Skip to main content

11β-Hydroxysteroid Dehydrogenase Type 1 and Obesity

  • Chapter
Energy Metabolism and Obesity

Part of the book series: Contemporary Endocrinology ((COE))

  • 1121 Accesses

Abstract

Individuals with central obesity and the metabolic syndrome appear phenotypically similar to those with Cushing syndrome, a disease of primary glucocorticoid excess. Although morning plasma cortisol concentrations are low or normal in obesity, it is possible that tissue cortisol levels are increased. The enzyme 11α-hydroxysteroid dehydrogenase type 1 (11α-HSD1) catalyzes the conversion of inactive cortisone to active cortisol and is present in many tissues including liver and adipose tissue. Transgenic mice overexpressing 11α-HSD1 selectively in adipose tissue develop central obesity with all the features of the metabolic syndrome. In humans, tissue-specific dysregulation of glucocorticoids occurs in simple obesity, with increased 11α-HSD1 activity in subcutaneous adipose tissue and decreased activity in the liver. 11α-HSD1 is highly regulated, and altered plasticity may predispose to metabolic disease. Genetic studies have shown associations between polymorphisms in the HSD11B1 gene and components of the metabolic syndrome. Nonspecific inhibition of this enzyme leads to improved hepatic insulin sensitivity, while more selective compounds are being developed to potentially treat central obesity and the associated metabolic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  1. Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 2002;106(3):286–288.

    PubMed  Google Scholar 

  2. Welborn TA, Dhaliwal SS, Bennett SA. Waist-hip ratio is the dominant risk factor predicting cardiovascular death in Australia. Med J Aust 2003; 179(11–12):580–585.

    Google Scholar 

  3. Bjorntorp P. Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease? J Intern Med 1991;230:195–201.

    PubMed  CAS  Google Scholar 

  4. Garrapa GG, Pantanetti P, Arnaldi G, Mantero F, Faloia E. Body composition and metabolic features in women with adrenal incidentaloma or Cushing’s syndrome. J Clin Endocrinol Metab 2001;86(11):5301–5306.

    PubMed  CAS  Google Scholar 

  5. Wajchenberg BL, Bosco A, Marone MM et al. Estimation of body fat and lean tissue distribution by dual energy X-ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing’s disease. J Clin Endocrinol Metab 1995;80(9):2791–2794.

    PubMed  CAS  Google Scholar 

  6. Rockall AG, Sohaib SA, Evans D et al. Computed tomography assessment of fat distribution in male and female patients with Cushing’s syndrome. Eur J Endocrinol 2003;149(6):561–567.

    PubMed  CAS  Google Scholar 

  7. Pirlich M, Biering H, Gerl H et al. Loss of body cell mass in Cushing’s syndrome: effect of treatment. J Clin Endocrinol Metab 2002;87(3):1078–1084.

    PubMed  CAS  Google Scholar 

  8. Lonn L, Kvist H, Ernest I, Sjostrom L. Changes in body composition and adipose tissue distribution after treatment of women with Cushing’s syndrome. Metabolism 1994;43(12):1517–1522.

    PubMed  CAS  Google Scholar 

  9. Nieman LK, Chrousos GP, Kellwar C et al. Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU486. J Clin Endocrinol Metab 1985;61:536–540.

    PubMed  CAS  Google Scholar 

  10. Chu JW, Matthias DF, Belanoff J, Schatzberg A, Hoffman AR, Feldman D. Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 2001;86(8):3568–3573.

    PubMed  CAS  Google Scholar 

  11. Lamers WH, Hanson RW, Meisner HM. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei. Proc Natl Acad Sci U S A 1982; 79(17):5137–5141.

    PubMed  CAS  Google Scholar 

  12. Wang XL, Herzog B, Waltner-Law M, Hall RK, Shiota M, Granner DK. The synergistic effect of dexamethasone and all-trans-retinoic acid on hepatic phosphoenolpyruvate carboxykinase gene expression involves the coactivator p300. J Biol Chem 2004;279(33):34191–34200.

    PubMed  CAS  Google Scholar 

  13. Sasaki K, Cripe TP, Koch SR et al. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J Biol Chem 1984;259(24):15242–15251.

    PubMed  CAS  Google Scholar 

  14. Nechushtan H, Benvenisty N, Brandeis R, Reshef L. Glucocorticoids control phosphoenolpyruvate carboxykinase gene expression in a tissue specific manner. Nucleic Acids Res 1987;15(16):6405–6417.

    PubMed  CAS  Google Scholar 

  15. Meyuhas O, Reshef L, Ballard FJ, Hanson RW. Effect of Insulin and Glucocorticoids on Synthesis and Degradation of Phosphoenolpyruvate Carboxykinase (Gtp) in Rat Adipose-Tissue Cultured In Vitro. Biochem J 1976;158(1):9–16.

    PubMed  CAS  Google Scholar 

  16. Meyuhas O, Reshef L, Gunn JM, Hanson RW, Ballard FJ. Regulation of Phosphoenolpyruvate Carboxykinase (Gtp) in Adipose-Tissue In Vivo by Glucocorticoids and Insulin. Biochem J 1976;158(1):1–7.

    PubMed  CAS  Google Scholar 

  17. Reshef L, Ballard FJ, Hanson RW. The role of the adrenals in the regulation of phosphoenolpyruvate carboxykinase of rat adipose tissue. J Biol Chem 1969;244(20):5577–5581.

    PubMed  CAS  Google Scholar 

  18. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37(8):1020-1024.

    PubMed  CAS  Google Scholar 

  19. Slavin BG, Ong JM, Kern PA. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 1994;35(9):1535–1541.

    PubMed  CAS  Google Scholar 

  20. Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 1987;64(4):832–835.

    PubMed  CAS  Google Scholar 

  21. Hauner H, Entenmann G, Wabitsch M et al. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 1989;84(5):1663–1670.

    PubMed  CAS  Google Scholar 

  22. Fried SK, Russell CD, Grauso NL, Brolin RE. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 1993; 92(5):2191-2198.

    PubMed  CAS  Google Scholar 

  23. Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 1988;67(6):1122–1128.

    PubMed  CAS  Google Scholar 

  24. Reynolds RM, Walker BR, Phillips DIW et al. Altered control of cortisol secretion in adult men with low birthweight and cardiovascular risk factors. J Clin Endocrinol Metab 2001; 86:245-250.

    PubMed  CAS  Google Scholar 

  25. Filipovsky J, Ducimetiere P, Eschwege E, Richard JL, Rosselin G, Claude JR. The relationship of blood pressure with glucose, insulin, heart rate, free fatty acids and plasma cortisol levels according to degree of obesity in middle-aged men. J Hypertens 1996;14:229–235.

    PubMed  CAS  Google Scholar 

  26. Phillips DI, Barker DJ, Fall CH et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab 1998; 83(3):757-760.

    PubMed  CAS  Google Scholar 

  27. Walker BR, Soderberg S, Lindahl B, Olsson T. Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women. J Intern Med 2000;247:198–204.

    PubMed  CAS  Google Scholar 

  28. Phillips DIW, Walker BR, Reynolds RM et al. Low birthweight and elevated plasma cortisol concentrations in adults from three populations. Hypertension 2000;35:1301–1306.

    PubMed  CAS  Google Scholar 

  29. Stolk RP, Lamberts SWJ, de Jong FH, Pols HAP, Grobbee DE. Gender differences in the associations between cortisol and insulin sensitivity in healthy subjects. J Endocrinol 1996;149:313–318.

    PubMed  CAS  Google Scholar 

  30. Walker BR, Phillips DIW, Noon JP et al. Increased glucocorticoid activity in men with cardiovascular risk factors. Hypertension 1998;31:891–895.

    PubMed  CAS  Google Scholar 

  31. Andrews RC, Herlihy O, Livingstone DE, Andrew R, Walker BR. Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance. J Clin Endocrinol Metab 2002;87(12):5587–5593.

    PubMed  CAS  Google Scholar 

  32. Reynolds RM, Syddall HE, Walker BR, Wood PJ, Phillips DI. Predicting cardiovascular risk factors from plasma cortisol measured during oral glucose tolerance tests. Metabolism 2003;52(5):524–527.

    PubMed  CAS  Google Scholar 

  33. Jessop DS, Dallman MF, Fleming D, Lightman SL. Resistance to glucocorticoid feedback in obesity. J Clin Endocrinol Metab 2001;86(9):4109–4114.

    PubMed  CAS  Google Scholar 

  34. Solano MP, Kumar M, Fernandez B, Jones L, Goldberg RB. The pituitary response to ovine corticotropin-releasing hormone is enhanced in obese men and correlates with insulin resistance. Horm Metab Res 2001;33(1):39–43.

    PubMed  CAS  Google Scholar 

  35. Hautanen A, Raikkonen K, Adlercreutz H. Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 1997;241(6):451–461.

    PubMed  CAS  Google Scholar 

  36. Strain GW, Zumoff B, Kream J, Strain JJ, Levin J, Fukushima D. Sex difference in the influence of obesity on the 24 hr mean plasma concentration of cortisol. Metabolism 1982;31:209–212.

    PubMed  CAS  Google Scholar 

  37. Phillips DI, Walker BR, Reynolds RM et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 2000;35(6):1301–1306.

    PubMed  CAS  Google Scholar 

  38. Rask E, Walker BR, Soderberg S et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 2002;87(7):3330–3336.

    PubMed  CAS  Google Scholar 

  39. Pasquali R, Cantobelli S, Casimirri F et al. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab 1993;77:341–346.

    PubMed  CAS  Google Scholar 

  40. Weaver JU, Kopelman PG, McLoughlin L, Forsling ML, Grossman A. Hyperactivity of the hypothalamo-pituitary-adrenal axis in obesity: a study of ACTH, AVP, -lipotrophin and cortisol responses to insulin-induced hypoglycaemia. Clin Endocrinol 1993;39:345–350.

    CAS  Google Scholar 

  41. Yanovski JA, Yanovski SZ, Gold PW, Chrousos GP. Differences in corticotropin-releasing hormone-stimulated adrenocorticotropin and cortisol before and after weight loss. J Clin Endocrinol Metab 1997;82(6):1874–1878.

    PubMed  CAS  Google Scholar 

  42. Kopelman PG, Grossman A, Lavender P, Besser GM, Rees LH, Coy D. The cortisol response to corticotrophin-releasing factor is blunted in obesity. Clin Endocrinol (Oxf) 1988;28(1):15–18.

    CAS  Google Scholar 

  43. Rask E, Olsson T, Soderberg S et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86(3):1418–1421.

    PubMed  CAS  Google Scholar 

  44. Westerbacka J, Yki-Jarvinen H, Vehkavaara S et al. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver. J Clin Endocrinol Metab 2003;88(10):4924–4931.

    PubMed  CAS  Google Scholar 

  45. Andrew R, Phillips DIW, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998;83:1806–1809.

    PubMed  CAS  Google Scholar 

  46. Rusvai E, Naray-Fejes-Toth A. A new isoform of 11α-hydroxysteroid dehydrogenase in aldosterone target cells. J Biol Chem 1993;268:10717–10720.

    PubMed  CAS  Google Scholar 

  47. Brown RW, Chapman KE, Edwards CRW, Seckl JR. Human placental 11α-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology 1993;132:2614–2621.

    PubMed  CAS  Google Scholar 

  48. Edwards CRW, Stewart PM, Burt D et al. Localisation of 11α-hydroxysteroid dehydrogenase- tissue specific protector of the mineralocorticoid receptor. Lancet 1988; ii:986–989.

    Google Scholar 

  49. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988;242:583–585.

    PubMed  CAS  Google Scholar 

  50. Ulick S, Levine LS, Gunczler P et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 1979;49:757–764.

    PubMed  CAS  Google Scholar 

  51. Lakshmi V, Monder C. Purification and characterization of the corticosteroid 11α-dehydrogenase component of the rat liver 11α-hydroxysteroid dehydrogenase complex. Endocrinology 1988;123:2390–2398.

    PubMed  CAS  Google Scholar 

  52. Hundertmark S, Buhler H, Ragosch V et al. Correlation of surfactant phosphatidylcholine synthesis and 11beta- hydroxysteroid dehydrogenase in the fetal lung. Endocrinology 1995;136(6):2573–2578.

    PubMed  CAS  Google Scholar 

  53. Low SC, Chapman KE, Edwards CRW, Seckl JR. ’Liver-type’ 11α-hydroxysteroid dehydrogenase cDNA encodes reductase but not dehydrogenase activity in intact mammalian COS-7 cells. J Mol Endocrinol 1994;13:167–174.

    PubMed  CAS  Google Scholar 

  54. Jamieson PM, Chapman KE, Edwards CRW, Seckl JR. 11α-Hydroxysteroid dehydrogenase is an exclusive 11α-reductase in primary cultures of rat hepatocytes: effect of physicochemical and hormonal manipulations. Endocrinology 1995;136:4754–4761.

    PubMed  CAS  Google Scholar 

  55. Ozols J. Lumenal orientation and post-translational modifications of the liver microsomal 11beta-hydroxysteroid dehydrogenase. J Biol Chem 1995;270(5):2305–2312.

    PubMed  CAS  Google Scholar 

  56. Atanasov AG, Nashev LG, Schweizer RA, Frick C, Odermatt A. Hexose-6-phosphate dehydrogenase determines the reaction direction of 11beta-hydroxysteroid dehydrogenase type 1 as an oxoreductase. FEBS Lett 2004; 571(1-3):129–133.

    PubMed  CAS  Google Scholar 

  57. Walker BR, Connacher AA, Lindsay RM, Webb DJ, Edwards CRW. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab 1995;80:3155–3159.

    PubMed  CAS  Google Scholar 

  58. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect ‘Cushing’s disease of the omentum’? Lancet 1997;349:1210–1213.

    PubMed  CAS  Google Scholar 

  59. Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–2170.

    PubMed  CAS  Google Scholar 

  60. Masuzaki H, Yamamoto H, Kenyon CJ et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 2003;112(1):83–90.

    PubMed  CAS  Google Scholar 

  61. Paterson JM, Morton NM, Fievet C et al. Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci U S A 2004;101(18):7088–7093.

    PubMed  CAS  Google Scholar 

  62. Kotelevtsev YV, Holmes MC, Burchell A et al. 11α-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid inducible responses and resist hyperglycaemia on obesity and stress. Proc Natnl Acad Sci USA 1997;94:14924–14929.

    CAS  Google Scholar 

  63. Morton NM, Paterson JM, Masuzaki H et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11α-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004; 53(4):931-938.

    PubMed  CAS  Google Scholar 

  64. Morton NM, Holmes MC, Fievet C et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11α-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem 2001;276:41293–41300.

    PubMed  CAS  Google Scholar 

  65. Yau JLW, Noble JM, Kenyon CJ et al. Lack of tissue glucocorticoid reactivation in 11α-hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc Natnl Acad Sci USA 2001;98:4716–4721.

    CAS  Google Scholar 

  66. Palermo M, Shackleton CHL, Mantero F, Stewart PM. Urinary free cortisone and the assessment of 11beta- hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf ) 1996;45:605–611.

    CAS  Google Scholar 

  67. Fraser R, Ingram MC, Anderson NH, Morrison C, Davies E, Connell JMC. Cortisol effects on body mass, blood pressure, and cholesterol in the general population. Hypertension 1999;33:1364–1368.

    PubMed  CAS  Google Scholar 

  68. Andrew R, Gale CR, Walker BR, Seckl JR, Martyn CN. Glucocorticoid metabolism and the Metabolic Syndrome: associations in an elderly cohort. Exp Clin Endocrinol Diabetes 2002;110(6):284–290.

    PubMed  CAS  Google Scholar 

  69. Dimitriou T, Maser-Gluth C, Remer T. Adrenocortical activity in healthy children is associated with fat mass. Am J Clin Nutr 2003;77(3):731–736.

    PubMed  CAS  Google Scholar 

  70. Stewart PM, Boulton A, Kumar S, Clark PMS, Shackleton CHL. Cortisol metabolism in human obesity: impaired cortisone - cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 1999;84:1022–1027.

    PubMed  CAS  Google Scholar 

  71. Valsamakis G, Anwar A, Tomlinson JW et al. 11beta-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. J Clin Endocrinol Metab 2004;89(9):4755–4761.

    PubMed  CAS  Google Scholar 

  72. Kerstens MN, Riemens SC, Sluiter WJ, Pratt JJ, Wolthers BG, Dullaart RP. Lack of relationship between 11beta-hydroxysteroid dehydrogenase setpoint and insulin sensitivity in the basal state and after 24h of insulin infusion in healthy subjects and type 2 diabetic patients. Clin Endocrinol (Oxf) 2000;52(4):403–411.

    CAS  Google Scholar 

  73. Raven PW, Taylor NF. Sex differences in the human metabolism of cortisol. Endocrine Research 1996;22:751–755.

    PubMed  CAS  Google Scholar 

  74. Toogood AA, Taylor NF, Shalet SM, Monson JP. Sexual dimorphism of cortisol metabolism is maintained in elderly subjects and is not oestrogen dependent. Clin Endocrinol (Oxf) 2000; 52(1):61–66.

    CAS  Google Scholar 

  75. Finken MJJ, Andrews RC, Andrew R, Walker BR. Cortisol metabolism in healthy young adults: sexual dimorphism in activities of A-ring reductase but not 11α-hydroxysteroid dehydrogenases. J Clin Endocrinol Metab 1999;84:3316–3321.

    PubMed  CAS  Google Scholar 

  76. Andrew R, Smith K, Jones GC, Walker BR. Distinguishing the activities of 11beta-hydroxysteroid dehydrogenases in vivo using isotopically labeled cortisol. J Clin Endocrinol Metab 2002; 87(1): 277–285.

    PubMed  CAS  Google Scholar 

  77. Sandeep TC, Andrew R, Homer NZ, Andrews RC, Smith K, Walker BR. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes 2005;54(3):872–879.

    PubMed  CAS  Google Scholar 

  78. Livingstone DEW, Jones GC, Smith K, Andrew R, Kenyon CJ, Walker BR. Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 2000;141:560–563.

    PubMed  CAS  Google Scholar 

  79. Lindsay RS, Wake DJ, Nair S et al. Subcutaneous adipose 11 beta-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in Pima Indians and Caucasians. J Clin Endocrinol Metab 2003;88(6):2738–2744.

    PubMed  CAS  Google Scholar 

  80. Wake DJ, Rask E, Livingstone DE, Soderberg S, Olsson T, Walker BR. Local and systemic impact of transcriptional up-regulation of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab 2003;88(8):3983–3988.

    PubMed  CAS  Google Scholar 

  81. Kannisto K, Pietilainen KH, Ehrenborg E et al. Overexpression of 11beta-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab 2004;89(9):4414–4421.

    PubMed  CAS  Google Scholar 

  82. Nair S, Lee YH, Lindsay RS et al. 11beta-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle. Diabetologia 2004;47(6):1088–1095.

    PubMed  CAS  Google Scholar 

  83. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M. Expression of the mRNA coding for 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 2002;87(6):2701–2705.

    PubMed  CAS  Google Scholar 

  84. Engeli S, Bohnke J, Feldpausch M et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res 2004;12(1):9–17.

    PubMed  CAS  Google Scholar 

  85. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab 2002;87(12):5630–5635.

    PubMed  CAS  Google Scholar 

  86. Tomlinson JW, Walker EA, Bujalska IJ et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004;25(5):831–866.

    PubMed  CAS  Google Scholar 

  87. Katz JR, Mohamed-Ali V, Wood PJ, Yudkin JS, Coppack SW. An in vivo study of the cortisol-cortisone shuttle in subcutaneous abdominal adipose tissue. Clin Endocrinol 1999;50:63–68.

    CAS  Google Scholar 

  88. Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: The roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology 1999;140(7):3188–3196.

    PubMed  CAS  Google Scholar 

  89. Aldhahi W, Mun E, Goldfine AB. Portal and peripheral cortisol levels in obese humans. Diabetologia 2004;47(5):833–836.

    PubMed  CAS  Google Scholar 

  90. Basu R, Singh RJ, Basu A et al. Splanchnic cortisol production occurs in humans: evidence for conversion of cortisone to cortisol via the 11-beta hydroxysteroid dehydrogenase (11beta-hsd) type 1 pathway. Diabetes 2004;53(8):2051–2059.

    PubMed  CAS  Google Scholar 

  91. Andrew R, Westerbacka J, Wahren J, Yki-Jarvinen H, Walker BR. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans. Diabetes 2005;54(5):1364–1370.

    PubMed  CAS  Google Scholar 

  92. Whorwood CB, Donovan SJ, Wood PJ, Phillips DI. Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab 2001;86(5):2296–2308.

    PubMed  CAS  Google Scholar 

  93. Whorwood CB, Donovan SJ, Flanagan D, Phillips DI, Byrne CD. Increased glucocorticoid receptor expression in human skeletal muscle cells may contribute to the pathogenesis of the metabolic syndrome. Diabetes 2002;51(4):1066–1075.

    PubMed  CAS  Google Scholar 

  94. Stewart PM, Shackleton CHL, Beastall GH, Edwards CRW. 5alpha-reductase activity in polycystic ovarian syndrome. Lancet 1990;335:431–433.

    PubMed  CAS  Google Scholar 

  95. Rodin A, Thakkar H, Taylor N, Clayton R. Hyperandrogenism in polycystic ovary syndrome: evidence of dysregulation of 11beta-hydroxysteroid dehydrogenase. N Engl J Med 1994;330:460–465.

    PubMed  CAS  Google Scholar 

  96. Tsilchorozidou T, Honour JW, Conway GS. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5alpha-reduction but not the elevated adrenal steroid production rates. J Clin Endocrinol Metab 2003;88(12):5907–5913.

    PubMed  CAS  Google Scholar 

  97. Walker BR, Rodin A, Taylor NF, Clayton RN. Endogenous inhibitors of 11β-hydroxysteroid dehyrogenase type 1 do not explain abnormal cortisol metabolism in polycystic ovarian syndrome. Clin Endocrinol 2000;52:77–80.

    CAS  Google Scholar 

  98. Miller KK, Daly PA, Sentochnik D et al. Pseudo-Cushing’s syndrome in human immunodeficiency virus-infected patients. Clin Infect Dis 1998;27(1):68–72.

    PubMed  CAS  Google Scholar 

  99. Sutinen J, Kannisto K, Korsheninnikova E et al. In the lipodystrophy associated with highly active antiretroviral therapy, pseudo-Cushing’s syndrome is associated with increased regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue. Diabetologia 2004;47(10):1668–1671.

    PubMed  CAS  Google Scholar 

  100. Tomlinson JW, Moore J, Cooper MS et al. Regulation of expression of 11α-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 2001;142:1982–1989.

    PubMed  CAS  Google Scholar 

  101. Weaver JU, Monson JP, Noonan K et al. The effect of low dose recombinant human growth hormone replacement on regional fat distribution, insulin sensitivity, and cardiovascular risk factors in hypopituitary adults. J Clin Endocrinol Metab 1995;80:153–159.

    PubMed  CAS  Google Scholar 

  102. Moore JS, Monson JP, Kaltsas G et al. Modulation of 11α-hydroxysteroid dehydrogenase isozymes by growth hormone and insulin-like growth factor: in vivo and in vitro studies. J Clin Endocrinol Metab 1999;84:4172–4177.

    PubMed  CAS  Google Scholar 

  103. Trainer PJ, Drake WM, Perry LA, Taylor NF, Besser GM, Monson JP. Modulation of cortisol metabolism by the growth hormone receptor antagonist pegvisomant in patients with acromegaly. J Clin Endocrinol Metab 2001;86(7):2989–2992.

    PubMed  CAS  Google Scholar 

  104. Tiosano D, Eisentein I, Militianu D, Chrousos GP, Hochberg Z. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity. J Clin Endocrinol Metab 2003;88(1):379–384.

    PubMed  CAS  Google Scholar 

  105. Weaver JU, Thaventhiran L, Noonan K et al. The effect of growth hormone replacement on cortisol metabolism and glucocorticoid sensitivity in hypopituitary adults. Clin Endocrinol (Oxf ) 1994;41:639–648.

    CAS  Google Scholar 

  106. Toogood AA, Taylor NF, Shalet SM, Monson JP. Modulation of cortisol metabolism by low-dose growth hormone replacement in elderly hypopituitary patients. Journal of Clinical Endocrinology & Metabolism 2000;85(4):1727–1730.

    CAS  Google Scholar 

  107. Gelding SV, Taylor NF, Wood PJ et al. The effect of growth hormone replacement therapy on cortisol-cortisone interconversion in hypopituitary adults: Evidence for growth hormone modulation of extrarenal 11beta-hydroxysteroid dehydrogenase activity. Clin Endocrinol (Oxf ) 1998;48(2):153–162.

    CAS  Google Scholar 

  108. Swords FM, Carroll PV, Kisalu J, Wood PJ, Taylor NF, Monson JP. The effects of growth hormone deficiency and replacement on glucocorticoid exposure in hypopituitary patients on cortisone acetate and hydrocortisone replacement. Clin Endocrinol (Oxf) 2003;59(5):613–620.

    CAS  Google Scholar 

  109. Walker BR, Andrew R, MacLeod KM, Padfield PL. Growth hormone replacement inhibits renal and hepatic 11α-hydroxysteroid dehydrogenases in ACTH-deficient patients. Clin Endocrinol 1998;49:257–263.

    CAS  Google Scholar 

  110. Weaver JU, Taylor NF, Monson JP, Wood PJ, activity and its relation to fat distribution and insulin sensitivity; a study in hypopituitary subjects. Clin Endocrinol (Oxf ) 1998;49(1):13–20.

    CAS  Google Scholar 

  111. Frajese GV, Taylor NF, Jenkins PJ, Besser GM, Monson JP. Modulation of cortisol metabolism during treatment of acromegaly is independent of body composition and insulin sensitivity. Horm Res 2004;61(5):246–251.

    PubMed  CAS  Google Scholar 

  112. Tomlinson JW, Crabtree N, Clark PM et al. Low-dose growth hormone inhibits 11 beta-hydroxysteroid dehydrogenase type 1 but has no effect upon fat mass in patients with simple obesity. J Clin Endocrinol Metab 2003;88(5):2113–2118.

    PubMed  CAS  Google Scholar 

  113. Tomlinson JW, Moore JS, Clark PM, Holder G, Shakespeare L, Stewart PM. Weight loss increases 11beta-hydroxysteroid dehydrogenase type 1 expression in human adipose tissue. J Clin Endocrinol Metab 2004;89(6):2711–2716.

    PubMed  CAS  Google Scholar 

  114. Morton NM, Ramage L, Seckl JR. Down-regulation of adipose 11beta-hydroxysteroid dehydrogenase type 1 by high-fat feeding in mice: a potential adaptive mechanism counteracting metabolic disease. Endocrinology 2004;145(6):2707–2712.

    PubMed  CAS  Google Scholar 

  115. Drake AJ, Livingstone DE, Andrew R, Seckl JR, Morton NM, Walker BR. Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology 2005;146(2):913–919.

    PubMed  CAS  Google Scholar 

  116. Johnstone AM, Faber P, Andrew R et al. Influence of short-term dietary weight loss on cortisol secretion and metabolism in obese men. Eur J Endocrinol 2004;150(2):185–194.

    PubMed  CAS  Google Scholar 

  117. Friedberg M, Zoumakis E, Hiroi N, Bader T, Chrousos GP, Hochberg Z. Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J Clin Endocrinol Metab 2003;88(1):385–393.

    PubMed  CAS  Google Scholar 

  118. Handoko K, Yang K, Strutt B, Khalil W, Killinger D. Insulin attenuates the stimulatory effects of tumor necrosis factor alpha on 11beta-hydroxysteroid dehydrogenase 1 in human adipose stromal cells. Journal of Steroid Biochemistry & Molecular Biology 2000; 72(3-4):163–168.

    CAS  Google Scholar 

  119. Berger J, Tanen M, Elbrecht A et al. Peroxisome proliferator-activated receptor-UPgamma ligands inhibit adipocyte 11α-hydroxysteroid dehydrogenase type 1 expression and activity. J Biol Chem 2001;276:12629–12635.

    PubMed  CAS  Google Scholar 

  120. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 2004;27(7):1660–1667.

    PubMed  CAS  Google Scholar 

  121. Tannin GM, Agarwal AK, Monder C, New MI, White PC. The human gene for 11α-hydroxysteroid dehydrogenase. J Biol Chem 1991;266:16653–16658.

    PubMed  CAS  Google Scholar 

  122. Draper N, Echwald SM, Lavery GG et al. Association studies between microsatellite markers within the gene encoding human 11beta-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J Clin Endocrinol Metab 2002;87(11):4984–4990.

    PubMed  CAS  Google Scholar 

  123. de Quervain DJ, Poirier R, Wollmer MA et al. Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Hum Mol Genet 2004;13(1):47–52.

    PubMed  Google Scholar 

  124. Caramelli E, Strippoli P, Di Giacomi T, Tietz C, Carinci P, Pasquali R. Lack of mutations of type 1 11beta-hydroxysteroid dehydrogenase gene in patients with abdominal obesity. Endocr Res 2001; 27(1–2):47–61.

    PubMed  CAS  Google Scholar 

  125. Robitaille J, Brouillette C, Houde A, Despres JP, Tchernof A, Vohl MC. Molecular screening of the 11beta-HSD1 gene in men characterized by the metabolic syndrome. Obes Res 2004;12(10):1570–1575.

    PubMed  CAS  Google Scholar 

  126. Franks PW, Knowler WC, Nair S et al. Interaction between an 11betaHSD1 gene variant and birth era modifies the risk of hypertension in Pima Indians. Hypertension 2004;44(5):681–688.

    PubMed  CAS  Google Scholar 

  127. Gelernter-Yaniv L, Feng N, Sebring NG, Hochberg Z, Yanovski JA. Associations between a polymorphism in the 11 beta hydroxysteroid dehydrogenase type I gene and body composition. Int J Obes Relat Metab Disord 2003;27(8):983–986.

    PubMed  CAS  Google Scholar 

  128. Taylor NF, Bartlett WA, Dawson DJ, Enoch BA. Cortisone reductase deficiency: evidence for a new inborn error in metabolism of adrenal steroids. J Endocrinol 1984; 102 (Suppl):90.

    Google Scholar 

  129. Phillipov G, Palermo M, Shackleton CH. Apparent cortisone reductase deficiency: a unique form of hypercortisolism. J Clin Endocrinol Metab 1996;81:3855—3860.

    PubMed  CAS  Google Scholar 

  130. Jamieson A, Wallace AM, Walker BR et al. Apparent cortisone reductase deficiency: a functional defect in 11α-hydroxysteroid dehydrogenase type 1. J Clin Endocrinol Metab 1999;84:3570–3574.

    PubMed  CAS  Google Scholar 

  131. Biason-Lauber A, Suter SL, Shackleton CH, Zachmann M. Apparent cortisone reductase deficiency: a rare cause of hyperandrogenemia and hypercortisolism. Horm Res 2000;53(5):260–266.

    PubMed  CAS  Google Scholar 

  132. Nikkila H, Tannin GM, New MI et al. Defects in the HSD11 gene encoding 11α-hydroxysteroid dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency. J Clin Endocrinol Metab 1993;77:687–691.

    PubMed  CAS  Google Scholar 

  133. Malunowicz EM, Romer TE, Urban M, Bossowski A. 11beta-hydroxysteroid dehydrogenase type 1 deficiency (‘apparent cortisone reductase deficiency’) in a 6-year-old boy. Horm Res 2003;59(4):205–210.

    PubMed  CAS  Google Scholar 

  134. Nordenstrom A, Marcus C, Axelson M, Wedell A, Ritzen EM. Failure of cortisone acetate treatment in congenital adrenal hyperplasia because of defective 11beta-hydroxysteroid dehydrogenase reductase activity. J Clin Endocrinol Metab 1999;84(4):1210–1213.

    PubMed  CAS  Google Scholar 

  135. Draper N, Walker EA, Bujalska IJ et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet 2003;34(4):434–439.

    PubMed  CAS  Google Scholar 

  136. Millan JL, Botella-Carretero JI, Alvarez-Blasco F et al. A study of the Hexose-6-Phosphate Dehydrogenase Gene R453Q and 11beta-Hydroxysteroid Dehydrogenase Type 1 Gene 83557insA Polymorphisms in the Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2005.

    Google Scholar 

  137. Stewart PM, Wallace AM, Atherden SM, Shearing CH, Edwards CRW. Mineralocorticoid activity of carbenoxolone: contrasting effects of carbenoxolone and liquorice on 11α-hydroxysteroid dehydrogenase activity in man. Clin Sci 1990;78:49–54.

    PubMed  CAS  Google Scholar 

  138. Andrews RC, Rooyackers O, Walker BR. Effects of the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab 2003;88(1):285–291.

    PubMed  CAS  Google Scholar 

  139. Sandeep TC, Yau JL, MacLullich AM et al. 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci U S A 2004;101(17):6734–6739.

    PubMed  CAS  Google Scholar 

  140. Livingstone DE, Walker BR. Is 11beta-hydroxysteroid dehydrogenase type 1 a therapeutic target? Effects of carbenoxolone in lean and obese Zucker rats. J Pharmacol Exp Ther 2003;305(1):167–172.

    PubMed  CAS  Google Scholar 

  141. Barf T, Vallgarda J, Emond R et al. Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11beta-hydroxysteroid dehydrogenase type 1. J Med Chem 2002;45(18):3813–3815.

    PubMed  CAS  Google Scholar 

  142. Alberts P, Nilsson C, Selen G et al. Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 2003;144(11):4755–4762.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Stimson, R.H., Walker, B.R. (2007). 11β-Hydroxysteroid Dehydrogenase Type 1 and Obesity. In: Donohoue, P.A. (eds) Energy Metabolism and Obesity. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-139-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-139-4_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-671-9

  • Online ISBN: 978-1-60327-139-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics