuda, T. N., Miller, J. L., et al. (2007) Pharmacokinetic evaluation of non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC125 and integrase inhibitor (InSTI) raltegravir (RAL) in healthy subjects, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract TUPDB02].

    Google Scholar 

  397. Ramanathan, S., West, S., Kakuda, T. N., et al. (2007) Lack of clinically relevant drug interaction between ritonavir-boosted elvitegravir and TMC 125, 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17–20 [abstract H-1407].

    Google Scholar 

  398. Mills, A., Cahn, P., Grinsztejn, B., et al. (2007) DUET-1: 24 week results of a phase III randomised double-blind trial to evaluate the efficacy and safety of TMC125 versus placebo in 612 treatment-experienced HIV-1 infected patients, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment, and Prevention, Sydney, Australia, July 22–25 [abstract (late-breaker) WeSS204:1].

    Google Scholar 

  399. Katlama, C., Campbell, T., Clotet, B., et al. (2007) DUET-2: 24 week results of a phase III randomised double-blind trial to evaluate the efficacy and safety of TMC125 versus placebo in 591 treatment-experienced HIV-1 infected patients, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment, and Prevention, Sydney, Australia, July 22–25 [abstract (late-breaker) WeSS204:2].

    Google Scholar 

  400. Madruga, J. V., Cahn, P., Grinsztejn, B., et al. on behalf of the DUET-1 Study Group (2007) Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, placebo-controlled trial, Lancet, 370(9581), 29–38.

    Google Scholar 

  401. Lazzarin, A., Campbell, T., Clotet, B., et al. on behalf of the DUET-2 Study Group (2007) Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial, Lancet, 370(9581), 39–48.

    Google Scholar 

  402. Cohen, C., Steinhart, C. R., and Ward, D. J. (2006) Efficacy and safety results at 48 weeks with the novel NNRTI, TMC125, and impact of baseline resistance on the virologic response in study TMC125-C223, XVIth International AIDS Conference, Toronto, Canada, August 13–18 [abstract TUPE0061].

    Google Scholar 

  403. Jansen, P. A. J., Lewi, P. J., Arnold, E., et al. (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl] amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine), J. Med. Chem., 48(6), 1901–1909.

    Article  CAS  Google Scholar 

  404. Pozniak, A., Morales-Ramirez, J., Mohapi, L., et al. (2007) 48-week primary analysis of trial TMC278-C204: TMC278 demonstrates potent and sustained efficacy in ART-naïve patients, 14th Conference of Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [abstract 144LB].

    Google Scholar 

  405. Ruxrungtham, K., Bellos, N., Morales-Ramirez, J., et al. (2007) The metabolic profile of TMC278, an investigational non-nucleoside reverse transcriptase inhibitor (NNRTI), 4th International AIDS Society Conference on HIV Pathogenesis, Treatment, and Prevention, Sydney. Australia, July 22–25 [abstract TUAB105].

    Google Scholar 

  406. Kashman, Y., Gustafson, K. R., Fuller, R. W., et al. (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum, J. Med. Chem., 35, 2735–2743.

    CAS  Google Scholar 

  407. Boyer, P. L., Currens, M. J., McMahon, J. B., Boyd, M. R., and Hughes, S. H. J. (1993) Analysis of nonnucleoside drug-resistant variants of human immunodeficiency virus type 1 reverse transcriptase, Virology, 67, 2412–2420.

    CAS  Google Scholar 

  408. Hizi, A., Tal, R., Shaharabany, M., Currens, M. J., Boyd, M. R., Hughes, S. B., and McMahon, J. B. (1993) Specific inhibition of the reverse transcriptase of human immunodeficiency virus type 1 and the chimeric enzymes of human immunodeficiency virus type 1 and type 2 by nonnucleoside inhibitors, Antimicrob. Agents Ther., 37, 1037–1042.

    CAS  Google Scholar 

  409. Cardellina, J. H., II, Bokesch, H. R., McKee, T. C., and Boyd, M. R. (1995) Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B, BioMed. Chem. Lett., 5, 1011–1014.

    Article  CAS  Google Scholar 

  410. Galinis, D. L., Fuller, R. W., McKee, T. C., Cardellina, J. H., II, Gulakowski, R. J., McMahon, J. B., and Boyd, M. R. (1996) Structure-activity modifications of the HIV-1 inhibitors (+)-calanolide A and (−)-calanolide B, J. Med. Chem., 39, 4507–4510.

    Article  PubMed  CAS  Google Scholar 

  411. Currens, M. J., Gulakowski, R. J., Mariner, J. M., Moran, R. A., Buckheit, R. W., et al. (1996) Antiviral activity and mechanism of action of calanolide A against the human immunodeficiency virus type-1, J. Pharmacol. Exp. Ther., 279, 645–651.

    PubMed  CAS  Google Scholar 

  412. Currens, M. J., Mariner, J. M., McMahon, J. B., and Boyd, M. R. (1996) Kinetic analysis of inhibition of human immunodeficiency virus type-1 reverse transcriptase by calanolide A, J. Pharmacol. Exp. Ther., 279, 652–661.

    PubMed  CAS  Google Scholar 

  413. McKee, T. C., Covington, C. D., Fuller, R. W., et al. (1998) Pyranocoumarins from tropical species of the genus Calophyllum: a chemotaxonomic study of extracts in the National Cancer Institute collection, J. Nat. Prod., 61, 1252–1256.

    Article  PubMed  CAS  Google Scholar 

  414. Kashman, Y., Gustafson, K. R., Fuller, R. W., et al. (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum, J. Med. Chem., 35(15), 2735–2743.

    CAS  Google Scholar 

  415. Khilevich, A., Mar, A., Flavin, M. T., Rizzo, J. D., et al. (1996) Synthesis of (+)-calanolide A, an anti-HIV agent, via enzyme-catalyzed resolution of the aldol products, Tetrahedron: Asymmetry, 7(11), 3315–3326.

    Article  CAS  Google Scholar 

  416. Chenera, B., West, M. L., Finkelstein, J. A., and Dreyer, G. B. (1993) Total synthesis of (+)-calanolide A, a non-nucleoside inhibitor of HIV reverse transcriptase, J. Org. Chem., 58, 5605–5606.

    Article  CAS  Google Scholar 

  417. Creagh, T., Ruckle, J. L., Tolbert, D. T., Giltner, J., Eiznhamer, D. A., Dutta, B., Flavin, M. T., and Xu, Z.-Q. (2001) Safety and pharmacokinetics of single doses of (+)-calanolide A, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects, Antimicrob. Agents Chemother., 45(5), 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  418. Buckheit, R. W., Jr., Russell, J. D., Xu, Z. Q., and Flavin, M. (2000) Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication, Antivir. Chem. Chemother., 11(5), 321–327.

    PubMed  CAS  Google Scholar 

  419. Kohl, N. R., Emini, E. A., Schleif, W. A., et al. (1988) Active human immunodeficiency virus protease is required for viral infectivity, Proc. Natl. Acad. Sci. U.S.A., 85, 4686–4690.

    Article  PubMed  CAS  Google Scholar 

  420. Peng, C., Ho, B. K., Chang, T. W., and Chang, N. T. (1989) Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity, J. Virol., 63, 2550.

    PubMed  CAS  Google Scholar 

  421. Gottlinger, H. G., Sodroski, J. G., and Haseltine, W. A. (1989) Role of the capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A., 86, 5781–5789.

    Article  PubMed  CAS  Google Scholar 

  422. Wlodawer, A. and Erickson, J. W. (1993) Structure-based inhibitors of HIV-1 protease, Rev. Biochem., 62, 543–585.

    Article  CAS  Google Scholar 

  423. Bhat, T. N., Baldwin, E. T., Liu, B., Cheng, Y.-S. E., and Erickson, J. W. (1994) Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor, Nat. Struct. Biol., 1, 552–556.

    Article  PubMed  CAS  Google Scholar 

  424. Pearl, L. H. and Taylor, W. R. (1987) A structural model for the retroviral proteases, Nature, 329, 351–354.

    Article  PubMed  CAS  Google Scholar 

  425. Flexner, C. (1998) HIV-protease inhibitors, N. Engl. J. Med., 338(18), 1281–1291.

    Article  PubMed  CAS  Google Scholar 

  426. Kramer, R. A., Schaber, M. D., Skalka, A. M., Ganguly, K., Wong-Staal, F., and Reddy, E. P. (1986) HTLV-III gag protein is processed in yeast cells by the virus pol-protease, Science, 231, 1580–1584.

    Article  PubMed  CAS  Google Scholar 

  427. Graves, M. C., Lim, J. J., Heimer, E. P., and Kramer, R. A. (1988) An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity, Proc. Natl. Acad. Sci. U.S.A., 85, 2449–2453.

    Article  PubMed  CAS  Google Scholar 

  428. Le Grice, S. F. J., Mills, J., and Mous, J. (1988) Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation, EMBO J., 7, 2547–2553.

    PubMed  Google Scholar 

  429. Henderson, L. E., Bowers, M. A., Sowder, R. C., II, et al. (1992) Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processings, and complete amino acid sequences, J. Virol., 66, 1856–1865.

    PubMed  CAS  Google Scholar 

  430. Flexner, C., Broyles, S. S., Earl, P., Chakrabarti, S., and Moss. B. (1988) Characterization of human immunodeficiency virus gag/pol gene products expressed by recombinant vaccinia viruses, Virology, 166, 339–349.

    Google Scholar 

  431. Karacostas, V., Nagashima, K., Gonda, M. A., and Moss, B. (1989) Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector, Proc. Natl. Acad. Sci. U.S.A., 86, 8964–8967.

    Article  PubMed  CAS  Google Scholar 

  432. Debouk, C. (1992) The HIV-1 protease as a therapeutic target for AIDS, AIDS Res. Hum. Retroviruses, 8, 153–164.

    Article  Google Scholar 

  433. Overton, H. A., McMillan, D. J., Gridley, S. J., Brenner, J., Redshaw, S., and Mills, J. S. (1990) Effect of two novel inhibitors of the human immunodeficiency virus protease on the maturation of the HIV gag and gag-pol polyproteins, Virology, 179, 508–511.

    Article  PubMed  CAS  Google Scholar 

  434. Tomaszek, T. A., Magaard, V. W., Bryan, H. G., Moore, M. L., and Meek, T. D. (1990) Chromophoric peptide substrates for the spectrophotometric assay of HIV-1 protease, Biochem. Biophys. Res. Commun., 168, 274–280.

    Article  PubMed  CAS  Google Scholar 

  435. Hyland, L. J., Dayton, B. D., Moore, M. L., Shu, A. Y., Heys, J. R., and Meek, T. D. (1990) A radiometric assay for HIV-1 protease, Anal. Biochem., 188, 408.

    Article  PubMed  CAS  Google Scholar 

  436. Phylip, L. H., Richards, A. D., Kay, J., et al. (1990) Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV-2 proteinases, Biochem. Biophys. Res. Commun., 171, 439.

    Article  PubMed  CAS  Google Scholar 

  437. Tamburini, P. P., Dreyer, R. N., Hansen, J., et al. (1990) A fluorometric assay for HIV-protease activity using high-performance liquid chromatography, Anal. Biochem., 186, 363.

    Article  PubMed  CAS  Google Scholar 

  438. Richards, A. D., Phylip, L. H., Farmeri, W. G., et al. (1990) Sensitive, soluble chromogenic substrates for HIV-1 proteinase, J. Biol. Chem., 265, 7733–7736.

    PubMed  CAS  Google Scholar 

  439. Matayoshi, E. D., Wang, G. T., Krafft, G. A., and Erickson, J. (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer, Science, 247, 954–958.

    Article  PubMed  CAS  Google Scholar 

  440. Billich, A. and Winkler, G. (1990) Colorimetric assay of HIV-1 proteinase suitable for high-capacity screening, Peptide Res., 3, 274.

    CAS  Google Scholar 

  441. Roberts, N. A., Martin, J. A., Kinchington, D., et al. (1990) Rational design of peptide-based HIV proteinase inhibitors, Science, 248, 358–361.

    Article  PubMed  CAS  Google Scholar 

  442. Meek, T. D., Lambert, D. M., Dreyer, G. B., et al. (1990) Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues, Nature, 343, 90–92.

    Article  PubMed  CAS  Google Scholar 

  443. Rich, D. H., Green, J., Toth, M. V., Marshall, G. R., and Kent, S. B. (1990) Hydroxyethylamine analogues of the p17/p24 substrate cleavage site are tight-binding inhibitors of HIV protease, J. Med. Chem., 33, 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  444. McQuade, T. J., Tomasselli, A. G., Liu, L., et al. (1990) A synthetic HIV protease inhibitor with antiviral activity arrests HIV-like particle maturation, Science, 247, 454–456.

    Article  PubMed  CAS  Google Scholar 

  445. Ashorn, P., McQuade, T. J., Thaisrivongs, S., Tomasselli, A. G., Tarpley, W. G., and Moss, B. (1990) An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection, Proc. Natl. Acad. Sci U.S.A., 87, 7472–7476.

    Article  PubMed  CAS  Google Scholar 

  446. Dreyer, G. B., Metcalf, B. W., Tomaszek, T. A., et al. (1989) Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors, Proc. Natl. Acad. Sci. U.S.A., 86, 9752–9755.

    Article  PubMed  CAS  Google Scholar 

  447. Kempf, D. J., Norbeck, D. W., Codavoli, L., et al. (1990) Structure-based, C2 symmetric inhibitors of HIV protease, J. Med. Chem., 33, 2687–2689.

    Article  PubMed  CAS  Google Scholar 

  448. Chrusciel, R. A. and Romines, K. R. (1997) Recent developments in HIV protease inhibitor research, Exp. Opin. Ther. Patents, 7(2), 111–121.

    Article  CAS  Google Scholar 

  449. Lea, A. P. and Faulds, D. (1996) Ritonavir, Drugs, 52(4), 541–546.

    Article  PubMed  CAS  Google Scholar 

  450. Erickson, J., Neidhart, D. J., Vandrie, J., et al. (1990), Design, activity and 2.8 Å crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease, Science, 249, 527–533.

    Article  PubMed  CAS  Google Scholar 

  451. Bryant, M. L., Heuckeroth, R. O., Kimata, J. T., Ratner, L., and Gordon, J. I. (1989) Replication of human immunodeficiency virus 1 and moloney murine leukemia virus is inhibited by different heteroatom-containing analogs of myristic acid, Proc. Natl. Acad. Sci. U.S.A., 86, 8655–8659.

    Article  PubMed  CAS  Google Scholar 

  452. Monini, P., Sgarari, C., Barillari, G., and Ensoli, B. (2003) HIV protease inhibitors: antiretroviral agents with anti-inflammatory, anti-angiogenic and anti-tumor activity, J. Antimicrob. Chemother., 51, 207–211.

    Article  PubMed  CAS  Google Scholar 

  453. Deeks, S. G., Smith, M., Holodniy, M., and Kahn, J. O. (1997) HIV-1 protease inhibitors. A review for clinicians, J. Am. Med. Assoc., 277(2), 145–153.

    Article  CAS  Google Scholar 

  454. Fitzimmons, M. E. and Collins, J. M. (1997) Selective biotransformation of the human immunodeficiency virus protease inhibitor saquinavir by human small-intestinal cytochrome P4503A4; potential contribution to high first-pass metabolism, Drug Metab. Dispos., 25, 256–266.

    Google Scholar 

  455. Kumar, G. N., Rodrigues, A. D., Buko, A. M., and Denissen, J. F. (1996) Cytochrome (ABT-538) in human liver microsomes, J. Pharmacol. Ther., 277, 423–431 [erratum: J. Pharmacol. Ther., 281, 1506, (1997)].

    Google Scholar 

  456. Chiba, M., Hensleigh, M., Nishime, J. A., Balani, S. K., and Lin, J. H. (1996) Role of cytochrome P450 3A4 in human metabolism of MK-639, a potent human immunodeficiency virus protease inhibitor, Drug Metab. Dispos., 24, 307–314.

    PubMed  CAS  Google Scholar 

  457. Piscitelli, S. C., Flexner, C., Minor, J. R., Polis, M. A., and Masur, H. (1996) Drug interactions in patients infected with human immunodeficiency virus, Clin. Infect. Dis., 23, 685–693.

    PubMed  CAS  Google Scholar 

  458. Roberts, A. D., Muesing, A., Parenti, D. M., Hsia, J., Wasserman, A. G., and Simon, G. L. (1999) Alteration of serum lipids and lipoproteins with indinavir in HIV-infected patients, Clin. Infect. Dis., 29, 441–443.

    Article  PubMed  CAS  Google Scholar 

  459. Graham, N. M. (2000) Metabolic disorders among HIV-infected patients treated with protease inhibitors: a review, J. Acquir. Immune Defic. Syndr., 25(Suppl. 1), S4–S11.

    Article  PubMed  CAS  Google Scholar 

  460. Powderly, W. G. (2002) Long-term exposure to lifelong therapies, J. Acquir. Immune Defic. Syndr., 29(Suppl. 1), S28–S40.

    PubMed  Google Scholar 

  461. White, A. J. (2001) Mitochondrial toxicity and HIV disease, Sex. Transm. Infect., 77, 158–173.

    Article  PubMed  CAS  Google Scholar 

  462. Walker, U. A., Setzer, B., and Venhoff, N. (2002) Increased long-term mitochondrial toxicity in combinations of nucleoside analogue reverse-transcriptase inhibitors, AIDS, 16(16), 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  463. Boshoff, C. and Weiss, R. (2002) AIDS-related malignancies, Nat. Rev. Cancer, 2, 373–382.

    Article  PubMed  CAS  Google Scholar 

  464. Sgadari, C., Barillari, G., Toschi, E., Carlei, D., Bacigalupo, I., Baccarini, S., et al. (2002) HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma, Nat. Med., 8, 225–232.

    Article  PubMed  CAS  Google Scholar 

  465. International Collaboration on HIV and Cancer (2000) Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults, J. Natl. Cancer Inst., 92, 1823–1830.

    Google Scholar 

  466. Cattelan, A. M., Calabro, M. L., Aversa, S. M., Zanchetta, M., Meneghetti, F., De Rossi, A., et al. (1999) Regression of AIDS-related Kaposi’s sarcoma following antiretroviral therapy with protease inhibitors: biological correlates of clinical outcome, Eur. J. Cancer, 35, 1809–1815.

    Article  PubMed  CAS  Google Scholar 

  467. Fischle, M. A., Richman, D. D., Grieco, M. H., Gottlieb, M. S., Volberding, P. A., Laskin, O. L., et al. (1987) The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex, N. Engl. J. Med., 317, 185–191.

    Article  Google Scholar 

  468. Zucker, S. D., Qin, X., Rouster, S. D., Yu, F., Green, R. M., Keshavan, P., et al. (2001) Mechanism of indinavir-induced hyperbilirubinemia, Proc. Natl. Acad. Sci. U.S.A., 98, 12671–12676.

    Article  PubMed  CAS  Google Scholar 

  469. Liang, J. S., Distler, O., Cooper, D. A., Jamil, H., Deckelbaum, R. J., Ginsberg, H. N., et al. (2001) HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia, Nat. Med., 7, 1327–1331.

    Article  PubMed  CAS  Google Scholar 

  470. Murata, H., Hruz, P. W., and Mueckler, M. (2002) Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations, AIDS, 16, 859–863.

    Article  PubMed  CAS  Google Scholar 

  471. Jain, R. G. and Lenhard, J. M. (2002) Select HIV protease inhibitors alter bone and fat metabolism ex vivo, J. Biochem. Chem., 277, 19247–19250.

    CAS  Google Scholar 

  472. Phenix, B. N., Lum, J. J., Nie, Z., Sanchez-Dardon, J., and Badley, A. D. (2001) Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss, Blood, 98, 1078–1085.

    Article  PubMed  CAS  Google Scholar 

  473. Chavan, S., Kodoth, S., Pahwa, R., and Pahwa, S. (2001) The HIV protease inhibitor indinavir inhibits cell-cycle progression in vitro in lymphocytes of HIV-infected and uninfected individuals, Blood, 98, 383–389.

    Article  PubMed  CAS  Google Scholar 

  474. Pati, S., Pelser, C. B., Dufraine, J., Bryant, J. L., Reitz, M. S., and Weichold, F. F. (2002) Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma, Blood, 99, 3771–3779.

    Article  PubMed  CAS  Google Scholar 

  475. Andre, P., Groettrup, M., Klenerman, P., de Giuli, R., Booth, B. L., Jr., Cerundolo, V., et al. (1998) An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses, Proc. Natl. Acad. Sci. U.S.A., 95, 13120–13124.

    Article  PubMed  CAS  Google Scholar 

  476. Tovo, P. A. (2000) Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects, AIDS, 14, 743–744.

    Article  PubMed  CAS  Google Scholar 

  477. Gruber, A., Wheat, J. C., Kuhen, K. L., Looney, D. J., and Wong-Staal, F. (2001) Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function, J. Biol. Chem., 276, 47840–47843.

    PubMed  CAS  Google Scholar 

  478. Ensoli, B., Gendelman, R., Markham, P., Fiorelli, V., Colombini, S., Raffeld, M., et al. (1994) Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma, Nature, 371, 674–680.

    Article  PubMed  CAS  Google Scholar 

  479. Ensoli, B., Sturzl, M., and Monini, P. (2001) Reactivation and role of HHV-8 in Kaposi’s sarcoma initiation, Adv. Cancer Res., 81, 161–200.

    Article  PubMed  CAS  Google Scholar 

  480. Wei, X., Ghosh, S. K., Taylor, M. E., et al. (1995) Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117–122.

    Article  PubMed  CAS  Google Scholar 

  481. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123–126.

    Article  PubMed  CAS  Google Scholar 

  482. Danner, S. A., Carr, A., Leonard, J. M., et al. (1995) A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease, N. Engl. J. Med., 333, 1528–1533.

    Article  PubMed  CAS  Google Scholar 

  483. Markowitz, M., Saag, M., Powderly, W. G., et al. (1995) A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection, N. Engl. J. Med., 333, 1534–1539.

    Article  PubMed  CAS  Google Scholar 

  484. Hammer, S. M., Squires, K. E., Hughes, M. D., et al. (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less, N. Engl. J. Med., 337, 725–733.

    Article  PubMed  CAS  Google Scholar 

  485. Gulick, R. M., Mellors, J. W., Havlir, D., et al. (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral activity, N. Engl. J. Med., 337, 734–739.

    Article  PubMed  CAS  Google Scholar 

  486. Noble, S. and Goa, K. L. (2000) Amprenavir: a review of its potential in patients with HIV infection [drug evaluation], Drugs, 60(6), 1383–1410.

    Article  PubMed  CAS  Google Scholar 

  487. Carpenter, C. C. J., Cooper, D. A., Fischl, M. A., et al. (2000) Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel, J. Am. Med. Assoc., 283(3), 381–390.

    Article  CAS  Google Scholar 

  488. BHIVA Writing Committee on Behalf of the BHIVA Executive Committee. (2000) British HIV Association (BHIVA) guidelines for the treatment of HIV-infected adults with antiretroviral therapy [online]. British HIV Association (http://www.aidsmap.com/bhiva/bhivagd1299.htm).

  489. Moyle, G. J. and Gazzard, B. G. (1999) A risk-benefit assessment of HIV protease inhibitors, Drug Safety, 20, 299–321.

    Article  PubMed  CAS  Google Scholar 

  490. Panel on Clinical Practices for Treatment of HIV Infection (2000) Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents [online]. U.S. Department of Health and Human Services (http://www.hivatis.org/guidelines/adult/text/).

  491. Steigbigel, R. T., Berry, P., Mellors, J., et al. (1996) Efficacy and safety of the HIV protease inhibitor indinavir sulfate (MK 639) at escalating doses, 3rd Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 28–February 1 [abstract 146].

    Google Scholar 

  492. Moyle, G. L., Youle, M., Higgs, C., et al. (1996) Extended follow-up of the safety and activity of Agouron’s HIV protease inhibitor AG1343 (Viracept) in virological responders from the UK phase I/II dose finding study, 11th International Conference on AIDS, Vancouver, British Columbia, July 7–12 [abstract Mo.B.173].

    Google Scholar 

  493. Schooley, R. T. (1996) Preliminary data on the safety and antiviral efficacy of the novel protease inhibitor 141W94 in HIV-infected patients with 150 to 400 CD4+ cells/mm3, 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, September 15–18 [addendum: abstract].

    Google Scholar 

  494. Schapiro, J. M., Winters, M. A., Stewart, F., et al. (1996) The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients, Ann. Intern. Med., 124, 1039–1050.

    PubMed  CAS  Google Scholar 

  495. Condra, J. H., Schleif, W. A., Blahy, O. M., et al. (1995) In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, 374, 569–571.

    Article  PubMed  CAS  Google Scholar 

  496. Murphy, R., El-Sader, W., Cheung, T., et al. (1998) Impact of protease inhibitor containing regimens on the risk of developing opportunistic infections and mortality in the CPCRA 034/ACTG 277 study, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 181].

    Google Scholar 

  497. Moore, R. D., Keruly, J. C., and Chaisson, R. E. (1998) Decline in CMV and other opportunistic diseases with combination antiretroviral therapy, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 184].

    Google Scholar 

  498. McCollum, M., Klaus, B., La Rue, R., et al. (1998) HAART reduced overall costs of HIV care at DVAMC, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 200].

    Google Scholar 

  499. Keisher, P., Kvanh, M., Turner, D., et al. (1998) Decreased hospital utilization and costs are associated with protease inhibitor therapy but not nucleoside therapy, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 204].

    Google Scholar 

  500. Paul, S., Ziecheck, W., Gilgert, H. M., et al. (1998) Impact of HAART on rates and types of hospitalization at a New York City hospital, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5 [abstract 205].

    Google Scholar 

  501. Bermudes, R. A., Toerner, J. G., Mathews, W. C., et al. (1997) The effect of initiating protease inhibitor therapy on hospitalization rates and the quality of life in HIV+ patients, 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 28–October 1 [abstract I-182].

    Google Scholar 

  502. Hogg, R. S., Heath, K. V., Yip, B., et al. (1997) Improved survival among HIV-infected individuals: the potential impact of newer antiretroviral therapy strategies, 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 28–October 1 [abstract I-198].

    Google Scholar 

  503. Palella, F. J., Delaney, K. M., Moorman, A. C., et al. (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, N. Engl. J. Med., 338, 853–860.

    Article  PubMed  Google Scholar 

  504. Cohen, C., Sun, E., Cameron, W., et al (1996) Ritonavir-saquinavir combination treatment in HIV-infected patients, 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, September 15–18 [abstract Th.b.934].

    Google Scholar 

  505. Cameron, D. W., Japour, A. J., Xu, A., et al. (1999) Ritonavir and saquinavir combination therapy for the treatment of HIV infection, AIDS, 13(2), 213–224.

    Article  PubMed  CAS  Google Scholar 

  506. Condra, J. H., Schleif, W. A., Blahy, O. M., et al. (1995), In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, 374, 569–571.

    Article  PubMed  CAS  Google Scholar 

  507. Molla, M., Korneyeva, M., Gao, Q., et al. (1996) Ordered accumulation of mutations in HIV protease confers resistance to ritonavir, Nat. Med., 2, 760–766.

    Article  PubMed  CAS  Google Scholar 

  508. Schinazi, R. F., Larder, B. A., and Mellors, J. W. (1996) Mutations in retroviral genes associated with drug resistance, Int. Antiviral News, 4, 95–107.

    Google Scholar 

  509. Schapiro, J. M., Winters, M. A., Vierra, M., et al. (1996) Causes of long-term efficacy and/or drug failure in protease inhibitor monotherapy, 11th International Conference on AIDS, Vancouver, B.C., July 7–12 [abstract Mo.B.414].

    Google Scholar 

  510. Romano, L., Venturi, G., Giomi, S., Pippi, L., Valensin, P. E., and Zazzi, M. (2002) Development and resistance to protease inhibitors in HIV-1–-infected adults under triple-drug therapy in clinical practice, J. Med. Virol., 66(2), 143–150.

    Article  PubMed  CAS  Google Scholar 

  511. el-Farrash, M. A., Kuroda, M. J., Kitazaki, T., et al. (1994) Generation and characterization of a human immunodeficiency virus type 1 (HIV-1) mutant resistant to an HIV-1 protease inhibitor, J. Virol., 68, 233–239.

    PubMed  CAS  Google Scholar 

  512. Flexner, C. (1996) Pharmacokinetics and pharmacodynamics of HIV protease inhibitors, Infect. Med., 13(Suppl.), F16–F23.

    Google Scholar 

  513. Condra, J. H., Holder, D. J., Schleif, W. A., et al. (1996) Bi-directional inhibition of HIV-1 drug resistance selection by combination therapy with indinavir and reverse transcriptase inhibitors, 11th International Conference on AIDS, Vancouver, B.C., July 7–12 [abstract Th.B.932].

    Google Scholar 

  514. Figgitt, D. P. and Plosker, G. L. (2000) Saquinavir soft-gel capsule: an updated review of its use in the management of HIV infection, Drugs, 60(2), 481–516.

    Article  PubMed  CAS  Google Scholar 

  515. Plosker, G. L. and Scott, L. J. (2003) Saquinavir: a review of its use in boosted regimens for treating HIV infection, Drugs, 63(12), 1299–1324.

    Article  PubMed  CAS  Google Scholar 

  516. Lopez-Cortes, L. F., Ruiz-Valderas, R., Rivero, A., Camacho, A., Marquez-Solero, M., Santos, J., Rodriguez-Banos, J., and Ocampo, A. (2007) Efficacy of low-dose boosted saquinavir once daily plus nucleoside reverse transcriptase inhibitors in pregnant HIV-1-infected women with a therapeutic drug monitoring strategy, Ther. Drug Monit., 29(2), 171–176.

    Article  PubMed  CAS  Google Scholar 

  517. Winston, A., Back, D., Fletcher, C., et al. (2006) Effect of omeprasole on the pharmacokinetics of saquinavir-500 mg formulation with ritonavir in healthy male and female volunteers, AIDS, 20(10), 1401–1406.

    Article  PubMed  CAS  Google Scholar 

  518. Collazos, J., Martínez, E., Mayo, J., and Blanco, M.-S. (2000) Effect of ketoconazole on plasma concentrations of saquinavir, J. Antimicrob. Chemother., 46, 151–153.

    Article  PubMed  CAS  Google Scholar 

  519. Hendrix, C. W., Fiske, W. D., Fuchs, E. J., Redpath, E. C., Stevenson, D. L., Benedek, I. H., and Kornhauser, D. M. (2000) Pharmacokinetics of the triple combination of saquinavir, ritonavir, and efavirenz in HIV-positive patients, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 2 [abstract 79].

    Google Scholar 

  520. Roche Laboratories (2005) Important drug interaction warning: drug-induced hepatitis with marked transaminase elevation has been observed in healthy volunteers receiving rifampin 600 mg once daily in combination with ritonavir 100 mg/saquinavir 100 mg twice daily (ritonavir boosted saquinavir), Roche Laboratories, Nutley, NJ.

    Google Scholar 

  521. Roche Laboratories (1997) FortovaseTM (saquinavir) soft gelatin capsules. Product information (http://www.rocheusa.com/products/invirase/).

  522. Huisman, M. T., Smit, J. W., Wiltshire, H. R., et al. (2001) P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir, Mol. Pharmacol., 59(4), 806–813.

    PubMed  CAS  Google Scholar 

  523. Boyd, M. A., Siangphoe, U., Ruxrungtham, K., Reiss, P., Apicha Mahanonthar, A., et al. (2006) The use of pharmacokinetically guided indinavir dose reductions in the management of indinavir-associated renal toxicity, J. Antimicrob. Chemother., 7(6), 1161–1167.

    Article  CAS  Google Scholar 

  524. Kempf, D. J., Marsh, K. C., Kumar, G., et al. (1997) Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir, Anti-microb. Agents Chemother., 41, 654–660.

    CAS  Google Scholar 

  525. Gulick, R. M., Meibohm, A., Havlir, D., et al. (2003) Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine, and lamivudine, AIDS, 17, 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  526. Kopp, J. B., Miller, K. D., Mican, J. A., et al. (1997) Crystalluria and urinary tract abnormalities associated with indinavir, Ann. Intern. Med., 127, 119–125.

    PubMed  CAS  Google Scholar 

  527. Boubaker, K., Sudre, P., Bally, F., et al. (1998) Changes in renal function associated with indinavir, AIDS, 12, F249–F54.

    Article  PubMed  CAS  Google Scholar 

  528. Berns, J. S., Cohen, R. M., Silverman, M., et al. (1997) Acute renal failure due to indinavir crystalluria and nephrolithiasis: report of two cases, Am. J. Kidney Dis., 30, 558–560.

    Article  PubMed  CAS  Google Scholar 

  529. Vigano, A., Rombola, G., Barbiano di Belgioioso, G., et al. (1998) Subtle occurrence of indinavir-induced acute renal insufficiency, AIDS, 12, 954–955.

    PubMed  CAS  Google Scholar 

  530. Kohl, N. E., Emini, E. A., Schleif, W. A., et al. (1988) Active human immunodeficiency virus protease is required for viral infectivity, Proc. Natl. Acad. Sci. U.S.A., 85, 4686–4690.

    Article  PubMed  CAS  Google Scholar 

  531. Condra, J. H., Gabryelski, W. A., Blahy, O. M., et al. (1996) In vivo evolution of resistance to the HIV-1 protease inhibitor indinavir, 3rd Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 28–February 1, [abstract 88].

    Google Scholar 

  532. Mellors, J., Steigbigel, R., Gulick, R., et al. (1995) Antiretroviral activity of the oral protease inhibitor, MK-639, in p24-antigenemic, HIV-1 infected patients with < 500 CD4/mm3, 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 17–20 [abstract 235].

    Google Scholar 

  533. Vacca, J. P., Dorsey, B. D., Schleif, W. A., et al. (1994) L-735,524: an orally bioavailable human immunodeficiency virus type1protease inhibitor, Proc. Natl. Acad. Sci. U.S.A., 91, 4096–4100.

    Article  PubMed  CAS  Google Scholar 

  534. Condra, J. H., Schleif, W. A., Blahy, O. M., et al. (1995) In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, 374, 569–571.

    Article  PubMed  CAS  Google Scholar 

  535. Roberts, N. A., Race, E., Tomlinson, P., Gilbert, S., and Duncan, I. B. (1995) Resistance and cross resistance issues: studies with saquinavir, 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 17–20 [abstract 254].

    Google Scholar 

  536. Dykes, C., Najjar, J., Bosch, R. J., Wantman, M., et al. (2004) Detection of drug-resistant minority variants of HIV-1 during virologic failure of indinavir, lamivudine, and zidovudine, J. Infect. Dis., 189, 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  537. Stein, D., Drusano, G., Steigbigel, R., et al. (1997) Two year follow-up of patients treated with indinavir 800 mg q8h, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 195].

    Google Scholar 

  538. Hupfer, M., Wagels, T., Kahlert, C., Bueche, D., Fierz, W., Walker, U., and Vernazza, P. (2004) Ritonavir boosted indinavir treatment as a simplified maintenance “mono”-therapy for HIV infection, AIDS, 18(6), 955–957.

    Article  PubMed  Google Scholar 

  539. Havlir, D. V., Marschner, I. C., Hirsch, M. S., Collier, A. C., Tebas, P., Bassett, R. L., et al. (1998) Maintenance antiretroviral therapies in HIV-infected subjects with undetectable plasma HIV RNA after triple-drug therapy, N. Engl. J. Med., 39, 1261–1268.

    Article  Google Scholar 

  540. Moyle, G. (2000) Use of HIV protease inhibitors as pharmacoenhancers, AIDS Reader, 11, 87–98.

    Google Scholar 

  541. Peytavin, G., Flandre, P., Morand-Joubert, L., Lamotte, C., {Launay,} O., Gerard, L., Izard, S., Levy, C., Joly, V., Aboulker, J. P., Farinotti, R., and Yeni, P. (2003) Efficacy and safety related to indinavir and nevirapine plasma concentrations in a randomized controlled trial comparing indinavir and nevirapine versus indinavir containing regimen in HIV-1 infected patients (Trianon-ANRS081 Study), Antivir. Ther., 8(Suppl. 1), abstract 842.

    Google Scholar 

  542. Haas, D. W., Fessel, W. J., Delapenha, R. A., et al. (2001) Therapy with efavirenz plus indinavir in patients with extensive prior nucleoside reverse-transcriptase inhibitor experience: a randomized, double-blind, placebo-controlled trial, J. Infect. Dis., 18, 392–400.

    Article  Google Scholar 

  543. Staszewski, S., Morales-Ramirez, J., Tashima, K. T., et al. (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults, N. Engl. J. Med., 34, 1865–1873.

    Article  Google Scholar 

  544. Aarnoutse, R. E., Grintjes, K. J. T., Telgt, D., et al. (2002) The influence of efavirenz on the pharmacokinetics of a twice daily indinavir/ritonavir (800/100 mg) combination in healthy volunteers, Clin. Pharmacol. Ther., 71, 57–67.

    Article  PubMed  CAS  Google Scholar 

  545. Boyd, M. A., Aarnoutse, R. E., Ruxrungtham, K., Stek, M., van Heeswijk, R. P. G., Lange, J. M. A., Cooper, D. A., Phanuphak, P., and Burger, D. M. (2000) Pharmacokinetics of indinavir/ritonavir (88/100 mg) in combination with efavirenz (600 mg) in HIV-1-infected subjects, J. Acquir. Immune Defic. Syndr., 34(2), 134–139.

    Google Scholar 

  546. Boyd, M. A., Carr, A., Ruxrungtham, K., Srasuebkul, P., Bien, D., Law, M., Wangsuphachart, S., Krisanachinda, A., et al. (2004) Changes in body composition and mitochondrial nucleic acid content in patients switched from failed nucleoside analogue therapy to ritonavir-boosted indinavir and efavirenz, J. Infect. Dis., 194, 642–650.

    Article  Google Scholar 

  547. Cattelan, A. M., Trevenzoli, M., Naso, A., Meneghetti, F., and Cadrobbi, P. (2000) Severe hypertension and renal atrophy associated with indinavir, Clin. Infect. Dis., 30, 619–621.

    Article  PubMed  CAS  Google Scholar 

  548. Cattelan, A. M., Trevenzoli, M., Sasset, L., Rinaldi, L., Balasso, V., and Cadrobbi, P. (2001) Indinavir and systemic hypertension [Research Letters], AIDS, 15(6), 805–807.

    Article  PubMed  CAS  Google Scholar 

  549. Piscitelli, S. C., Burstein, A. H., Chaitt, D., Alfaro, R. M., and Falloon, J. (2000) Indinavir concentrations and St. John’s wort, Lancet, 355(9203), 547–548 [erratum: Lancet, 357(9263), 1210 (2001)].

    Google Scholar 

  550. Dieleman, J., Gyssens, I. C., van der Ende, M. E., de Marie, S., and Burger, D. M. (1998) Urologic complaints in relation to indinavir plasma levels in HIV-infected patients, XIIth Conference on AIDS, Geneva, Switzerland, June 28–July 3 [abstract 12372]

    Google Scholar 

  551. Familaro, G., Di Toro, S., Moretti, S., and De Simone, C. (2000) Symptomatic crystalluria associated with indinavir, Ann. Pharmacother., 34(12), 1414–1418.

    Article  Google Scholar 

  552. Trainor, L. D., Steinberg, J. P., Austin, G. W., and Solomon, H. M. (1998) Indinavir crystalluria: identification of patients at increased risk of developing nephrotoxicity, Arch. Pathol. Lab. Med., 122, 256–259.

    PubMed  CAS  Google Scholar 

  553. Kohan, A. D., Armenakas, N. A., and Fracchia, J. A. (1999) Indinavir urolithiasis: an emerging cause of renal colic in patients with human immunodeficiency virus, J. Urol., 161(6), 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  554. Brodie, S. B., Keller, J. K., Ewenstein, B. M., et al. (1998) Variation in incidence of indinavir-associated nephrolithiasis among HIV-positive patients, AIDS, 12, 2433–2437.

    Article  PubMed  CAS  Google Scholar 

  555. Tashima, K. T., Horowitz, J. D., and Rosen, S. (1997) Indinavir nephropathy, N. Eng. J. Med., 336, 138–140.

    Article  CAS  Google Scholar 

  556. Hanabusa, H., Tagami, H., and Hataya, H. (1999) Renal atrophy associated with long-term treatment with indinavir, N. Engl. J. Med., 340, 392–393.

    Article  PubMed  CAS  Google Scholar 

  557. Balani, S. K., Ariso, B. H., and Mathai, L. (1995) Metabolites of L-735,524, a potent HIV-1 protease inhibitor, in human urine, Drug Metab. Dispos., 23, 266–270.

    PubMed  CAS  Google Scholar 

  558. Lin, J. H., Chen, I.-W., Vastag, K. J., et al. (2005) pH-dependent oral absorption of L-735,524, a potent HIV protease inhibitor, in rats and dogs, Drug Metab. Dispos., 23, 730–735.

    Google Scholar 

  559. Pai, V. B. and Nahata, M. C. (1999) Nelfinavir mesylate: a protease inhibitor, Ann. Pharmacother., 33, 325–339.

    Article  PubMed  CAS  Google Scholar 

  560. Bardsley-Elliot, A. and Plosker, G. L. (2000) Nelfinavir: an update on its use in HIV infection, Drugs, 59, 581–620.

    Article  PubMed  CAS  Google Scholar 

  561. Gathe, J., Jr., Burkhardt, B., Hawley, P., et al. (1996) A randomized phase II study of viracept, a novel HIV protease inhibitor, used in combination with stavudine (d4T) vs. stavudine (d4T) alone, XIth International Conference on AIDS, Vancouver, British Columbia, July 7–12 [abstract Mo.B.413].

    Google Scholar 

  562. Pedneault, L., Elion, R., Adler, M., et al. (1997) Stavudine (d4T), didanosine (ddI), and nelfinavir combination therapy in HIV-infected subjects: antiviral effect and safety in an ongoing pilot study, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 241].

    Google Scholar 

  563. Conant, M., Markowitz, M., Hurley, A., et al. (1996) A randomized phase II dose range-finding study of the HIV protease inhibitor viracept as monotherapy in HIV-positive patients, XIth International Conference on AIDS, Vancouver, British Columbia, July 7–12 [abstract Tu.B.2129].

    Google Scholar 

  564. Markowitz, M., Cao, Y., Hurley, A., et al. (1996) Triple therapy with AZT an 3TC in combination with nelfinavir mesylate in 12 antiretroviral-naïve subjects chronically infected with HIV-1, XIth International Conference on AIDS, Vancouver, British Columbia, July 7–12 [abstract LB.B.6031].

    Google Scholar 

  565. Saag, M., Knowles, M., Chang, Y., et al. (1997) Durable effect of viracept (nelfinavir mesylate, NFV) in triple combination therapy, 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, September 28–October 1 [abstract I-101].

    Google Scholar 

  566. Tebas, P., Patick, A., Kane, E. M., Klebert, M. K., Simpson, J. H., et al. (1999) Virologic responses to a ritonavir-saquinavir-containing regimen in patients who had previously failed nelfinavir, AIDS, 13, F23–F28.

    Article  PubMed  CAS  Google Scholar 

  567. Albrecht, M. A., Bosch, R. J., Hammer, S. M., Liou, S. H., Kessler, H., Para, M. F., Eron, J., Valdez, H., Dehlinger, M., Katzenstein, D. A., and the AIDS Clinical Trials Group 364 Study Team (2001) Nelfinavir, efavirenz, or both after the failure of nucleoside treatment of HIV infection, N. Engl. J. Med., 345(6), 398–407.

    Google Scholar 

  568. Moyle, G., Pozniak, A., Opravil, M., Clumeck, N., DelFraissy, J. F., Johnson, M., Pelgrom, J., Reynes, J., Vittecoq, D., DeLora, P., Salgo, M., and Duff, F. (2000) The SPICE study: 48-week activity of combinations of saquinavir soft gelatin and nelfinavir with and without nucleoside analogues. Study of Protease Inhibitor Combinations in Europe, J. Acquir. Immune Defic. Syndr., 23(2), 128–137.

    PubMed  CAS  Google Scholar 

  569. Hammer, S. M., Bassett, R., Squires, K. E., Fischl, M. A., Demeter, L. M., Currier, J. S., Mellors, J. W., Morse, G. D., Eron, J. J., Santana, J. L., DeGruttola, V. and the ACTG 372B/D Study Team (2003) A randomized trial of nelfinavir and abacavir in combination with efavirenz and adefovir dipivoxil in HIV-1-infected persons with virological failure receiving indinavir, Antivir. Ther., 8(6), 507–518.

    Google Scholar 

  570. Gonzalez-Olivieri, L. M., Brindeiro, R., Soares, M., Pereira, H., Santana, R., Abreu, C., and Tanuri, A. (2004) Impact of nelfinavir-resistance mutations on the human immunodeficiency virus type 1 with subtype B and C proteases, XVth International Conference on AIDS, Bangkok, Thailand, July 11–16 [abstract WePeB5704].

    Google Scholar 

  571. Agouron Pharmaceuticals (1997) Viracept (nelfinavir mesylate) tablets and oral powder product monograph (package insert), Agouron Pharmaceuticals, La Jolla, CA.

    Google Scholar 

  572. Gathe, J., Burkhardt, B., Hawley, P., et al. (1996) A randomized phase II study of viracept, a novel HIV protease inhibitor, used in combination with stavudine vs. stavudine alone, 11th International Conference on AIDS, Vancouver, British Columbia, July 7–12 [abstract Mo.B. 413].

    Google Scholar 

  573. Michelet, C., Bellissant, E., Ruffault, A., et al. (1999) Safety and efficacy of ritonavir and saquinavir in combination with zidovudine and lamivudine, Clin. Pharmacol. Ther., 65, 661–671.

    Article  PubMed  CAS  Google Scholar 

  574. Domingo, E., Escarmis, C., Sevilla, N., et al. (1996) Basic concepts in RNA virus evolution, FASEB J., 10, 859–864.

    PubMed  CAS  Google Scholar 

  575. Coffin, J. M. (1992) Genetic diversity and evolution of retroviruses, Curr. Top. Microbiol. Immunol., 176, 143–164

    PubMed  CAS  Google Scholar 

  576. Nijhuis, M., Boucher, C. A. B., Schipper, P., Leitner, T., Schuurman, R., and Albert, J. (1998) Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy, Proc. Natl. Acad. Sci. U.S.A., 95(24), 14441–14446.

    Article  PubMed  CAS  Google Scholar 

  577. Abbott Pharmaceuticals (1999) Norvir (ritonavir) package insert. Abbott Pharmaceuticals, Abbott Park, IL.

    Google Scholar 

  578. Hoen, B., Harzic, M., Fleury, H. F., et al. (1997) ARNS053 trial of zidovudine (ZDV), lamivudine (3TC), and ritonavir combination in patients with symptomatic primary HIV-1 infection: preliminary results, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 232].

    Google Scholar 

  579. Saimot, A. G., Landman, R., Damond, F., et al. (1997) Ritonavir, stavudine (d4T), didanosine (ddI) as triple combination treatment in antiretroviral-naïve patients, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 246].

    Google Scholar 

  580. Markowitz, M., Saag, M., Powderly, W. G., et al. (1995) Preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection, N. Engl. J. Med., 328, 1534–1539.

    Article  Google Scholar 

  581. Danner, S. A., Carr, A., Leonard, J. M., et al. (1995) A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease, N. Engl. J. Med., 328, 1528–1533.

    Article  Google Scholar 

  582. Justesen, U. S., Hansen, I. M., Andersen, A. B., et al. (2005) The long-term pharmacokinetics and safety of adding low-dose ritonavir to a nelfinavir 1250 mg twice-daily regimen in HIV-infected patients, HIV Medicine, 6, 334–340.

    Article  PubMed  CAS  Google Scholar 

  583. Abbott Laboratories (1997) Norvir (ritonavir) capsule product monograph (package insert), Abbott Laboratories, North Chicago, IL.

    Google Scholar 

  584. Eron, J., Jr., Yeni, P., Gathe, J., Jr., et al. (2006) The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial, Lancet, 368, 476–482.

    Article  PubMed  CAS  Google Scholar 

  585. De Pasquale, M. P., Murphy, R., Kuritzkes, D., Martinez-Picado, J., Sommadossi, J. P., Gulick, R., Smeaton, L., DeGruttola, V., Caliendo, A. M., Sutton, L., Savara, A., and D’Aquila, R. T. (1998) Resistance during early virologic rebound on amprenavir plus zidovudine plus lamivudine triple therapy or amprenavir monotherapy in ACTG 347, Antivir. Ther., 3(Suppl. 1), 50–51 [abstract 71].

    Google Scholar 

  586. Descamps, D., Masquelier, B., Mamet, J. P., Calvez, C., Ruffault, A., Telles, F., Goetschel, A., Girard, P. M., Brun-Vezinet, F., and Costagliola, D. (2001) A genotypic sensitivity score for amprenavir based genotype at baseline and virological response, Antivir. Ther., 6, 103.

    Google Scholar 

  587. Falloon, J., Piscitelli, S., Vogel, S., Sadler, B., Mitsuya, H., Kavlick, M. F., Yoshimura, K., Rogers, M., LaFon, S., Manion, D. J., Lane, H. C., and Masur, H. (2000) Combination therapy with amprenavir, abacavir, and efavirenz in human immunodeficiency virus (HIV)-infected patients failing a protease-inhibitor regimen: pharmacokinetic drug interactions and antiviral activity, Clin. Infect. Dis., 30, 313–318.

    Article  PubMed  CAS  Google Scholar 

  588. Klein, A., Maguire, M., Paterson, D., Nacci, P., Mustafa, N., Yeo, J., Snowden, W., and Kleim, J. P. (2000) Virological response to amprenavir combination therapy in PI-experienced paediatric patients: association with distinct baseline HIV-1 protease variants–-study PROAB3004, Antivir. Ther., 5(Suppl. 2), 4 [abstract].

    Google Scholar 

  589. Maguire, M., MacManus, S., Griffin, P., Guinea, C., Harris, W., Richard, N., Wolfram, J., Tisdale, M., Snowden, W., and Klein, J.-P. (2001) Interaction of HIV-1 protease and gag gene mutations in response to amprenavir-selective pressure exerted in amprenavir-treated subjects—contribution of gag p6 changes L449F and P453L, Antivir. Ther., 6, 48.

    Google Scholar 

  590. Murphy, R. L., Gulick, R. M., DeGruttola, V., D’Aquila, R. T., Eron, J. J., Sommadossi, J. P., Currier, J. S., Smeaton, L., Frank, I., Caliendo, A. M., Gerber, J. G., Tung, R., and Kuritzkes, D. R. (1999) Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection. AIDS Clinical Trials Group 347 Study Team, J. Infect. Dis., 179, 808–816.

    Article  PubMed  CAS  Google Scholar 

  591. Prado, J. G., Wrin, T., Beauchaine, J., Ruiz, L., Petropoulos, C., Clotet, B., D’Aquila, R., and Martinez-Picado, J. (2001) Lopinavir resistance of amprenavir-selected, replication-impaired mutants of HIV-1, Antivir. Ther., 6, 51.

    Google Scholar 

  592. Schmidt, B., Korn, K., Moschik, B., Paatz, B., Uberla, K., and Walter, H. (2000) Low level of cross-resistance to amprenavir (141W94) in samples from patients pretreated with other protease inhibitors, Antimicrob. Agents Chemother., 44, 3213–3216.

    Article  PubMed  CAS  Google Scholar 

  593. Snowden, W., Shortino, D., Klein, A., Harris, W., Manohitharajah, V., Elston, R., Tisdale, M., and Maguire, M. (2000) Development of amprenavir resistance in NRTI-experienced patients: alternative mechanisms and correlation with baseline resistance to concomitant NRTIs, Antivir. Ther., 5(Suppl. 3), 84 [abstract 108].

    Google Scholar 

  594. Ziermann, R., Limoli, K., Das, K., Arnold, E., Petropoulos, C. J., and Parkin, N. T. (2000) A mutation in human immunodeficiency virus type 1 protease, N88S, that causes in vitro hypersensitivity to amprenavir, J. Virol., 74, 4414–4419.

    Article  PubMed  CAS  Google Scholar 

  595. Goodgame, J., Hanson. C., Vafidis, I., et al. (1999) Amprenavir (141W94, APV)/3TC/ZDV exerts durable antiviral activity in HIV-1 infected antiretroviral therapy-naïve subjects through 48 weeks of therapy, 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–29 [abstract 509].

    Google Scholar 

  596. Cooper, D., Perrin, L., Kinloch, S., et al. (2000) Intervention with quadruple HAART [Combivir (COM)/abacavir (ABC)/amprenavir (APV)] intervention during primary HIV-1 infection (PHI) is associated with rapid viraemia clearance and decrease of immune activation, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 2 [abstract/poster 552].

    Google Scholar 

  597. Vernazza, P., Perrin, L., Vora, S., et al. (2000) Increased seminal shedding of HIV during primary infection augments the need for earlier diagnosis and intervention, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 2 [abstract/poster 564].

    Google Scholar 

  598. Eron, J., Junod, P., Becker, S., et al. (2000) NZT4002: 64 week analysis of combivir (COM)-based triple and quadruple therapy in antiretroviral-naive, HIV-1 infected subjects, 13th International AIDS Conference, Durban, South Africa, July 9–14 [abstract no. WeOrB608].

    Google Scholar 

  599. Murphy, R. L., Gulick, R. M., De Gruttola, V., et al. (1999) Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection, J. Infect. Dis., 179, 808–816.

    Article  PubMed  CAS  Google Scholar 

  600. Haubrich, R., Thompson, M., Schooley, R., et al. (1999) A phase II safety and efficacy study of amprenavir in combination with zidovudine and lamivudine in HIV-infected patients with limited antiretroviral experience, AIDS, 13(17), 2411–2420.

    Article  PubMed  CAS  Google Scholar 

  601. Eron, J. J., Jr., Smeaton, L. M., Fiscus, S. A., et al. (2000) The effects of protease inhibitor therapy on human immunodeficiency virus type 1 levels in semen (AIDS Clinical Trials Group Protocol 850), J. Infect. Dis., 181, 1622–1628.

    Article  PubMed  CAS  Google Scholar 

  602. Church, J, Rathore M, Rubio T., et al. (2000) A phase III study of amprenavir (APV, AgeneraseTM) in protease-inhibitor naïve and experienced HIV-infected children and adolescents, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 2 [abstract/poster 693].

    Google Scholar 

  603. Rodriguez-French, A., Boghossian, J., Gray, G. E., et al. (2004) The NEAT study: a 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy-naïve HIV-1-infected patients, J. Acquir. Immune Defic. Syndr., 35(1), 22–32.

    Article  PubMed  CAS  Google Scholar 

  604. Gathe, J. C., Jr., Ive, P., Wood, R., et al. (2004) SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir/ritonavir versus twice-daily nelfinavir in naive HIV-1-infected patients, AIDS, 18(11), 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  605. Vertex (2003) Press release: Vertex reports preliminary 48-week data from Phase III study of 433908, an investigational HIV protease inhibitor (http://www.vpharm.com/Pressreleases2003/pr072403.html).

  606. DeJesus, E., LaMarca, A., Sension, M., Beltran, C., and Yeni, P. (2003) The Context Study: efficacy and safety of GW433908/RTV in PI-experienced subjects with virological failure (24 week results), 10th Conference on Retroviruses and Opportunistic Infections, Boston, MA, February 10–14 [abstract 178].

    Google Scholar 

  607. Corbett, A. H., Davidson, L., Park, J. J., et al. (2004) Dose separation strategies to overcome the pharmacokinetic interaction of a triple protease inhibitor regimen containing fosamprenavir, lopinavir, and ritonavir, 11th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, Feburary 8–11 [abstract 611].

    Google Scholar 

  608. Kashuba, A. D., Tierney, C., Downey, G. F., et al. (2005) Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: ACTG protocol A5143, AIDS, 19(2), 145–152.

    Article  PubMed  CAS  Google Scholar 

  609. Walmsley, S., Leith, J., Katlama, C., et al. (2004) Pharmacokinetics and safety of tipranavir/ritonavir (TPV/r) alone and in combination with saquinavir (SQV), amprenavir (APV), or lopinavir (LPV): interim analysis of BI1182.51, XVth International AIDS Conference, Bangkok, Thailand, July 11–16 [abstract WeOrB1236].

    Google Scholar 

  610. Wire, M. B., Ballow, C., Preston, S. L., et al. (2004) Pharmacokinetics and safety of GW433908 and ritonavir, with and without efavirenz, in healthy volunteers, AIDS, 18(6), 897–907.

    Article  PubMed  CAS  Google Scholar 

  611. Eron, J., Jr., Yeni, P., Gathe, J., Jr., et al. (2006) KLEAN study team. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomized non-inferiority trial, Lancet, 368(9534), 476–482

    Article  PubMed  CAS  Google Scholar 

  612. Elston, R. C., Yates, P., Tisdale, M., et al. (2004) GW433908 (908)/ritonavir (r): 48 week results in PI-experienced subjects: a retrospective analysis of virological response based on baseline genotype and phenotype, XVth International AIDS Conference, Bangkok, Thailand, July 11–16 [abstract MoOrB1055].

    Google Scholar 

  613. MacManus, S., Yates, P. J., Elston, R. C., et al. (2004) GW433908/ritonavir once daily in antiretroviral therapy-naïve HIV-infected patients: absence of protease resistance at 48 weeks, AIDS, 518(4), 651–655.

    Article  Google Scholar 

  614. Fuster, D. and Clotet, B. (2005) Review of atazanavir: a novel HIV protease inhibitor, Expert Opin. Pharmacother., 6(9), 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  615. Whiterel, G. (2001) BMS-232632 (Novartis/Bristol-Meyers Squibb), Curr. Opin. Investig. Drugs, 2, 340–347.

    Google Scholar 

  616. Gong, Y. F., Robinson, B. S., Rose, R. E., et al. (2000) In vitro resistance profile of the human immunodeficiency virus type-1 protease inhibitor BMS-232632, Antimicrob. Agents Chemother., 44, 2319–2326.

    Article  PubMed  CAS  Google Scholar 

  617. Colonno, R. J., Thiry, A., Limoli, K., and Parkin, N. (2003) Activities of atazanavir (BMS-232632) against a large panel of human immunodeficiency virus type 1 clinical isolates resistant to one or more approved protease inhibitors, Antimicrob. Agents Chemother., 47, 1324–1333.

    Article  PubMed  CAS  Google Scholar 

  618. Colonno, R., Rose, R., McLaren, C., Thiry, A., Parkin, N., and Friborg, J. (2004) Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naïve HIV-1-infected patients receiving ATV-containing regimens, J. Infect. Dis., 189, 1802–1810.

    Article  PubMed  CAS  Google Scholar 

  619. Schnell, T., Schmidt, B., Moschik, G., et al. (2003) Distinct cross-resistance profiles of the new protease inhibitors amprenavir, lopinavir, and atazanavir in a panel of clinical samples, AIDS, 17, 1258–1261.

    Article  PubMed  Google Scholar 

  620. Tackett, D., Child, M., Agarwall, S., et al. (2003) Atazanavir: a summary of two pharmacokinetics drug interaction studies in healthy subjects, 10th Conference on Retroviruses and Opportunistic Infections, Boston, MA, February 10–14 [abstract 543].

    Google Scholar 

  621. Guffanty, M., De Pascalis, C. R., Seminari, E., et al. (2003) Pharmacokinetics of amprenavir given once or twice a day when combined with atazanavir in heavily pretreated HIV-positive patients, AIDS, 17, 2669–2671.

    Article  Google Scholar 

  622. Taburet, A. M., Piketty, C., Chazallon, C., et al. (2004) Interactions between atazanavir-ritonavir and tenofovir in heavily pretreated human immunodeficiency virus-infected patients, Anti\-microb. Agents Chemother., 48, 2031–2096.

    Google Scholar 

  623. Bristol-Myers Squibb Company. (2003) Reyataz™ (atazanavir) full prescribing information, Bristol-Myers Squibb Company, Princeton, NJ.

    Google Scholar 

  624. Sanne, I., Piliero, P., Squires, K., Thiry, A., and Schnittman, S. (2003) Results of a Phase II clinical trial at 48 weeks (AI424–007): a dose ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naïve subjects, J. Acquir. Immune Defic. Syndr., 32, 18–29.

    PubMed  CAS  Google Scholar 

  625. Murphy, R. L., Sanne, I., Canh, P., et al. (2003) Dose-ranging, randomized, clinical trial of atazanavir with lamivudine and stavudine in antiretroviral-naïve subjects: 48-week results, AIDS, 17, 2603–2614.

    Article  PubMed  CAS  Google Scholar 

  626. Squires, K., Lazzarin, A., and Gatell, J. M. (2004) Comparison of once-daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV, J. Acquir. Immune Defic. Syndr., 36, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  627. Staszewski, S., Morales-Ramirez, J., Tashima, K. T., et al. (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults, N. Engl. J. Med., 341, 1865–1873.

    Article  PubMed  CAS  Google Scholar 

  628. Haas, D. W., Zala, C., Schrader, S., et al. (2003) Therapy with atazanavir plus saquinavir in patients failing highly active antiretroviral therapy: a randomized comparative pilot trial, AIDS, 17, 1339–1349.

    Article  PubMed  CAS  Google Scholar 

  629. Nieto-Cisneros, L., Zala, C., Fessel, W. J., et al. (2003) BMS AI424–043: antiviral efficacy, metabolic changes and safety of ATV versus LPV/RTV in combination with 2 NRTIs in patients who have experienced virology failure with prior PI-containing regimens: 24 wk results, 2nd IAS Conference on HIV Pathogenesis and Treatment, Paris, France, July 13–16 [abstract 117].

    Google Scholar 

  630. Johnson, M., De Jesus, E., Grinsztejn, B., et al. (2004) Long-term efficacy and durability of atazanavir (ATV) with ritonavir (RTV) or saquinavir (SQV) versus lopinavir/ritonavir (LPV/RTV) in HIV–-infected patients with multiple virologic failures: 96-week results from a randomized, open-label trial BMS AI424-045, 7th International Congress on Drug Therapy in HIV Infection, Glagow, UK, November 14–18 [abstract PL 14.4].

    Google Scholar 

  631. Wood, R., Phanuphak, P., Cahn, P., et al. (2004) Long-term efficacy and safety of atazanavir with stavudine and lamivudine in patients previously treated with nelfinavir or atazanavir, J. Acquir. Immune Defic. Syndr., 36, 684–692.

    Article  PubMed  CAS  Google Scholar 

  632. Agarwala, S., Eley, T., Villegas, C., et al. (2005) Pharmacokinetic effect of famotidine on atazanavir with and without ritonavir in healthy subjects, 6th International Workshop on Clinical Pharmacology of HIV Therapy, Quebec City, Canada, April 28–30 [abstract 11].

    Google Scholar 

  633. Jemsek, J. G., Arathoon, E., Arlotti, M., et al. (2003) Atazanavir and efavirenz, each combined with fixed-dose zidovudine and lamivudine, have similar effects on body fat distribution in antiretroviral-naïve patients: 48-weeks results from the metabolic substudy of BMS AI423-034, Antivir. Ther., 8, L13.

    Google Scholar 

  634. Wang, S., Mulvey, R., Elosua, C., Flint, O. P., and Parker, P. A. (2003) Association of HIV-protease inhibitors with insulin resistance is related to potency of inhibition of GLUT4 and GLUT1 activity in adipocytes and miocytes, Antivir. Ther., 8, L36.

    Google Scholar 

  635. Carr, A., Miller, J., Law, M., and Cooper, D. A. (2000) A syndrome of lipoatrophy, lactic acidaemia and liver dysfunction associated with HIV nucleoside analogue therapy: contribution to protease inhibitor-related lipodystrophy syndrome, AIDS, 14, F25–F32.

    Article  PubMed  CAS  Google Scholar 

  636. Haerter, G., Manfras, B. J., Mueller, M., Kern, P., and Trein, A. (2004) Regression of lipodystrophy in HIV-infected patients under therapy with the new protease inhibitor atazanavir, AIDS, 18, 952–955.

    Article  PubMed  CAS  Google Scholar 

  637. Zucker, S. D., Qin, X., Rouster, S. D., Yu, F., Green, R. M., Keshavan, P., Feinberg, J., and Sherman, K. E. (2001) Mechanism of indinavir-induced hyperbilirubinemia, Proc. Natl. Acad. Sci. U.S.A., 98(22), 12671–12676.

    Article  PubMed  CAS  Google Scholar 

  638. Sulkowski, M. S. (2004) Drug-induced liver injury associated with antiretroviral therapy that include HIV-1 protease inhibitors, Clin. Infect. Dis., 38(Suppl. 2), S90–S97.

    Article  PubMed  CAS  Google Scholar 

  639. Chang, H. R. and Pella, P. M. (2006) Atazanavir urolithiasis, N. Engl. J. Med., 355, 2158–2159.

    Article  PubMed  CAS  Google Scholar 

  640. Pacanowski, J., Poirier, J. M., Petit, I., Meynard, J. L., and Girard, P. M. (2006) Atazanavir urinary stones in an HIV-infected patient, AIDS, 20, 2131.

    Article  PubMed  Google Scholar 

  641. Anderson, P. L., Lichtenstein, K. A., Gerig, N. E., Kiser, J. J., and Bushman, L. R. (2007) Atazanavir-containing renal calculi in an HIV-infected patient, AIDS, 21, 1060–1062.

    PubMed  Google Scholar 

  642. Izzedine, H., M’rad, M. B., Bardier, A., Daudon, M., and Salmon, D. (2007) Atazanavir crystal nephropathy, AIDS, 21(17), 2357–2358.

    Article  PubMed  Google Scholar 

  643. Sham, H. L., Kempf, D. J., Molla, A., et al. (1998) ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease, Antimicrob. Agents Chemother., 42(12), 3218–3224.

    PubMed  CAS  Google Scholar 

  644. Cvetkovic, R. S. and Goa, K. L. (2003) Lopinavir/ritonavir: a review of its use in the management of HIV infection, Drugs, 63(8), 769–802.

    Article  PubMed  CAS  Google Scholar 

  645. Oldfield, V. and Plosker, G. L. (2006) Lopenavir/ritronavir: a review of its use in the management of HIV infection, Drugs, 66(9), 1275–1299.

    Article  PubMed  CAS  Google Scholar 

  646. Abbott Laboratories Ltd. Kaletra® (lopinavir/ritonavir) soft capsules: summary of product characteristics [online] (http://emc.medicines.org).

  647. Abbott Laboratories. Kaletra® (lopinavir/ritonavir) tablets and oral solution. Prescribing information [online] (http://www.kaletra.com).

  648. Abbott Laboratories. Kaletra® (lopinavir/ritonavir) capsules and oral solution. Product label information [online] (http://www.kaletra.com).

  649. Eron, J., Feinberg, J., Kessler, H. A., et al. (2004) Once-daily versus twice-daily lopinavir/ritonavir in antiretroviral-naive HIV-positive patients: a 48-week randomized clinical trial, J. Infect. Dis., 189(2), 265–272.

    Article  PubMed  CAS  Google Scholar 

  650. Bertz, R., Foit, C., Ye, X., et al. (2002) Pharmacokinetics of once-daily vs. twice-daily Kaletra® (lopinavir/ritonavir) in HIV+ subjects, 9th Conference on Retroviruses and Opportunistic Infections, Seattle, WA, February 24–28 [abstract 126].

    Google Scholar 

  651. Johnson, A., Gathe, J. C., Jr., Podzamczer, D., et al. (2006) A once-daily lopinavir/ritonavir-based regimen provides noninferior antiviral activity compared with a twice-daily regimen, J. Acquir. Immune Defic. Syndr., 43(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  652. Murphy, R. L., Brun, S., Hicks, C., et al. (2001) ABT-378/ritonavir plus stavudine and lamivudine for the treatment of antiretroviral-naive adults with HIV-1 infection: 48-week results, AIDS, 15(1), F1–F9.

    Article  PubMed  CAS  Google Scholar 

  653. Molina, J. M., Wilkins, A., Domingo, P., et al. (2005) Once-daily vs. twice-daily lopinavir/ritonavir in antiretroviral-naive patients: 96-week results, 3rd International AIDS Society Conference on HIV Pathogenesis and Treatment, Rio de Janeiro, Brazil, July 24–27 [abstract WePe12.3C12 plus poster].

    Google Scholar 

  654. King, M. S., Bernstein, B. M., Walmsley, S. L., et al. (2004) Baseline HIV-1 RNA level and CD4 cell count predict time to loss of virologic response to nelfinavir, but not lopinavir/ritonavir, in antiretroviral therapy-naive patients, J. Infect. Dis., 190(2), 280–284.

    Article  PubMed  CAS  Google Scholar 

  655. Murphy, R., Da Silva, B., McMillan, F., et al. (2005) Seven year follow-up of a lopinavir/ritonavir-based regimen in antiretroviral-naive subjects, 10th European AIDS Conference, Dublin, Ireland, November 17–20 [abstract PE7.9/3 plus poster].

    Google Scholar 

  656. Hicks, C., da Silva, B., Benson, C., et al. (2004) Extensive resistance testing during 5 years of lopinavir/ritonavir treatment in antiretroviral-naive HIV infected patients: results from study m97-720, 15th International AIDS Conference, Bangkok, Thailand, July 11–16 [abstract WeOrB1291 plus oral presentation].

    Google Scholar 

  657. Kempf, D. J., King, M. S., Bernstein, B., et al. (2004) Incidence of resistance in a double-blind study comparing lopinavir/ritonavir plus stavudine and lamivudine to nelfinavir plus stavudine and lamivudine, J. Infect. Dis., 189(1), 51–60.

    Article  PubMed  CAS  Google Scholar 

  658. King, M., Lipman, B., Molla, A., et al. (2005) Assessing the potential for protease inhibitor cross-resistance in antiretroviral-naive patients experiencing viral rebound on a lopinavir/ritonavir-based regimen, 3rd European HIV Drug Resistance Workshop, Athens, Greece, March 30–April 1 [abstract 9.9 plus poster].

    Google Scholar 

  659. Molina, J. M., Gathe, J., Lim, P. L., et al. (2004) Comprehensive resistance testing in antiretroviral naive patients treated with once-daily lopinavir/ritonavir plus tenofovir and emtricitabine: 48-week results from study 418, 15th International AIDS Conference, Bangkok, Thailand, July 11–16 [abstract no. WePeB5701 plus poster].

    Google Scholar 

  660. Saez-Llorens, X., Violari, A., Deetz, C. O., et al. (2003) Forty-eight-week evaluation of lopinavir/ritonavir, a new protease inhibitor, in human immunodeficiency virus-infected children, Pediatr. Infect. Dis. J., 22, 216–223.

    Article  PubMed  Google Scholar 

  661. Kempf, D. J., Isaacson, J. D., King, M. S., et al. (2001) Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients, J. Virol., 75(16), 7462–7469.

    Article  PubMed  CAS  Google Scholar 

  662. Mo, H., King, M. S., King, K., et al. (2005) Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and baseline correlates, J. Virol., 79(6), 3329–3338.

    Article  PubMed  CAS  Google Scholar 

  663. Delaugerre, C., Teglas, J. P., Treluyer, J. M., et al. (2004) Predictive factors of virologic success in HIV-1-infected children treated with lopinavir/ritonavir, J. Acquir. Immune Defic. Syndr., 37(2), 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  664. Kempf, D. J., Isaacson, J. D., King, M. S., et al. (2002) Analysis of the virologic response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir, Antivir. Ther., 7(3), 165–174.

    PubMed  CAS  Google Scholar 

  665. de Mendoza, C., Martin-Carbonero, L., Barreiro, P., et al. (2002) Salvage treatment with lopinavir/ritonavir (Kaletra), HIV Clin. Trials, 3(4), 304–309.

    Article  PubMed  Google Scholar 

  666. Yusa, K. and Harada, S. (2004) Acquisition of multi-PI (protease inhibitor) resistance in HIV-1 in vivo and in vitro, Curr. Pharm. Design, 10, 4055–4064.

    Article  CAS  Google Scholar 

  667. Parkin, N. T., Chappey, C., and Petropoulos, C. J. (2003) Improving lopinavir genotype algorithm through phenotype correlations: novel mutation patterns and amprenavir cross-resistance, AIDS, 17, 955–961.

    Article  PubMed  CAS  Google Scholar 

  668. Loutfy, M. R., Raboud, J. M., Walmsley, S. L., et al. (2004) Predictive value of HIV-1 protease genotype and virtual phenotype on the virological response to lopinavir/ritonavir-containing salvage regimens, Antivir. Ther., 4, 595–602.

    Google Scholar 

  669. Ribera, E., Azuaje, C., Lopez, R. M., et al. (2006) Atazanavir and lopinavir/ritonavir: pharmacokinetics, safety and efficacy of a promising double-boosted protease inhibitor regimen, AIDS, 20(8), 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  670. Rosso, R., Di Biagio, A., Dentone, C., et al. (2006) Lopinavir/ritonavir exposure in treatment-naive HIV-infected children following twice or once daily administration, J. Anti\-microb. Chemother., 57(6), 1168–1171.

    CAS  Google Scholar 

  671. Connick, E., Lederman, M. M., Kotzin, B. L., Spritzler, J., Kuritzkes, D. R., St. Clair, M., Sevin, A. D., Fox, L., Chiozzi, M. H., Leonard, J. M., Rousseau, F., D’Arc Roe, J., Martinez, A., Kessler, H., and Landay, A. (2000) Immune reconstitution in the first year of potent antiretroviral therapy and its relationship to virologic response, J. Infect. Dis., 181, 358–863.

    Article  PubMed  CAS  Google Scholar 

  672. Thaisrivongs, S. and Strohbach, J. W., (1999) Structure-based discovery of tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor, Biopolymers, 51(1), 51–58.

    Article  PubMed  CAS  Google Scholar 

  673. Turner, S. R., Strohbach, J. W., Tommasi, R. A., Aristoff, P. A., et al. (1998) Tipranavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro- 4-hydroxy-2-pyrone sulfonamide class, J. Med. Chem., 41(18), 3467–3476.

    Article  PubMed  CAS  Google Scholar 

  674. King, J. R. and Acosta, E. (2006) Tipranavir: a novel nonpeptidic protease inhibitor of HIV, Clin. Pharmacokinet., 45(7), 665–682.

    Article  PubMed  CAS  Google Scholar 

  675. Chong, K. T. and Pagano, P. J. (1997) In vitro combination of PNU-140690, a human immunodeficiency virus type 1 protease inhibitor, with ritonavir against ritonavir-sensitive and -resistant clinical isolates, Antimicrob. Agents Chemother., 41, 2367–2373.

    PubMed  CAS  Google Scholar 

  676. Doyon, L., Tremblay, S., Wardrop, E., et al. (2003) Characterization of HIV-1 isolates showing decreased susceptibility to tipranavir and their inhibition by tipranavir containing drug mixtures, 12th International HIV Drug Resistance Workshop, Cabo San Lucas, Mexico, June 10–14 [abstract].

    Google Scholar 

  677. Schwartz, R., Kazanjian, P., Slater, L., et al. (2002) Resistance to tipranavir is uncommon in a randomized trial of tipranavir/ritonavir (TPV/RTV) in multiple PI-failure patients (BI 1182.2), 9th Conference on Retroviruses and Opportunistic Infections, Seattle, WA, February 24–28 [poster 562 T].

    Google Scholar 

  678. Moyle, G. J. and Gazzard, B. G. (1999) A risk-benefit assessment of HIV protease inhibitors, Drug Safety, 20, 299–321.

    Article  PubMed  CAS  Google Scholar 

  679. Jayaweera, D., Slater, L., Haas, D., et al. (2002) Susceptibility profile of tipranavir at baseline and subsequent virologic response in a cohort of patients with single-protease inhibitor failure, 2nd International HIV Workshop on Management of Treatment-Experienced Patients, San Diego, CA, September 26–27 [poster P5].

    Google Scholar 

  680. McCallister, S., Neubacher, D., Verblest, W., et al. (2002) Resistance profile of tipranavir (TPV) in patients with single- or multiple-protease inhibitor (PI) failure, HIV DART 2002: Frontiers in Drug Development for Antiretroviral Therapies, Naples, FL, December 15–19 [abstract].

    Google Scholar 

  681. Hall, D., McCallister, S., Neubacher, D., et al. (2003) Characterization of treatment-emergent resistance mutations in two phase II studies of tipranavir (TPV), 12th International HIV Drug Resistance Workshop, Cabo San Lucas, Mexico, June 10–14 [poster 13].

    Google Scholar 

  682. Gathe, J., Kohlbrenner, V. M., Pierone, G., et al. (2003) Tipranavir/ritonavir (TPV/r) demonstrates potent efficacy in multiple protease inhibitor (PI)-experienced patients: BI 1182.52, 10th Conference on Retroviruses and Opportunistic Infections, Boston, MA, February 10–14 [presentation 179].

    Google Scholar 

  683. McCallister, S., Kohlbrenner, V., Villacian, J., et al. (2004) 24-week combined analysis of the TPV RESIST studies of 1483 treatment-experienced patients given either tipranavir/ritonavir (TPV/r) or an optimized standard of care regimen using 1 of 4 RTV-boosted comparator PIs (CPI/r), HIV DART 2004: Frontiers in Drug Development for Antiretroviral Therapies, Montego Bay, Jamaica, December 12–16 [abstract 060].

    Google Scholar 

  684. McCallister, S., Sabo, J. P., Mayers, D. L., et al. (2002) An open-label, steady-state investigation of the pharmacokinetics (PK) of tipranavir (TPV) and ritonavir (RTV) and their effects on cytochrome P-450 (3A4) activity in normal, healthy volunteers (BI 1182.5), 9th Conference on Retroviruses and Opportunistic Infections, Seatlle, WA, February 24–28 [poster 434 W].

    Google Scholar 

  685. Kilgore, N., Reddick, M., Zuiderhof, M., et al. (2007) Characterization of PA1050040, a second generation HIV-1 maturation inhibitor, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract MOPDX05].

    Google Scholar 

  686. Phillips, L., Borin, M. T., Hopkins, N. K., et al. (2000) The pharmacokinetics of nucleoside reverse transcriptase inhibitors when coadministered with the HIV protease inhibitor tipranavir in HIV-1 infected patients, 7th Conference on Retroviruses and Opportunistic Infections, San Francisco, CA, January 30–February 4 [poster 81].

    Google Scholar 

  687. Fletcher, C. V., Kawle, S. P., Kakuda, T. N., et al. (2000) Zidovudine triphosphate and lamivudine triphosphate concentration-response relationships in HIV-infected persons, AIDS, 14, 2137–2144.

    Article  PubMed  CAS  Google Scholar 

  688. GlaxoSmithKline (2003) Retrovir (zidovudine) [package insert]. GlaxoSmithKline, Research Triangle Park, NC.

    Google Scholar 

  689. GlaxoSmithKline (2004) Ziagen (abacavir) [package insert]. GlaxoSmithKline, Research Triangle Park, NC.

    Google Scholar 

  690. Bristol-Myers Squibb (2005) Sustiva (efavirenz) [package insert]. Bristol-Myers Squibb, Princeton, NJ.

    Google Scholar 

  691. Boehringer Ingelheim (2005) Viramune (nevirapine) [package insert]. Boehringer Ingelheim, Ridgefield, CT.

    Google Scholar 

  692. Kashuba, A. D., Tierney, C., Downey, G. F., et al. (2005) Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: ACTG protocol A5143 results, AIDS, 19, 145–152.

    Article  PubMed  CAS  Google Scholar 

  693. Roszko, P. J., Curry, K., Brazina, B., et al. (2003) Standard doses of efavirenz (EFV), zidovudine (ZDV), tenofovir (TDF), and didanosine (ddI) may be given with tipranavir/ritonavir (TPV/r), 2nd International AIDS Society (IAS) Conference on HIV Pathogenesis and Treatment, Paris, France, July 13–16 [poster 865].

    Google Scholar 

  694. Boehringer Ingelheim (2005) Aptivus (tipranavir) [package insert]. Boehringer Ingelheim, Ridgefield, CT.

    Google Scholar 

  695. Sabo, J., MacGregor, T., Lamson, M., et al. (2001) Pharmacokinetics of tipranavir and nevirapine, 10th Annual Canadian Conference on HIV/AIDS Research, Toronto, Canada, May 31–June 3 [poster 249P].

    Google Scholar 

  696. Goebel, F. D., Sabo, J. P., MacGregor, T. R., et al. (2202) Pharmacokinetic drug interaction screen of three doses of tipranavir/ritonavir (TPV/r) in HIV-infected patients on stable highly active antiretroviral therapy (HAART), HIV DART 2002: Frontiers in Drug Development for Antiretroviral Therapies, Naples, FL, December 15–19 [abstract].

    Google Scholar 

  697. Curry, K., Samuels, C., Leith, J., et al. (2004) Pharmacokinetics and safety of tipranavir/ritonavir (TPV/r) alone or in combination with saquinavir (SQV), amprenavir (APV), or lopinavir (LPV): interim analysis of BI 1182.51, 5th International Workshop on Clinical Pharmacology of HIV Therapy, Rome, Italy, April 1–3 [poster 5.1].

    Google Scholar 

  698. Hicks, C. (2004) RESIST-1: A phase 3, randomized, controlled, open-label, multicenter trial comparing tipranavir/ritonavir (TPV/r) to an optimized comparator protease inhibitor/r (CPI/r) regimen in antiretroviral (ARV) experienced patients: 24-week data, 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D.C., October 30–November 2 [abstract H-1137a].

    Google Scholar 

  699. Hicks, C. B., Cahn, P., Cooper, D. A., Walmsley, S. L., Katlama, C., Clotet, B., Lazzarin, A., Johnson, M. A., Neubacher, D., Mayers, D., Valdez, H., and on behalf of the RESIST Investigator Group (2006) Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the randomized evaluation of strategic intervention in multi-drug resistant patients with tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials, Lancet, 368(9534), 466–475.

    Google Scholar 

  700. Cahn, P. (2004) 24-Week data from RESIST 2: phase 3 of the efficacy and safety of either tipranavir/ritonavir (TRV/r) or an {optimized} ritonavir (RTV)-boosted standard-of-care (SOC) comparator PI (CPI) in a large randomized multicenter trial in treatment-experienced HIV+ patients, 7th International Congress on Drug Therapy in HIV Infection, Glasgow, UK, November 14–18 [abstract PL 14.3].

    Google Scholar 

  701. Katlama, C., Walmsley, S., Hicks, C., Cahn, P., Neubacher, D., and Villacian, J., for the RESIST Investigator Group (2006) Tipranavir achieves twice the rate of treatment response and prolongs {durability} of response vs comparator PI in ART-experienced patients, independent of baseline CD4 cell count or viral load: week 48 RESIST 1 and 2 combined analyses, 13th Conference on Retroviruses and Opportunistic Infections, Denver, CO, February 5–8.

    Google Scholar 

  702. Farthing, C., Ward, D., Hicks, C., Johnson, M., Cauda, R., and Cahn, P. (2007) 46th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 27–30, [abstract. H-1385].

    Google Scholar 

  703. Gazzard, B., Antinori, A., and Cheli, C. (2006) Combined analysis of RESIST 96 week data: durability and efficacy of tipranavir/r in treatment experienced patients, 8th International Congress on Drug Therapy in HIV Infection, Glasgow, UK, November 12–16 [abstract P23].

    Google Scholar 

  704. Madruga, J. V., Berger, D., McMurchie, M., and the TITAN Study Group (2007) Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial, Lancet, 370(9581), 49–58.

    Google Scholar 

  705. Surleraux, D. L., Tahri, A., Verschueren, W. G., Pille, G. M., de Kock, H. A., et al. (2005) Discovery and selection of TMC114, a next generation HIV-1 protease inhibitors, J. Med. Chem., 48(6), 1813–1822.

    Article  PubMed  CAS  Google Scholar 

  706. Kovalevsky, A. Y., Tie, Y., Liu, F., Boross, P. I., Wang, Y. F., et al. (2006) Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M, J. Med. Chem., 49(4), 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  707. Tibotec Therapeutics (2006) Darunavir [package insert], Tibotec Therapeutics, East Bridgewater, NJ.

    Google Scholar 

  708. De Meyer, S., Hill, A., De Baere, I., et al. (2006) Effect of baseline susceptibility and on-treatment mutations on TMC114 and control PI efficacy: preliminary analysis of data from PI-experienced patients from POWER 1 and POWER 2, 13th Conference on Retroviruses and Opportunistic Infections, Denver, CO, February 5–9 [abstract 157].

    Google Scholar 

  709. De Meyer, S., Vangeneugden, T., Lefebvre, E., van Marck, H., Azijn, H., De Baere, I., van Baelen, B., and de Béthune, M. P. (2006) Response to TMC114 is based on genotypic/phenotypic resistance: POWER 1/2/3 pooled analysis, 8th International Congress on Drug Therapy in HIV Infection, Glasgow, UK, November 12–16 [poster 196].

    Google Scholar 

  710. Sekar, V. J., De Pauw, M., Mariën, K., et al. (2007) Pharmacokinetic interaction between TMC114/r and efavirenz in healthy volunteers, Antivir. Ther., 12(4), 509–514.

    PubMed  CAS  Google Scholar 

  711. Arasteh, K., Clumeck, N., Pozniak, A., Lazzarin, A., De Meyer, S., Muller, H., Peeters, M., Rinehart, A., and Lefebvre, E. (2005) TMC114-C207 Study Team: TMC114/ritonavir substitution for protease inhibitor(s) in a non-suppressive antiretroviral regimen: a 14-day proof-of-principle trial, AIDS, 19(9), 943–947.

    Article  PubMed  CAS  Google Scholar 

  712. De Meyer, S., Azijn, H., Surleraux, D., Jochmans, D., Tahri, A., Pauwels, R., Wigerinck, P., and de Bethune, M. P. (2005) TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates, Antimicrob. Agents Chemother., 49(6), 2314–2321.

    Google Scholar 

  713. Molina, J. M., Cohen, C., Katlama, C., Grinsztejn, B., Timerman, A., Pedro, R., De Meyer, S., de Béthune, M. -P., Vangeneugden, T., and Lefebvre, E. (2006) TMC114/r in treatment-experienced HIV patients in POWER 3: 24-week efficacy and safety analysis, XVIth International AIDS Conference, Toronto, Canada, August 13–18 [poster TUPE 0060].

    Google Scholar 

  714. Cremieux, A. C., Gillotin, C., Demarles, D., Yuen, G. J., Raffi, F., and the AZ110002 Study Group (2001) A comparison of the steady-state pharmacokinetics and safety of abacavir, lamivudine, and zidovudine taken as a triple combination tablet and as abacavir plus a lamivudine-zidovudine double combination tablet by HIV-1-infected adults, Pharmacotherapy, 21, 424–430

    Google Scholar 

  715. Shapiro, M., Ward, K. M., and Stern, J. J. (2001) A near-fatal hypersensitivity reaction to abacavir: case report and literature review, AIDS Read, 11(4), 222–226.

    PubMed  CAS  Google Scholar 

  716. Frissen, P. H., De Vries, J., Weigel, H. M., and Brinkman, K. (2001) Severe anaphylactic shock after rechallenge with abacavir without preceding hypersensitivity, AIDS, 15(2), 289.

    Article  PubMed  CAS  Google Scholar 

  717. Escaut, L., Liotier, J. Y., Albengres, E., Cheminot, N., and Vittecoq, D. (1999) Abacavir rechallenge has to be avoided in case of hypersensitivity reaction, AIDS, 13(11), 1419–1420.

    Article  PubMed  CAS  Google Scholar 

  718. Staszewski, S., Keiser, P., Montaner, J., et al. (2001) Abacavir-lamivudine-zidovudine versus indinavir-lamivudine-zidovudine in antiretroviral-naive HIV-infected adults: a randomized equivalence trial, J. AM. Med. Assoc., 285(9), 1155–1163.

    Article  CAS  Google Scholar 

  719. Kakuda, T. N. (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity, Clin. Ther., 22(6), 685–708.

    Article  PubMed  CAS  Google Scholar 

  720. Jonhson, A. A., Ray, A. S., Hanes, J., et al. (2001) Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase, J. Biol. Chem., 276(44), 40847–40857.

    Article  Google Scholar 

  721. Tikhomirov, V., Namek, K., and Hindes, R. (1999) Agranulocytosis induced by abacavir, AIDS, 13(11), 1420–1421.

    Article  PubMed  CAS  Google Scholar 

  722. Lanier, E. R., Ait-Khaled, M., Scott, J., et al. (2004) Antiviral efficacy of abacavir in antiretroviral therapy-experienced adults harbouring HIV-1 with specific patterns of resistance to nucleoside reverse transcriptase inhibitors, Antivir. Ther., 9(1), 37–45.

    PubMed  CAS  Google Scholar 

  723. Latham, V., Stebbing, J., Mandalia, S., et al. (2005) Adherence to trizivir and tenofovir as a simplified salvage regimen is associated with suppression of viraemia and a decreased cholesterol, J. Antimicrob. Chemother., 56(1), 186–189.

    Article  PubMed  CAS  Google Scholar 

  724. Sosa, N., Hill-Zabala, C., DeJesus, E., et al. (2005) Abacavir and lamivudine fixed-dose combination tablet once daily compared with abacavir and lamivudine twice daily in HIV-infected patients over 48 weeks (ESS30008, SEAL), J. Acquir. Immune Defic. Syndr., 40(4), 422–427.

    Article  PubMed  CAS  Google Scholar 

  725. Fallon, J., Ait-Khaled, M., Thomas, D. A., et al. (2002) HIV-1 genotype and phenotype correlate with virological response to abacavir, amprenavir and efavirenz in treatment-experienced patients, AIDS, 16(3), 387–396.

    Article  Google Scholar 

  726. Paterson, D. L., Swindells, S., Mohr, J., et al. (2000) Adherence to protease inhibitor therapy and outcomes in patients with HIV infection, Ann. Intern. Med., 133, 21–30.

    PubMed  CAS  Google Scholar 

  727. Moyle, G., Fisher, M., Reilly, G., et al. (2007) A randomized comparison of continued zidovudine plus lamivudine BID (Combivir, CBV) versus switching to tenofovir DF plus emtricitabine (Truvada, TVD), each plus efavirenz (EFV), in stable HIV-infected persons: results of a planned 24-week analysis, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract WEPEB028].

    Google Scholar 

  728. Gallant, J. E., DeJesus, E., Arribas, J. R., et al., for Study 934 Group (2006) Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV, N. Engl. J. Med., 354, 251–260.

    Google Scholar 

  729. Arribas, J., Pozniak, A., Gallant, J., et al. (2007) Three-year safety and efficacy of emtricitabine (FT)/tenofovir DF (TDF) and efavirenz (EFV) compared to fixed dose zidovudine/lamivudine (CBV) in antiretroviral treatment-naïve patients, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, July 22–25 [abstract WEPEB029].

    Google Scholar 

  730. Staszewski, S., Keiser, P., Gathe, J., Haas, D., Montaner, J., et al. (1999) Comparison of antiviral response with abacavir/combivir to indinavir/combivir in therapy-naive adults at 48 weeks (CN3005), 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 26–29 [abstract no. 505].

    Google Scholar 

  731. Rodriguez-French, A., Boghossian, J., Gray, G. E., et al. (2004) The NEAT Study: a 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy-naive HIV-1-infected patients, J. Acquir. Immune Defic. Syndr., 35, 22–32.

    Article  PubMed  CAS  Google Scholar 

  732. Gathe, J., Ive, P., Wood, R., et al. (2004) SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir/ritonavir versus twice-daily nelfinavir in naïve HIV-1-infected patients, AIDS, 18, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  733. Gazzard, B., DeJesus, E., Cahn, P., et al. (2003) Abacavir (ABC) once daily (OAD) plus lamivudine (3TC) OAD in combination with efavirenz (EFV) OAD is well-tolerated and effective in the treatment of antiretroviral therapy (ART) naïve adults with HIV-1 infection (Zodiac Study: CNA30021), 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 14–17 [abstract H1722b].

    Google Scholar 

  734. DeJesus, E., Herrera, G., Teofilo, E., et al., for the CNA30024 Study Team (2004) Abacavir versus zidovudine combined with lamivudine and efavirenz for the treatment of antiretroviral-naïve HIV-infected adults, Clin. Infect. Dis., 39, 38–46.

    Google Scholar 

  735. Sosa, N., Hill-Zabala, C., DeJesus, E., Herrera, G., Florance, A., Watson, M., Vavro, C., and Shaefer, M. (2005) Abacavir and lamivudine fixed-dose combination tablet once daily compared with abacavir and lamivudine twice daily in HIV-infected patients over 48 weeks, J. Acquir. Immune Defic. Syndr., 40(4), 422–427.

    Article  PubMed  CAS  Google Scholar 

  736. Kubota, M., Cohen, C., Scribner, A., et al. (2006) Short-term safety and tolerability of ABC/3TC administered once-daily (QD) compared with the separate components administered twice-daily (BID): results from ESS101822 (ALOHA), 46th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, September 27–30 [poster H-1904].

    Google Scholar 

  737. Martinez, E., Arranz, J. A., Podzamczer, D., et al. (2007) Efficacy and safety of NRTIs switch to tenofovir plus emtricitabine (Truvada) vs. abacavir plus lamivudine (Kivexa) in patients with virologic suppression receiving a lamivudine containing HAART: the BICOMBO study, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract WESS102].

    Google Scholar 

  738. Mallal, S., Phillips, E., Carosi, G., et al. (2007) PREDICT-1: a novel randomised prospective study to determine the clinical utility of HLA-B*5701 screening to reduce abacavir hypersensitivity in HIV-1 infected subjects (study CNA106030), 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment, and Prevention. Sydney, Australia, July 22–25 [abstract WESS101].

    Google Scholar 

  739. Trottier, B., Thomas, R., Nguyen, V. K., et al. (2007) How effectively HLA screening can reduce the early discontinuation of abacavir in real life? 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment, and Prevention, Sydney, Australia, July 22–25 [abstract MOAB103].

    Google Scholar 

  740. Saag, M., Balu, R., Brachman, P., et al. (2007) High sensitivity of HLA-B*5701 in whites and blacks in immunologically-confirmed cases of abacavir hypersensitivity (ABC HSR), 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment, and Prevention, Sydney, Australia, July 22–25 [abstract WEAB305].

    Google Scholar 

  741. Goicoechea, M. and Best, B. (2007) Efavirenz/emtricitabine/ tenofovir disoproxil fumarate fixed-dose combination: first-line therapy for all? Expert Opin. Pharmacother., 8(3), 371–382.

    Article  PubMed  CAS  Google Scholar 

  742. Pozniak, A. L., Gallant, J. E., DeJesus, E., et al. (2006) Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: virologic, immunologic, and morphologic changes–-a 96-week analysis, J. Acquir. Immune Defic. Syndr., 4, 535–540.

    Google Scholar 

  743. Gallant, J. E., Staszewski, S., Pozniak, A. L. et al. (2004) Efficacy and safety of tenofovir DF versus stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial, J. Am. Med. Assoc., 292, 191–201.

    Article  CAS  Google Scholar 

  744. Berger, E. A. (1997) HIV entry and tropism: when one receptor is not enough, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26, [abstract S7].

    Google Scholar 

  745. Fox, J. and Pease, J. E. (2005) The molecular and cellular biology of CC chemokines and their receptors, Curr. Topics Membr., 55, 73–102.

    Article  CAS  Google Scholar 

  746. Blanpain, C., Libert, F., Vassart, G., and Parmentier M. (2002) CCR5 and HIV infection, Receptor Channels, 8(1), 19–31.

    Google Scholar 

  747. Galvani, A. and Slatkin, M. (2003) Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele, Proc. Natl. Acad. Sci. U.S.A., 100(25), 15276–15279.

    Article  PubMed  CAS  Google Scholar 

  748. Stephens, J., Reich, D. E., Goldstein, D. B., et al. (1998) Dating the origin of the CCR5-delta32 AIDS-resistance allele by the coalescence of haplotypes, Am. J. Hum. Genet., 62(6), 1507–1515.

    Article  PubMed  CAS  Google Scholar 

  749. Hedrick, P. W. and Verrelli, B. C. (2006) “Ground truth” for selection on CCR5-Δ32, Trends in Genet., 22(6), 293–296.

    Article  CAS  Google Scholar 

  750. Glass, W. G., McDermott, D. H., and Lim, J. K. (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection, J. Exp. Med., 203(1), 35–40.

    Article  PubMed  CAS  Google Scholar 

  751. Duncan, S. R., Scott, S., and Duncan, C. J. (2005) Reappraisal of the historical selective pressures for the CCR5-Δ32 mutation, J. Med. Genet., 42, 205–208.

    Article  PubMed  CAS  Google Scholar 

  752. Sabeti, P. C., Walsh, E., Schaffner, S. F., et al. (2005), The case for selection at CCR5-Delta32, PLoS Biology, 3(11), e378.

    Article  PubMed  CAS  Google Scholar 

  753. Welch, B. D., VanDemark, A. P., Heroux, A., Hill, C. P, and Kay, M. S. (2007) Potent D-peptide inhibitors of HIV-1 entry, Proc. Natl. Acad. Sci. U.S.A., 104(43), 16828–16833.

    Article  PubMed  CAS  Google Scholar 

  754. Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997) Core structure of gp41 from the HIV envelope glycoprotein, Cell, 89, 263–273.

    Article  PubMed  CAS  Google Scholar 

  755. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997) Atomic structure of the ectodomain from HIV-1 gp41, Nature, 387, 426–430.

    Article  PubMed  CAS  Google Scholar 

  756. Tan, K., Liu, J., Wang, J., Shen, S., and Lu, M. (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41, Proc. Natl. Acad. Sci. U.S.A., 94, 12303–12308.

    Article  PubMed  CAS  Google Scholar 

  757. Eckert, D. M. and Kim, P. S. (2001) Mechanisms of viral membrane fusion and its inhibition, Annu. Rev. Biochem., 70, 777–810.

    Article  PubMed  CAS  Google Scholar 

  758. Chan, D. C. and Kim, P. S. (1998) HIV Entry and its inhibition, Cell, 93, 681–684.

    Article  PubMed  CAS  Google Scholar 

  759. Furuta, R. A., Wild, C. T., Weng, Y., and Weiss, C. D. (1998) Capture of an early fusion-active conformation of HIV-1 gp41, Nat. Struct. Biol., 5, 276–279.

    Article  PubMed  CAS  Google Scholar 

  760. Root, M. J. and Steger, H. K. (2004) HIV-1 gp41 as a target for viral entry inhibition, Curr. Pharm. Des., 10, 1805–1825.

    Article  PubMed  CAS  Google Scholar 

  761. Eckert, D. M., Malashkevich, V. N., Hong, L, H., Carr, P, A., and Kim, P. S. (1999) Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket, Cell, 99, 103–115.

    Article  PubMed  CAS  Google Scholar 

  762. Root, M. J., Kay, M. S., and Kim, P. S. (2001) Protein design of an HIV-1 entry inhibitor, Science, 291, 884–888.

    Article  PubMed  CAS  Google Scholar 

  763. Chan, D. C., Chutkowski, C. T., and Kim, P. S. (1998) Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target, Proc. Natl. Acad. Sci. U.S.A., 95, 15613–15617.

    Article  PubMed  CAS  Google Scholar 

  764. Louis, J. M., Bewley, C. A., and Clore, G. M. (2001) Design and properties of NCCG-gp41, a chimeric gp41 molecule with nanomolar HIV fusion inhibitory activity, J. Biol. Chem., 276, 29485–29489.

    Article  PubMed  CAS  Google Scholar 

  765. Eckert, D. M. and Kim, P. S. (2001) Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region, Proc. Natl. Acad. Sci. U.S.A., 98, 11187–11192.

    Article  PubMed  CAS  Google Scholar 

  766. Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., and Matthews, T. J. (1994) Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection, Proc. Natl. Acad. Sci. U.S.A., 91, 9770–9774.

    Article  PubMed  CAS  Google Scholar 

  767. Rimsky, L. T., Shugars, D. C., and Matthews, T. J. (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides, J. Virol., 72, 986–993.

    PubMed  CAS  Google Scholar 

  768. Cooper, D., on behalf of the Alliance Investigator Group (2005) An analysis of the correlation between the severity of injection site reactions and the amount of subcutaneous fat in the Alliance cohort, 12th Conference on Retroviruses and Opportunistic Infections, Boston, MA, February 22–25 [poster 838].

    Google Scholar 

  769. Thompson, M., DeJesus, E., Richmond, G., et al. (2006) Pharmacokinetics, pharmacodynamics and safety of once-daily versus twice-daily dosing with enfuvirtide in HIV-infected subjects, AIDS, 20(3), 397–404.

    Article  PubMed  CAS  Google Scholar 

  770. DeJesus, E., Zolopa, A., Farthing, C., et al. (2007) Response to darunavir/ritonavir (DRV/r) combined with enfuvirtide (ENF)-containing ARV in triple-class experienced patients was not predicted by baseline darunavir (DRV) sensitivity or viral tropism (VT): the BLQ study preliminary results, 4th International AIDS Society (IAS) Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [poster WEPEB039].

    Google Scholar 

  771. Wiznia, A., Church, A., Emmanuel, P., and the T20-310 Study Group (2007) Safety and efficacy of enfuvirtide for 48 weeks as part of an optimized antiretroviral regimen in pediatric human immunodeficiency virus 1-infected patients, Pediatr. Infect. Dis. J., 26(9), 799–805.

    Google Scholar 

  772. Tschida, S., Zappa, A., and Godwin, M. (2006) An ongoing nonrandomized large prospective evaluation of alternative injection devices (Biojector B2000, standard needles/syringes, or insulin needles/syringes) for enfuvirtide in a national community-based specialty pharmacy, XVIth International AIDS Conference, Toronto, Canada, August 13–18 [poster TUPE0147].

    Google Scholar 

  773. Harris, M., Joy, R., Larsen, G.,Valyi, M., Walker, E., et al. (2006) Enfuvirtide plasma levels and injection site reactions using a needle-free gas-powered injection system (Biojector), AIDS, 20(5), 719–723.

    Google Scholar 

  774. Paterlini, M. G. (2002) Structure modeling of the chemokine receptor CCR5: implications for ligand binding and selectivity, Biophys. J., 83(6), 3012–3031.

    Article  PubMed  CAS  Google Scholar 

  775. Hoffman, T. L., LaBranche, C. C., Zhang, W., Canziani, G., Robinson, J., Chaiken, I., Hoxie, J. A., and Doms, R. W. (1999) Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein, Proc. Natl. Acad. Sci. U.S.A., 96, 6359–6364.

    Article  PubMed  CAS  Google Scholar 

  776. Kolchinsky, P., Mirzabekov, T., Farzan, M., Kiprilov, E., Cayabyab, M., Mooney, L. J., Choe, H., and Sodroski, J. (1999) Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication, J. Virol., 73, 8120–8126.

    PubMed  CAS  Google Scholar 

  777. Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A., and Sodroski, J. (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding, Science, 280, 1949–1953.

    Article  PubMed  CAS  Google Scholar 

  778. Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., et al. (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5, Nature, 384, 179–183.

    Article  PubMed  CAS  Google Scholar 

  779. Berger, E. A., Doms, R. W., Fenyo, E. M., Korber, B. T., Littman, D. R., et al. (1998) A new classification for HIV-1, Nature, 391, 240.

    Article  PubMed  CAS  Google Scholar 

  780. Robertson, D. L., Anderson, J. P., Bradac, J. A., Carr, J. K., Foley, B., et al. (2000) HIV-1 nomenclature proposal, Science, 288, 55–56.

    Article  PubMed  CAS  Google Scholar 

  781. Lucas, A. D., Gaudieri, S., Rauch, A., et al. (2005) Cellular tropism of HIV-1 mediated and constrained by coreceptor dependencies, J. Vir. Entry, 1, 17–27.

    Google Scholar 

  782. Clotet, B. (2007) CCR5 Inhibitors: promising yet challenging, J. Infect. Dis., 196, 178–180.

    Article  PubMed  CAS  Google Scholar 

  783. Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., Zhao, L., et al. (1998) Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry, J. Virol., 72, 279–285.

    PubMed  CAS  Google Scholar 

  784. Samson, M., LaRosa, G., Libert, F., Paindavoine, P., Detheux, M., Vassart, G., and Parmentier, M. (1997) The second extracellular loop of CCR5 is the major determinant of ligand specificity, J. Biol. Chem., 272, 24934–24941.

    Article  PubMed  CAS  Google Scholar 

  785. Blanpain, C., Doranz, B. J., Vakili, J., Rucker, J., Govaerts, C., Baik, S. S., et al. (1999) Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein, J. Biol. Chem., 274, 34719–34727.

    Article  PubMed  CAS  Google Scholar 

  786. Dragic, T., Trkola, A., Thompson, D. A., Cormier, E. G., Kajumo, F. A., et al. (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5, Proc. Natl. Acad. Sci. U.S.A., 97, 5639–5644.

    Article  PubMed  CAS  Google Scholar 

  787. Mayer, H., van der Ryst, E., Saag, M., et al. (2006) Safety and efficacy of maraviroc (MVC), a novel CCR5 antagonist, when used in combination with optimized background therapy (OBT) for the treatment of antiretroviral-experienced subjects infected with dual/mixed-tropic HIV-1: 24-week results of a Phase 2b exploratory trial, XVI International AIDS Conference, Toronto, Canada, August 13–18 [abstract THLB0215].

    Google Scholar 

  788. Lalezari, J., Goodrich, J., DeJesus, E., Lampiris, H., Gulick, R., et al. on behalf of the MOTIVATE 1 Study Group. (2007) Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1: 24-week results of Phase 2b/3 studies, 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [presentation 104bLB].

    Google Scholar 

  789. Nelson, M., Fätkenheuer, G., Konourina, I., Lazzarin, A., Clumeck, N., Horban, A., et al., on behalf of the MOTIVATE 2 Study Group (2007) Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1: 24-week results of Phase 2b/3 studies, 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [presentation 104aLB].

    Google Scholar 

  790. Fätkenheuer, G., Pozniak, A. L., Johnson, M. A., et al. (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1, Nat. Med. 11, 1170–1172.

    Google Scholar 

  791. McHale, M., Abel, S., Russell, D., et al. (2005) Overview of Phase I and 2a safety and efficacy data of maraviroc (UK-427,857), 3rd International AIDS Society (IAS) Conference on the HIV Pathogenesis and Treatment, Rio de Janeiro, Brazil, July 24–27 [abstract TuOa0204].

    Google Scholar 

  792. Tsibris, A. M. and Kuritzkes, D. R. (2007) Chemokine antagonists as therapeutics: focus on HIV-1, Annu. Rev. Med., 58, 445–459.

    Article  PubMed  CAS  Google Scholar 

  793. GlaxoSmithKline (2005) Statement to HIV patient community: information from GlaxoSmithKline on changes to studies of investigational CCR5 entry inhibitor aplaviroc (GW873140), GlaxoSmithKline, Research Triangle Park, NC.

    Google Scholar 

  794. Steel, H. M. (2005) Special presentation on aplaviroc-related hepatotoxicity, 10th European AIDS Conference, Dublin, Ireland, November 17–20 [abstract].

    Google Scholar 

  795. Temesdgen, Z., Warnke, D., and Kasten, M. J. (2006) Current status of antiretroviral therapy, Expert Opin. Chemother., 7(12), 1541–1554.

    Article  Google Scholar 

  796. Saag, M., Ive, P., Heers, J., et al. (2007) A multicenter, randomized, double-blind, comparative trial of a novel CCR5 antagonist, maraviroc versus efavirenz, both in combination with Combivir (zidovudine [ZDV]/lamivudine [3TC]), for the treatment of antiretroviral naive subjects infected with R5 HIV-1: week 48 results of the MERIT study, 4th International AIDS Society (IAS) Conference on HIV Pathogeneis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract WESS104].

    Google Scholar 

  797. Reeves, J. D., Han, D., Liu, Y., et al. (2007) Enhancements to the Trofile HIV coreceptor tropism assay enable reliable detection of CXCR4-using subpopulations at less than 1%, 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17–20 [abstract H-1026].

    Google Scholar 

  798. Strizki, J. M., Tremblay, C., Xu, S., et al. (2005) Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1, Antimicrob. Agents Chemother., 49(12), 4911–4919.

    Article  PubMed  CAS  Google Scholar 

  799. Schurmann, D., Fätkenheuer, G., Reynes, J. (2007) Antiviral activity, pharmacokinetics and safety of vicriviroc, an oral CCR5 antagonist, during 14-day monotherapy in HIV-infected adults, AIDS, 21(10), 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  800. Gulick, R., Su, Z., Flexner, C., Hughes, M. (2007) ACTG 5211: phase II study of the safety and efficacy of vicriviroc (VCV) in HIV-infected treatment-experienced subjects: 48 week results, 4th International AIDS Conference (IAS) on Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract 1623].

    Google Scholar 

  801. Gulick, R., Haas, D., Collier, A. C., Lennox, J., Parker, C., and Greaves, W. (2007) Two-year follow-up of treatment-experienced patients on vicriviroc (VCV), 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17–20 [abstract H-1030].

    Google Scholar 

  802. Fätkenheuer, G., Hoffmann, C., Sansone-Parsons, A., Greaves, W., and Dunkle, L. (2007) CD4 lymphocyte and leukocyte response to vicriviroc (VCV) in 282 HIV-infected treatment-naive and experienced subjects: pooled data from 4 randomized clinical trials, 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, October 25–27 [abstract H-1031].

    Google Scholar 

  803. Savarino, A. (2006) A historical sketch of the discovery and development of HIV-1 integrase inhibitors, Expert Opin. Investig. Drugs, 15(12), 1507–1522.

    Article  PubMed  CAS  Google Scholar 

  804. Pommier, Y., Johnson, A. A., and Marchand, C. (2005) Integrase inhibitors to treat HIV/AIDS, Nat. Rev. Drug Discov., 4(3), 236–248.

    Article  PubMed  CAS  Google Scholar 

  805. Goldgur, Y., Craigie, R., Cohen, R., et al. (1999) Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design, Proc. Natl. Acad. Sci. U.S.A., 96(23), 13040–13043.

    Article  PubMed  CAS  Google Scholar 

  806. Wang, J. Y., Ling, H., Yang, W., et al., (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein, EMBO J., 20(24), 7333–7343.

    Article  PubMed  CAS  Google Scholar 

  807. Chen, J. C. H., Krucinski, J., Miercke, W., et al. (2000) Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding, Proc. Natl. Acad. Sci. U.S.A., 97(15), 8233–8238.

    Article  PubMed  CAS  Google Scholar 

  808. Tsurutani, N., Kubo, M., Maeda, Y., et al. (2000) Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells, J. Virol., 74, 4795–4806.

    Article  PubMed  CAS  Google Scholar 

  809. Zhu, K., Dobard, C., and Chow, S. A. (2004) Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase, J. Virol., 78, 5045–5055.

    Article  PubMed  CAS  Google Scholar 

  810. Brown, P. O. (1998) Integration. In: Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 161–203.

    Google Scholar 

  811. Turlure, F., Devroe, E., Silver, P. A., and Engelman, A. (2004) Human cell proteins and human immunodeficiency virus DNA integration, Front. Biosci., 9, 3187–3208.

    Article  PubMed  CAS  Google Scholar 

  812. Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro, J. Virol., 73, 2994–3003.

    PubMed  CAS  Google Scholar 

  813. Farnet, C. and Bushman, F. D. (1997) HIV-1 cDNA integration: requirement of HMG I (Y) protein for function of preintegration complexes in vitro, Cell, 88, 483–492.

    Article  PubMed  CAS  Google Scholar 

  814. Bukrinsky, M. I., Sharova, N., Dempsey, M. P., Stanwick, T. L., Bukrinskaya, A. G., Haggerty, S., and Stevenson, M. (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes, Proc. Natl. Acad. Sci. U.S.A., 89, 6580–6584.

    Article  PubMed  CAS  Google Scholar 

  815. Chow, S. A., Vincent, K. A., Ellison, V., and Brown, P. O. (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus, Science, 255, 723–726.

    Article  PubMed  CAS  Google Scholar 

  816. Yoder, K. E. and Bushman, F. D. (2000) Repair of gaps in retroviral DNA integration intermediates, J. Virol., 74, 11191–11200.

    Article  PubMed  CAS  Google Scholar 

  817. Daniel, R., Greger, J. G., Katz, R. A., Taganov, K., et al. (2004) Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway, J. Virol., 78, 8573–8581.

    Article  PubMed  CAS  Google Scholar 

  818. Myers, R. E. and Pillay, D. (2007) HIV-1 integrase sequence variation and covariation, Antivir. Ther., 12, S65.

    Google Scholar 

  819. Van Baelen, K., Clynhens, M., Rondelez, E., et al. (2007) Low level of baseline resistance to integrase inhibitors L731,988 and L870,810 in randomly selected subtype B and non-B HIV-1 strains, Antivir. Ther., 12, S7.

    Google Scholar 

  820. Ceccherini-Silberstein, F., Malet, I., Perno, C. F., et al. (2007) Specific mutations related to HIV-1 integrase inhibitors are associated with reverse transcriptase mutations in HAART-treated patients, Antivir. Ther., 12, S6.

    Google Scholar 

  821. Roquebert, B., Dmaond, F., Descamps, D., et al. (2007) Polymorphism of HIV-2 integrase gene and in vitro phenotypic susceptibility of HIV-2 clinical isolates to integrase inhibitors: raltegravir and elvitegravir, Antivir. Ther., 12, S92.

    Google Scholar 

  822. Hazuda, D. J., Miller, M. D., Hguyen, B. Y., et al. (2007) Resistance to the HIV-integrase inhibitor raltegravir: analysis of protocol 005, a Phase II study in patients with triple-class resistant HIV-1 infection, Antivir. Ther., 12(5), S10.

    Google Scholar 

  823. Malet, I., Delelis, O., Calvez, V., et al. (2007) Biochemical characterizations of the effect of mutations selected in HIV-1 integrase gene associated with failure to raltegravir (MK-0518), Antivir. Ther., 12(5), S9.

    Google Scholar 

  824. Cooper, D., Gatell, J., Rockstroh, J., et al. (2007) Results from BENCHMRK-1, a phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus, 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [abstract 105aLB].

    Google Scholar 

  825. Steigbigel, R., Kumar, P., Eron, J., et al. (2007) Results from BENCHMRK-2, a phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus, 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [abstract 105bLB].

    Google Scholar 

  826. Grinsztejn, B., Nguyen, B., Katlama, C., et al. (2007) 48 week efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple-class resistant virus, 47th Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, September 17–20 [abstract H-713].

    Google Scholar 

  827. Grinsztejn, B., Nguyen, B., Katlama, C., et al. (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial, Lancet, 369(9569), 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  828. Markowitz, M., Nguyen, B. Y., Gotuzzo, E., et al. (2007) Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients: results of a 48-week controlled study, J. Acquir. Immune Defic. Syndr., 46(2), 125–133.

    Article  PubMed  CAS  Google Scholar 

  829. Markowitz, M., Morales-Ramirez, J. O., Nguyen, B-Y., et al. (2006) Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals, J. Acquir. Immune Defic. Syndr., 43(5), 509–515.

    Article  PubMed  CAS  Google Scholar 

  830. Iwamoto, M., Wenning, L. A., Petry, A. S., et al. (2007) Safety, tolerability, and pharmacokinetics of raltegravir after single and multiple doses in healthy subjects, Clin. Pharmacol. Ther., 83(2), 293–299.

    Article  PubMed  CAS  Google Scholar 

  831. Cahn, P. and Sued, O. (2007) Raltegravir: a new antiretroviral class for salvage therapy, Lancet, 369, 1235–1236.

    Article  PubMed  Google Scholar 

  832. Grinsztejn, B., Nguyen, B., Katlama, C., et al. (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial, Lancet, 369(9569), 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  833. DeJesus, E., Berger, D., Markowitz, M., et al. (2006) The HIV integrase inhibitor GS-9137 (JTK-303) exhibits potent antiviral activity in treatment-naive and experienced patients, 13th Conference on Retroviruses and Opportunistic Infections, Denver, CO, February 5–8 [abstract 159LB].

    Google Scholar 

  834. Zolopa, A. R., Mullen, M., Berger, D., et al. (2007) The HIV integrase inhibitor GS-9137 demonstrates potent ARV activity in treatment-experienced patients, 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28, [oral presentation/abstract 143LB].

    Google Scholar 

  835. Zolopa, A. R., Lampiris, H., Blick, G., et al (2007) The HIV integrase inhibitor elvitegravir (EVG/r) has potent and durable activity in treatment-experienced patients with active optimized backgroung therapy (OBT), 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, September 17–20 [oral presentation/abstract H-714].

    Google Scholar 

  836. Ledford, R., Margot, N., Miller, M., et al. (2007) Elvitegravir (GS-9137/JTK-303), an HIV-1 integrase inhibitor, has additive to synergistic interactions with other antiretroviral drugs in vitro, 4th International AIDS Society (IAS) Conference on Pathogenesis, Treatment and Prevention, Sydney, Australia, July 22–25 [abstract/poster MOPEA052].

    Google Scholar 

  837. Jones, G., Ledford, R., Yu, F., et al. (2007) Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303), 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, CA, February 25–28 [poster 627].

    Google Scholar 

  838. Li, F., Goila-Gaur, R., Salzwedel, K., Kilgore, N. R., Reddick, M., et al. (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing, Proc. Natl. Acad. Sci. U.S.A., 100(23), 13555–13560.

    Article  PubMed  CAS  Google Scholar 

  839. Swanstrom, R. and Wills, J. W. (1997) Synthesis, assembly, and processing of viral proteins. In: Retroviruses (Weiss, R., Teich, N., Varmus, H., and Coffin, J. M., eds.), Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 263–334.

    Google Scholar 

  840. Freed, E. O. (1998) HIV-1 gag proteins: diverse functions in the virus life cycle, Virology, 251, 1–15.

    Article  PubMed  CAS  Google Scholar 

  841. Gottlinger, H. G., Dorfman, T., Sodroski, J. G., and Haseltine, W. A. (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release, Proc. Natl. Acad. Sci. U.S.A., 88, 3195–3199.

    Article  PubMed  CAS  Google Scholar 

  842. Huang, M., Orenstein, J. M., Martin, M. A., and Freed, E. O. (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease, J. Virol., 69, 6810–6818.

    PubMed  CAS  Google Scholar 

  843. Freed, E. O. (2002) Viral late domains, J. Virol., 76, 4679–4687.

    Article  PubMed  CAS  Google Scholar 

  844. Kräusslich, H. G., Schneider, H., Zybarth, G., Carter, C. A., and Wimmer, E. (1988) Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli, J. Virol., 62, 4393–4397.

    Google Scholar 

  845. Mervis, R. J., Ahmad, N., Lillehoj, E. P., Raum, M. G., Salazar, F. H., Chan, H. W., and Venkatesan, S. (1988) The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors, J. Virol., 62, 3993–4002.

    PubMed  CAS  Google Scholar 

  846. Erickson-Viitanen, S., Manfredi, J., Viitanen, P., Tribe, D. E., Tritch, R., Hutchison, C. A., Loeb, D. D., and Swanstrom, R. (1989) Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease, AIDS Res. Hum. Retroviruses, 5, 577–591.

    Article  PubMed  CAS  Google Scholar 

  847. Kräusslich, H. G., Facke, M., Heuser, A. M., Konvalinka, J., and Zentgraf, H. (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity, J. Virol., 69, 3407–3419.

    PubMed  Google Scholar 

  848. Wiegers, K., Rutter, G., Kottler, H., Tessmer, U., Hohenberg, H., and Kräusslich H. G. (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites, J. Virol., 72, 2846–2854.

    Google Scholar 

  849. Accola, M. A., Höglund, S., and Göttlinger, H. G. (1998) A putative α-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly, J. Virol., 72, 2072–2078.

    PubMed  CAS  Google Scholar 

  850. Kaplan, A. H., Zack, J. A., Knigge, M., Paul, D. A., Kempf, D. J., Norbeck, D. W., and Swanstrom, R. (1993) Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles, J. Virol. 67, 4050–4055.

    Google Scholar 

  851. Demirov, D. G., Orenstein, J. M., and Freed, E. O. (2002) The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner, J. Virol., 76, 105–117.

    Article  PubMed  CAS  Google Scholar 

  852. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Cote, M., Rich, R. L., et al. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding, Cell, 107, 55–65.

    Article  PubMed  CAS  Google Scholar 

  853. Demirov, D. G., Ono, A., Orenstein, J. M., and Freed, E. O. (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function, Proc. Natl. Acad. Sci. U.S.A., 99, 955–960.

    Article  PubMed  CAS  Google Scholar 

  854. Liang, C., Rong, L., Laughrea, M., Kleiman, L., and Wainberg, M. A. (1998) Compensatory point mutations in the human immunodeficiency virus type 1 Gag region that are distal from deletion mutations in the dimerization initiation site can restore viral replication, J. Virol., 72, 6629–6636.

    PubMed  CAS  Google Scholar 

  855. Liang, C., Rong, L., Cherry, E., Kleiman, L., Laughrea, M., and Wainberg, M. A. (1999) Deletion mutagenesis within the dimerization initiation site of human immunodeficiency virus type 1 results in delayed processing of the p2 peptide from precursor proteins, J. Virol., 73, 6147–6151.

    PubMed  CAS  Google Scholar 

  856. PR Newswire. (2004) Panacos Pharmaceuticals’ HIV Drug Candidate, PA-457, exhibits potent anti-HIV activity following a single dose in HIV-infected patients. Press release, November 23 (http://www.pressurebiosciences.com/news_releases/article-157.html).

  857. Fujioka, T., Kashiwada, Y., Kilkuskie, R. E., Cosentino, L. M., Ballas, L. M., Jiang, J. B., Janzen, W. P., Chen, I. S., and Lee, K. H. (1994) Anti-AIDS agents. 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids, J. Nat. Prod., 57, 243–247.

    Article  PubMed  CAS  Google Scholar 

  858. Kashiwada, Y., Hashimoto, F., Cosentino, L. M., Chen, C. H., Garrett, P. E., and Lee, K. H. (1996) Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents, J. Med. Chem., 39, 1016–1017.

    Article  PubMed  CAS  Google Scholar 

  859. Kanamoto, T., Kashiwada, Y., Kanbara, K., Gotoh, K., Yoshimori, M., Goto, T., Sano, K., and Nakashima, H. (2001) Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation, Antimicrob. Agents Chemother., 45, 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  860. Martin, D. E., Blum, R., Wilton, J., et al. (2007) Safety and pharmacokinetics of bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers, Antimicrob. Agents Chemother., 51(9), 3063–3066.

    Article  PubMed  CAS  Google Scholar 

  861. Beatty, G., Lalezari, J., Eron, J., et al. (2005) Safety and antiviral activity of PA-457, the first-in-class maturation inhibitor, in a 10-day monotherapy study in HIV-1 infected patients, 45th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D.C., December 16–19 [abstract H-416d; abstract LB-27].

    Google Scholar 

  862. Palella, F. J., Jr., Delaney, K. M., Moorman, A. C., et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators, N. Engl. J. Med., 338, 853–860.

    Article  PubMed  Google Scholar 

  863. Hogg, R. S., Yip, B., Kully, C., et al. (1999) Improved survival among HIV-infected patients after initiation of triple-drug antiretroviral regimens, Can. Med. Assoc. J., 160, 695–665.

    Google Scholar 

  864. Moyle, G. and Carr, A. (2002) HIV-associated lipodystrophy, metabolic complications, and antiretroviral toxicities, HIV Clin. Trials, 3, 89–98.

    PubMed  Google Scholar 

  865. Grinspoon, S. and Carr, A. (2005) Cardiovascular risk and body-fat abnormalities in HIV-infected adults, N. Engl. J. Med., 352, 48–62.

    Article  PubMed  CAS  Google Scholar 

  866. Conway, B. (2006) Delavirdine. In: Reverse Transcriptase Inhibitors in HIV/AIDS Therapy (Skowron, G. and Ogde, R., eds.), Humana Press, Totowa, NJ, pp. 375–400.

    Google Scholar 

  867. Yeni, P. G., Hammer, S. M., Hirsch, M. S., et al. (2004) Treatment of adult HIV infection: 2004 recommendation of the International AIDS Society-USA Panel, J. Am. Med. Assoc., 292, 251–265.

    Article  CAS  Google Scholar 

  868. Wood, E., Hogg, R. S., Harrigan, P. R., and Montaner, J. S. (2005) When to initiate antiretroviral therapy in HIV-1-infected adults: a review for clinicians and patients, Lancet Infect. Dis., 5, 407–414.

    Article  PubMed  CAS  Google Scholar 

  869. Busti, A. J., Hall, R. G., and Margolis, D. M. (2004) Atazanavir for the treatment of human immunodeficiency virus infection, Pharmacotherapy, 24, 1732–1747.

    Article  PubMed  CAS  Google Scholar 

  870. Eron, J. J., Feinberg, J., Kessler, H. A., et al. (2004) Once-daily versus twice-daily lopinavir/ritonavir in antiretroviral-naïve HIV-positive patients: a 48-week randomized clinical trial, J. Infect. Dis., 189, 265–272.

    Article  PubMed  CAS  Google Scholar 

  871. Wainberg, M. A. and Clotet, B. (2007) Immunologic response to protease inhibitor-based highly active antiretroviral therapy: a review, AIDS Patient Care and STDs, 21(9), 609–620.

    Article  PubMed  Google Scholar 

  872. Bucy, R. P., Hockett, R. D., Derdeyn, C. A., et al. (1999) Initial increase in blood CD4(+) lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues, J. Clin. Microbiol., 103, 1391–1398.

    CAS  Google Scholar 

  873. Ensoli, F., Fiorelli, V., Alario, C., et al. (2000) Decreased T cell apoptosis and T cell recovery during highly active antiretroviral therapy (HAART), Clin. Imunol., 97, 9–20.

    Article  CAS  Google Scholar 

  874. Estaquier, J., Lelievre, J. D., Petit, F., et al. (2002) Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4(+) T-cell death, J. Virol., 76, 5966–5973.

    Article  PubMed  CAS  Google Scholar 

  875. Steinberg, H. N., Crumpacker, C. S., and Chatis, P. A. (1991) In vitro suppression of normal human bone marrow progenitor cells by human immunodeficiency virus, J. Virol., 65, 1765–1769.

    PubMed  CAS  Google Scholar 

  876. Isgro, A., Mezzaroma, I., Aiuti, A., et al. (2000) Recovery of hematopoietic activity in bone marrow from human immunodeficiency virus type 1-infected patients during highly active antiretroviral therapy, AIDS Res. Hum. Retroviruses, 16, 1471–1479.

    Article  PubMed  CAS  Google Scholar 

  877. Lederman, M., Connick, E., Landay, A, et al. (1997) Partial immune reconstitution after 12 weeks of HAART (AZT, 3TC, ritonavir): preliminary results of ACTG 315, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract LB13].

    Google Scholar 

  878. Rosenberg, E. S., Billingsley, J. M., Caliendo, A. M., et al. (1997) Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia, Science, 27, 1447–1450.

    Article  Google Scholar 

  879. Connors, M., Kovacs, J. A., Krevat, S., et al. (1997) HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies, Nat. Med., 3, 533–540.

    Article  PubMed  CAS  Google Scholar 

  880. Jacobson, M. A., Kramer, F., Pavan, P. R., Owens, S., and Pollard, R. (1997) Failure of highly active antiretroviral therapy (HAART) to prevent CMV retinitis despite marked CD4 count increase, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 353].

    Google Scholar 

  881. Gilquin, J., Piketty, C., Thomas, V., Gonzales-Canali, G., Kazatchine, M. D. (1997) Acute CMV infection in AIDS patients receiving combination therapy involving protease inhibitors, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract 354].

    Google Scholar 

  882. Finzi, D., Hermankova, M., Pierson, T., et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy, Science, 278, 1295–1300.

    Article  PubMed  CAS  Google Scholar 

  883. Wong, J. K., Hezareh, M., Gunthard, H. F., et al. (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Science, 278, 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  884. Chun, T. W., Stuyver, L., Mizell, S. B., et al. (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci. U.S.A., 94, 13193–13197.

    Article  PubMed  CAS  Google Scholar 

  885. Cavert, W., Staskus, K., Zupancic, M., et al. (1997) Quantitative in situ hybridization measurement of HIV-1 RNA clearance kinetics from lymphoid tissue cellular compartments during triple-drug therapy, 4th Conference on Retroviruses and Opportunistic Infections, Washington, D.C., January 22–26 [abstract LB9].

    Google Scholar 

  886. Wong, J. K., Gunthard, H. F., Havlir, D. V., et al. (1997) Reduction of HIV-1 in blood and lymph nodes following potent antiretroviral therapy and the virologic correlates of treatment failure, Proc. Natl. Acad. Sci. U.S.A., 94, 12574–12579.

    Article  PubMed  CAS  Google Scholar 

  887. Chun, T. W., Carruth, L., Finzi, D., et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, 387, 183–188.

    Article  PubMed  CAS  Google Scholar 

  888. Perelson, A. S., Essunger, P., Cao, Y., et al. (1997) Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188–191.

    Article  PubMed  CAS  Google Scholar 

  889. Havlir, D. V., Hirsch, M., Collier, A., et al. (1998) Randomized trial of indinavir (IDV) vs. zidovudine (ZDV)/lamivudine (3TC) vs. IDV/ZDV/3TC maintenance therapy after induction IDV/ADV/3TC therapy, 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5; 225 [abstract LB16].

    Google Scholar 

  890. Raffi, F., Pialoux, G., Brun-Vezinet, F., et al. (1998) Results of TRILEGE trial, a comparison of three maintenance regimens for HIV infected adults receiving induction therapy with zidovudine (ZDV), lamivudine (3TC), and indinavir (IDV), 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, February 1–5; 225 [abstract LB15].

    Google Scholar 

  891. Grabar, S., Le Moing, V., Goujard, C., et al. (2000) Clinical outcome of patients with HIV-1 infection accorfing to immunologic and virologic response after 6 months of highly active antiretroviral therapy, Ann. Intern. Med., 133, 401–410.

    PubMed  CAS  Google Scholar 

  892. Piketty, C., Castiel, P., Belec, L., et al. (1998) Discrepant responses to triple combination antiretroviral therapy in advanced HIV disease, AIDS, 12, 745–750.

    Google Scholar 

  893. Piketty, C., Weiss, L., Thomas, F., et al. (2001) Long-term clinical outcome of human immunodeficiency virus-infected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen, J. Infect. Dis., 183, 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  894. Negredo, E., Molto, J., Burger, D., et al. (2004) Unexpected CD4 cell count decline in patients receiving didanosine and tenofovir-based regimens despite undetectable viral load, AIDS, 18, 459–463.

    Article  PubMed  CAS  Google Scholar 

  895. Negredo, E., Bonjoch, A., Paredes, R., et al. (2005) Compromised immunologic recovery in treatment-experienced patients with HIV infection receiving both tenofovir disoproxil fumarate and didanosine in the TORO studies, Clin. Infect. Dis., 41, 901–905.

    Article  PubMed  CAS  Google Scholar 

  896. Pruvost, A., Negredo, E., Benech, H., et al. (2005) Measurement of intracellular didanosine and tenofovir phosphorylated metabolites and possible interaction of the two drugs in human immunodeficiency virus-infected patients, Antimicrob. Agents Chemother., 49, 1907–1914.

    Article  PubMed  CAS  Google Scholar 

  897. Benveniste, O., Flahault, A., Rollot, F., et al. (2005) Mechanisms involved in the low-level regeneration of CD4+ cells in HIV-1-infected patients receiving highly active antiretroviral therapy who have prolonged undetectable plasma viral loads, J. Infect. Dis., 191, 1670–1679.

    Article  PubMed  Google Scholar 

  898. Marziali, M., De Santis, W., Carello, R., et al. (2006) T-cell homeostasis alteration in HIV-1 infected subjects with low CD4+ T-cell count despite undetectable virus load during HAART, AIDS, 20, 2033–2041.

    Article  PubMed  CAS  Google Scholar 

  899. Maggiolo, F., Ravasio, L., Ripamonti, D., et al. (2005) Similar adherence rates favor different virologic outcomes for patients treated with nonnucleoside analogues or protease inhibitors, Clin. Infect. Dis., 40, 158–163.

    Article  PubMed  CAS  Google Scholar 

  900. Bangsberg, D. R. (2006) Less than 90% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression, Clin. Infect. Dis., 43, 939–941.

    Article  PubMed  CAS  Google Scholar 

  901. Robbins, G. K., De Gruttola, V., Shafer, R. W., et al. (2003) Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection, N. Engl. J. Med., 349, 2293–2303.

    Article  PubMed  CAS  Google Scholar 

  902. Gulick, R. M. (2006) Adherence to antiretroviral therapy: how much is enough? Clin. Infect. Dis., 43, 942–944.

    Article  PubMed  Google Scholar 

  903. El-Sadr, W. and Neaton, J., for the SMART Study Group (2006) Episodic CD4-guided use of ART is inferior to continuous therapy: results of the SMART Study, 13th Conference on Retroviruses and Opportunistic Infections, Denver, CO, February 5–8 [abstract 106LB].

    Google Scholar 

  904. Lundgren, J. D., for the SMART Study Group (2006) Progression of HIV-related disease or death (POD) in the randomized SMART Study: why was the risk of POD greater in the CD4-guided [(Re)-initiate ART at CD4<250 cells/μL] drug conservation (DC) vs. the virological suppression (VS) arm? XVIth International Conference on AIDS, Toronto, Canada, August 13–16 [abstract WEAB0203].

    Google Scholar 

  905. Burman, W., for the SMART Study Group (2006) The effect of episodic CD4-guided antiretroviral therapy on quality of life: results of the quality of life substudy of SMART, XVIth International Conference on AIDS, Toronto, Canada, August 13–18 [abstract 18588].

    Google Scholar 

  906. El-Sadr, W. M., Lundgren, J. D., Neaton, J. D., et al. (2006) CD4+ count-guided interruption of antiretroviral treatment, N. Engl. J. Med., 355, 2283–2296.

    Article  PubMed  CAS  Google Scholar 

  907. Gulick, R., Su, Z., Flexner, C., Hughes, M., Skolnik, P., Godfrey, C., Greaves, W., Wilkin, T., Gross, R., Coakley, E., Zolopa, A., Hirsch, M., and Kuritzkes, D., for the ACTG 5211 Study Team (2006) ACTG 5211: Phase II study of the safety and efficacy of vicriviroc in HIV-infected treatment-experienced subjects, XVIth International Conference on AIDS, Toronto, Canada, August 13–18 [abstract THLB0217].

    Google Scholar 

  908. Ridler, S. A., Haubrich, R., DiRienzo, G., Peeples, L., Powderly, W. G., Klingman, K. L., Garren, K. W., George, T., Rooney, J. F., Brizz, B., Havlir, D., and Mellors, J. W., for the AIDS Clinical Trials Group 5142 Study Team (2006) A prospective, randomized, Phase III trial of NRTI-, PI-, and NNRTI-sparing regimens for initial treatment of HIV-1 infection, XVIth International AIDS Conference, Toronto, Canada, August 13–18 [abstract THLB0204].

    Google Scholar 

  909. Torriani, F. J., Parker, R. A., Murphy, R. L., Fichtenbaum, C. J., Currier, J. S., Dubé, M. P., Squires, K. E., Gerschenson, M., Komarow, L., Cotter, B. R., Mitchell, C. K., and Stein, J. H., for the ACTG 5152s Team (2005) A5152s a substudy of A5142: antiretroviral therapy improves endothelial function in individuals with human immunodeficiency virus infection: a prospective, randomized multicenter trial (Adult AIDS Clinical Trials Group Study), American Heart Association Scientific Session, Dallas, TX, November 11–13 [abstract PS5].

    Google Scholar 

  910. MacArthur, R. D., Novak, R. M., Peng, G., Chen, L., Xiang, Y., Kozal, M. J., van den Berg-Wolf, M., Henely, C., Huppler-Hullsiek, K., Schmetter, B., and Dehlinger, M., for the CPCRA 058 Study Team and the Terry Beirn Communit

    Google Scholar 

  911. Swindells, S., DiRienzo, G., Wilkin, T., Fletcher, C. V., Margolis, D. M., Thal, G. D., Godfrey, C., Bastow, B., Ray, M. G., Wang, H., Coombs, R. W., McKinnon, J., and Mellors, J. W., for the AIDS Clinical Trials Group 5201 Study Team (2006) A prospective, open-label, pilot trial of regimen simplification to atazanavir/ritonavir alone as maintenance antiretroviral therapy after sustained virologic suppresion, J. Am. Med. Assoc., 296(7), 806–814.

    Google Scholar 

  912. Ribaudo, H., Kuritzkes, D., Lalama, C., Schouten, J., Schackman, B., Gullick, R., AIDS Clinical Trials Group (2006) Efavirenz (EFV)-based regimens are potent in treatment-naïve subjects across a wide range of pre-treatment HIV-1 RNA (VL) and CD4 cell counts: 3-year results from ACTG 5095, XVIth International Conference on AIDS, Toronto, Canada, August 13–18 [abstract THLB0211].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). HIV Therapeutics: Antiretroviral Drugs and Immune-Based Therapies. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_34

Download citation

Publish with us

Policies and ethics