Skip to main content

Abstract

Concerns about the deleterious consequences of oral creatine (Cr) supplementation were initiated in Spring 1998. Two British nephrologists published a paper in “The Lancet” suggesting that there is “strong circumstantial evidence that Cr was responsible for the deterioration in renal function” (1) (details given in Section 3.3.2). Three days after this publication a French sport newspaper “L’Equipe” (28th April 1998) stressed that Cr is dangerous for the kidneys, in any condition. This news was handed over to several European newspapers. Cr became the champion’s viagra with eventual death! Indeed, Pritchard and Kalra commented on the case of three American college wrestlers who died (1). This later turned out to be false and the Food and Drug Administration (FDA) ruled out Cr supplementation as a primary cause of the deaths of these young athletes (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pritchard NR, Kalra PA. Renal dysfunction accompanying oral creatine supplements. Lancet 1998; 351:1252–1253.

    Article  PubMed  CAS  Google Scholar 

  2. Farquhar WB, Zambraski EJ. Effects of creatine use on the athlete’s kidney. Curr Sports Med Reports 2002; 1:103–106.

    Google Scholar 

  3. Juhn MS, Tarnopolsky M. Potential side effects of oral creatine supplementation: a critical review. Clin J Sport Med 1998; 8:298–304.

    PubMed  CAS  Google Scholar 

  4. American College of Sports Medicine. The physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc 2000; 32:706–717.

    Article  Google Scholar 

  5. European Food Safety Acency. Creatine monohydrate for use in foods for particular nutrional uses (Question number EFSA-Q-2003-125). EFSA J 2004; 36:1–6.

    Google Scholar 

  6. Agence Française de Sécurité Sanitaire et Alimentaire, Avis relatif à la publicité portant sur des substances de développement musculaire et de mise en forme contenue dans un magazune spécialisé. AFSSA. (Saisines 2003-SA-0385 & 2003-SA-0386) 2004; 1–3. http://www.afssa.fr.

    Google Scholar 

  7. Wyss M. Writing about creatine: is it worth the risk? Toxicol Lett 2004; 152:273, 274.

    Article  PubMed  CAS  Google Scholar 

  8. Francaux M, Poortmans J. Effects of training and creatine supplement on muscle strength and body mass. Eur J Appl Physiol 1999; 80:165–168.

    Article  CAS  Google Scholar 

  9. Green A, Hultman E, MacDonald I, Sewell S, Greenhaff P. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol 1996; 271:E821–E826.

    PubMed  CAS  Google Scholar 

  10. Robinson TM, Sewell DA, Hultman E, Greenhaff PL. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol 1999; 87:598–604.

    PubMed  CAS  Google Scholar 

  11. Steenge GR, Lambourne J, Casey A, MacDonald IA, Greenhaff PL. The stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 1998; 275:E974–E979.

    PubMed  CAS  Google Scholar 

  12. Willott CA, Young ME, Leighton B, et al. Creatine uptake in isolated soleus muscle: kinetics and dependence on sodium, but not on insulin. Acta Physiol Scand 1999; 166:99–104.

    Article  PubMed  CAS  Google Scholar 

  13. Hultman E, Söderlund K, Timmons J, Cederblad G, Greenhaff P. Muscle creatine loading in men. J Appl Physiol 1996; 81:232–237.

    PubMed  CAS  Google Scholar 

  14. Ziegenfuss T, Lemon P, Rogers M, Ross R, Yarasheski K. Acute creatine ingestion: effects on muscle volume, anaerobic power, fluid volumes and protein turnover. Med Sci Sports Exerc 1997; 29:S127.

    Google Scholar 

  15. Bemben MG, Bemben DA, Loftiss DD, Knehans AW. Creatine supplementation during resistance training in college football athletes. Med Sci Sport Exerc 2001; 33:1667–1673.

    Article  CAS  Google Scholar 

  16. Burke DG, Chilibeck PD, Parise G, Candow DG, Mahoney D, Tarnopollsky MA. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med Sci Sport Exerc 2003; 35:1946–1955.

    Article  CAS  Google Scholar 

  17. Rawson ES, Clarkson PM. Acute creatine supplementation in older men. Int J Sports Med 2000; 21:71–75.

    Article  PubMed  CAS  Google Scholar 

  18. Ziegenfuss TN, Lower LM, Lemon P. Acute fluid volume changes in men during three days of creatine supplementation. J Exerc Physiol 1998; 1:1–7.

    Google Scholar 

  19. Guimbal C, Kilimann M. A Na+ dependent creatine transporter in rabbit brain, muscle, heart, and kidney. J Biol Chem 1993; 268:8418–8421.

    PubMed  CAS  Google Scholar 

  20. Ingwall J, Morales M, Stockdale F. Creatine and the control of myosin synthesis in differentiating skeletal muscle. Proc Natl Acad Sci 1972; 69:2250–2253.

    Article  PubMed  CAS  Google Scholar 

  21. Ingwall J, Weiner C, Morales M, Davus E, Stockdale F. Specificity of creatine in the control of muscle protein synthesis. J Cell Biol 1974; 63:145–151.

    Article  Google Scholar 

  22. Ingwall J, Wildenthal K. Role of creatine in the regulation of cardiac synthesis. J Cell Biol 1976; 68:159–163.

    Article  PubMed  CAS  Google Scholar 

  23. Louis M, Awede B, Lebacq J, Francaux M. Effect of creatine and guanidino-propionic acid on myotube growth. Med Sci Sport Exerc 2001; 33:S67.

    Google Scholar 

  24. Vierck JL, Icenoggle DL, Bucci L, Dodson MV. The effects of ergogenic compounds on myogenic satellite cells. Med Sci Sport Exerc 2003; 35:769–776.

    Article  CAS  Google Scholar 

  25. Dangott B, Schultz E, Mozdiak PE. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sport Nutr 2000; 20:13–16.

    Article  Google Scholar 

  26. Flisinska-Bojanowska A. Effects of oral creatine administration on skeletal muscle protein and creatine levels. Biol Sport 1996; 13:39–46.

    Google Scholar 

  27. Brannon T, Adams G, Conniff C, Baldwin K. Effects of creatine loading and training on running performance and biochemical properties of rat skeletal muscle. Med Sci Sports Exerc 1997; 29:489–495.

    PubMed  CAS  Google Scholar 

  28. Fry D, Morales M. A reexamination of the effects of creatine on muscle protein synthesis in tissue culture. Acta Physiol Scand 1995; 153:207–209.

    Article  Google Scholar 

  29. Laskowski M, Chevli R, Titch C. Biochemical and ultrastructural changes in skeletal muscle induced by a creatine antagonist. Metabolism 1981; 30:1080–1085.

    Article  PubMed  CAS  Google Scholar 

  30. Van Deursen J, Jap P, Heerschap H, ter Laak H, Ruitenbeek W, Wieringa B. Effects of the creatine analogue β-guanidopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. Biochim Biophys Acta 1994; 1185:327–335.

    Article  PubMed  Google Scholar 

  31. Adams G, Bodell P, Baldwin K. Running performance and cardiovascular capacity are not impaired in creatine-depleted rats. J Appl Physiol 1995; 79:1002–1007.

    PubMed  CAS  Google Scholar 

  32. Adams G, Haddad F, Baldwin K. Interaction of chronic creatine depletion and muscle unloading: effects on postural and locomotor muscles. J Appl Physiol 1994; 77:1198–1205.

    PubMed  CAS  Google Scholar 

  33. Louis M, Raymackers JM, Debaix H, Lebacq J, Francaux M. Effect of creatine supplementation on skeletal muscle of mdx mice. Muscle Nerve 2004; 29(5):687–692.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy M, Stephenson DG, Lamb GD. Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle. Am J Physiol 2004; 287:C1589–C1595.

    Article  CAS  Google Scholar 

  35. Bessman S, Savabi F. The role of the phosphocreatine energy shuttle in exercise and muscle hypertrophy, in Biochemistry of Exercise VII. Taylor A., et al. (eds.), Human Kinetics: Champaign (USA), 1990, pp. 167–178.

    Google Scholar 

  36. Berneis K, Ninnis R, Haussinger H, Keller U. Effects of hyper-and hypoosmolality on whole body protein and glucose kinetics in humans. Am J Physiol 1999; 276:E188–E195.

    PubMed  CAS  Google Scholar 

  37. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger H. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247–306.

    PubMed  CAS  Google Scholar 

  38. Parise G, Mihic S, MavLennon D, Yarasheski K, Tarnopolsky MA. Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. J Appl Physiol 2001; 91:1041–1047.

    PubMed  CAS  Google Scholar 

  39. Louis M, Poortmans JR, Francaux M, et al. Creatine supplementation has no effect on human muscle protein turnover at rest in the postabsorptive or fed states. Am J Physiol 2003; 284:E764–E770.

    CAS  Google Scholar 

  40. Louis M, Poortmans JR, Francaux M, et al. No effect of creatine supplementation on human myoflbrillar and sarcoplasmic protein synthesis after resistance exercise. Am J Physiol 2003; 285:E1089–E1094.

    CAS  Google Scholar 

  41. Paddon-Jones D, Bornsheim E, Wolfe RR. Potential ergogenic effects of arginine and creatine supplementation. J Nutr 2004; 134:2888S–2894S.

    PubMed  CAS  Google Scholar 

  42. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effect of nutrition. Ann Rev Physiol 2000; 20:457–463.

    CAS  Google Scholar 

  43. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sport Exerc 2001; 33:1674–1681.

    Article  CAS  Google Scholar 

  44. Deldicque L, Louis M, Theisen D, et al. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sport Exerc 2005; 37:731–736.

    Article  CAS  Google Scholar 

  45. Tarnopolsky M, Parise G, Fu MH, et al. Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol Cell Biochem 2003; 244:159–166.

    Article  PubMed  CAS  Google Scholar 

  46. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sport Exerc 2003; 35:923–929.

    Article  CAS  Google Scholar 

  47. Olsen S, Aagaard P, Kadi F, et al. Creatine supplementation augments the increase in satelitte cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 2006; 573:525–534.

    Article  PubMed  CAS  Google Scholar 

  48. Hespel P, Op’t Eijnde B, Van Leemputte M, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 2001; 536:625–633.

    Article  PubMed  CAS  Google Scholar 

  49. Op’t Eijnde B, Derave W, Wojtaszewski JFP, Richter EA, Hespel P. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation. J Appl Physiol 2005; 98:1228–1233.

    Article  CAS  Google Scholar 

  50. Kreider R, Ferreira M, Wilso M, Grindstaff P, Plisk S, Reinardy J. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc 1998; 30:73–82.

    PubMed  CAS  Google Scholar 

  51. Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Long-term creratine intake is beneficial to muscle performance during resistance training. J Appl Physiol 1997; 83:2055–2063.

    PubMed  CAS  Google Scholar 

  52. Juhn MS, O’Kane JW, Vinci DM. Oral creatine supplementation in male collegiate athletes: a survey of dosing habits and side effects. J Am Diet Assoc 1999; 99:593–595.

    Article  PubMed  CAS  Google Scholar 

  53. Greenwood M, Kreider RB, Melton C, et al. Creatine supplementation during college footbal training does not increase the incidence of cramping or injury. Mol Cell Biochem 2003; 244:83–88.

    Article  PubMed  CAS  Google Scholar 

  54. Gotschalk LA, Volek JS, Staron RS, Denegar CR, Hagerman F, Kraemer WJ. Creatine supplementation improves muscular performance in older men. Med Sci Sport Exerc 2002; 34:537–543.

    Article  Google Scholar 

  55. Greenhaff P. Renal dysfunction accompanying oral creatine supplements. Lancet 1998; 352:233.

    Article  PubMed  CAS  Google Scholar 

  56. Almada A, Mitchell T, Earnest C. Impact of chronic creatine supplementation on serum enzyme concentration. FASEB J 1996; 10:A791.

    Google Scholar 

  57. Earnest C, Almada A, Mitchell T. Influence of chronic creatine supplementation on hepatorenal function. FASEB J 1996; 10:A790.

    Google Scholar 

  58. Kamber M, Koster M, Kreis R, Walker G, Boesch C, Hoppeler H. Creatine supplementation — Part I: performance, clinical chemistry, and muscle volume. Med Sci Sport Exerc 1999; 31:1763–1769.

    Article  CAS  Google Scholar 

  59. Kreider RB. Species-specific responses to creatine supplementation. Am J Physiol 2003; 285:R725–R726.

    CAS  Google Scholar 

  60. Mayhew DL, Mayhew JL, Ware JS. Effects of long-term creatine supplementation on liver and kidney functions in American college football players. Int J Sport Nutr Ex Metabol 2002; 12:453–460.

    CAS  Google Scholar 

  61. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA. The effect of creatine supplementation on blood presure, plasma creatine kinase, and body composition. FASEB J 1998; 12:A652.

    Google Scholar 

  62. Poortmans JR, Francaux M. Adverse effects of creatine supplementation: Fact or fiction? Sports Med 2000; 30:155–170.

    Article  PubMed  CAS  Google Scholar 

  63. Robinson TM, Sewell DA, Casey A, Steenge GR, Greenhaff PL. Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. Br J Sports Med 2000; 34:284–288.

    Article  PubMed  CAS  Google Scholar 

  64. Schilling BK, Stone MH, Utter A, et al. Creatine supplementation and health variables: a retrospective study. Med Sci Sport Exerc 2001; 33:183–188.

    Article  CAS  Google Scholar 

  65. Duarte JA, Neuparth MJ, Soares JMC, Appell HJ. Oral creatine supplementation and liver metabolism. Int J Sports Med 1999; 20:S50.

    Google Scholar 

  66. Keys S, Tyminski M, Davis J, Bacon C, Bengiovanni J, Hussin A. The effects of long-term creatine supplementation on liver architecture in mice. Med Sci Sport Exerc 2001; 33:S206.

    Google Scholar 

  67. Tarnopolsky M, Bourgeois JM, Snow RJ, et al. Histological assessment of intermediate-and long-term creatine monohydrate supplementation in mice and rats. Am J Physiol 2003; 285:R762–R769.

    CAS  Google Scholar 

  68. Jowko E, Ostraszewski P, Jank M, Sacharuk J, Zieniewicz J, Nissen S. Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during weight-training program. Nutrition 2001; 17:558–566.

    Article  PubMed  CAS  Google Scholar 

  69. Kreider RB, Melton C, Rasmussen C, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem 2003; 244:95–104.

    Article  PubMed  CAS  Google Scholar 

  70. Poortmans J, Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc 1999; 31:1108–1110.

    Article  PubMed  CAS  Google Scholar 

  71. Poortmans JR, Francaux M. Renal dysfunction accompanying oral creatine supplements—reply. Lancet 1998; 352:234.

    Article  PubMed  CAS  Google Scholar 

  72. Tarnopolsky MA, Parise G, Yardley NJ, Ballantyne CS, Olatinji S, Phillips SM. Creatine-dextrose and protein-dextrose induce similar strength gains during training. Med Sci Sport Exerc 2001; 33:2044–2052.

    Article  CAS  Google Scholar 

  73. Engelhardt M, Neumann G, Berbalk A, Reuter I. Creatine supplementation in endurance sports. Med Sci Sports Exerc 1998; 30:1123–1129.

    Article  PubMed  CAS  Google Scholar 

  74. Rawson ES, Gunn B, Clarkson PM. The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res 2001; 15:178–184.

    Article  PubMed  CAS  Google Scholar 

  75. Santos RVT, Bassit RA, Caperuro EC, Costa Rosa LFBP. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci 2004; 75:1917–1924.

    Article  PubMed  CAS  Google Scholar 

  76. Chanutin A. The fate of creatine when asministered to man. J Biol Chem 1926; 67:29–41.

    CAS  Google Scholar 

  77. Rose WC, Ellis RH, Helming OC. The transformation of creatine into creatinine by the male and female organism. J Biol Chem 1928; 77:171–184.

    CAS  Google Scholar 

  78. Hyde E. Creatine feeding and creatine-creatinine excretion in males and females of different age groups. J Biol Chem 1942; 143:301–310.

    CAS  Google Scholar 

  79. Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 1975; 105:428–438.

    PubMed  CAS  Google Scholar 

  80. Hoberman HD, Sims EAH, Peters JH. Creatine ans creatinine metabolism in the normal male adult studied with the aid of isotopic nitrogen. J Biol Chem 1948; 172:45–58.

    PubMed  CAS  Google Scholar 

  81. Huso ME, Hampl JS, Johnston CS, Swan PD. Creatine supplementation influences substrate utilization at rest. J Appl Physiol 2002; 93:2018–2022.

    PubMed  CAS  Google Scholar 

  82. Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, Gorostiaga EM. Effects of creatine supplementation on muscle power, endurance, ans sprint performance. Med Sci Sport Exerc 2002; 34:332–343.

    Article  CAS  Google Scholar 

  83. Mujika I, Padilla S, Ibanez J, Izquierdo M, Gorostiaga EM. Creatine supplementation and sprint performance in soccer players. Med Sci Sport Exerc 2000; 32:518–525.

    Article  CAS  Google Scholar 

  84. Peyrebrune MC, Nevill ME, Donaldson FD, Cosford DJ. The effects of oral creatine supplementation on performance in single and repeated sprint swimming. J Sports Sci 1998; 16:271–279.

    Article  PubMed  CAS  Google Scholar 

  85. Rossiter HB. The effect of oral creatine supplementation on the 1000m performance of competitive rowers. J Sports Sci 1996; 14:175–179.

    Article  PubMed  CAS  Google Scholar 

  86. Poortmans JR, Auquier H, Renaut V, Durussel A, Saugy M, Brisson G. Effects of short-term creatine supplementation on renal responses in men. Eur J Appl Physiol 1997;76:566, 567.

    Article  CAS  Google Scholar 

  87. Rockwell JA, Rankin JW, Toderico B. Creatine supplementation affects muscle creatine during energy restriction. Med Sci Sport Exerc 2001; 33:61–68.

    Article  CAS  Google Scholar 

  88. Volek JS, Mazzetti SA, Farquhar WB, Barnes BR, Gomez AL, Kraemer WJ. Physiological responses to short-term exercise in the heat after creatine loading. Med Sci Sport Exerc 2001; 33:1101–1108.

    Article  CAS  Google Scholar 

  89. Havenetidis K, Bourdas D. Creatine supplementation: effects on urinary excretion and anaerobic performance. J Sports Med Phys Fitness 2003; 43:347–355.

    PubMed  CAS  Google Scholar 

  90. Bermon S, Venembre P, Sachet C, Valour S, Dolisi C. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol Scand 1998; 164:147–155.

    Article  PubMed  CAS  Google Scholar 

  91. Maganaris C, Maughan R. Creatine supplementation enhances maximum volunbtary isometric force and endurance capacity in resistance trained men. Acta Physiol Scand 1998; 163:279–287.

    Article  PubMed  CAS  Google Scholar 

  92. Burke DG, Chilibeck PD, Davison KS, Candow DG, Farthing JP, Smith-Palmer T. The effect of wey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr 2001; 11:349–364.

    CAS  Google Scholar 

  93. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci 1992; 83:367–374.

    PubMed  CAS  Google Scholar 

  94. Kilduff LP, Vidakovic P, Cooney G, et al. Effects of creatine on isometric bench∧press performance in resistance-trained humans. Med Sci Sport Exerc 2002; 34:1176–1183.

    Article  CAS  Google Scholar 

  95. Poortmans JR, Kumps A, Duez P, Fofonka A, Carpentier A, Francaux M. Effect of oral creatine supplementation on urinary methylamine, formaldehyde, and formate. Med Sci Sport Exerc 2005; 37:1717–1720.

    Article  CAS  Google Scholar 

  96. Rawson ES, Clarkson PM, Price TB, Miles MP. Differential response of muscle phosphocreatine to creatine supplementation in young and old subjects. Acta Physiol Scand 2002; 174:57–65.

    Article  PubMed  CAS  Google Scholar 

  97. Steenge GR, Simpson EJ, Greenhaff PL. Protein-and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol 2000; 89:1165–1171.

    PubMed  CAS  Google Scholar 

  98. Vandenberghe K, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Phosphocreatine resynthesis is not affected by creatine loading. Med Sci Sport Exerc 1999; 31:236–242.

    Article  CAS  Google Scholar 

  99. Kuehl K, Goldberg L, Elliott D. Letter to the Editor-in-chief. Re: Long-term oral creatine supplementation does not impair renal function in healthy athletes. Med Sci Sports Exerc 2000; 32:248.

    Article  PubMed  CAS  Google Scholar 

  100. Kuehl K, Koehler S, Dulacki K, et al. Effects of oral creatine monohydrate supplementation on renal function in adults. Med Sci Sports Exerc 2000; 32:S168.

    Google Scholar 

  101. Kreider R, Ransom J, Rasmussen C, et al. Creatine supplementation during preseason football training does not affect markers of renal function. FASEB J 1999; 13:A543.

    Google Scholar 

  102. Kreider R, Rasmussen C, Melton C, et al. Long-term creatine supplementation does not adversely affect clinical markers of health. Med Sci Sports Exerc 2000; 32:S134.

    Google Scholar 

  103. Evans G, Greaves I. Microalbuminuria as predictor of outcome. Brit Med J 1999; 318:207, 208.

    PubMed  CAS  Google Scholar 

  104. Camamori ML, Fioretto M. The need for early predictors of diabetic nephrpathy risk. Diabetes 2000; 49:1399–1408.

    Article  Google Scholar 

  105. Mattock MB. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992; 41:736–741.

    Article  PubMed  CAS  Google Scholar 

  106. Mogensen CE. Prediction in clinical diabetic nephrpoathy in IDDM patients. Diabetes 1990; 39:761–767.

    Article  PubMed  CAS  Google Scholar 

  107. Groeneveld GJ, Beijer C, Veldink JH, Kalmijn S, Wokke JHJ, Van den Berg LH. Few adverse effects of long-term creatine supplementation in a placebo-controlled trial. Eur J Sports Med 2005; 26:307–313.

    Article  CAS  Google Scholar 

  108. Edmunds JW, Jayapalan S, DiMarco NM, Saboorian MH, Aukema HM. Creatine supplementation increases renal disease progression in Han:SPRD-cy rats. Am J Kidney Dis 2001; 37:73–79.

    Article  PubMed  CAS  Google Scholar 

  109. Taes YEC, Delanghe JR, Wuyts B, Van de Voorde J, Lameire NH. Creatine supplementation does not affect kidney function in an animal model with pre-existing renal failure. Nephrol Dial Transplant 2003; 18:258–264.

    Article  PubMed  CAS  Google Scholar 

  110. Ferreira LG, Bergamaschi CT, Lazaretti-Castro M, Heilberg IP. Effects of creatine supplementation on body composition and renal function in rats. Med Sci Sport Exerc 2005; 37:1525–1529.

    Article  CAS  Google Scholar 

  111. Koshy KM, Griswold E, Schneeberger EE. Interstitial nephritis in a patient taking creatine. New Engl J Med 1999; 340:814, 815.

    Article  PubMed  CAS  Google Scholar 

  112. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 803):1107–1213.

    PubMed  CAS  Google Scholar 

  113. Yu PH, Zuo DM. Formaldehyde produced endogenously via deamination of methylamine. A potential risk factor for initiation of endothelial injury. Atherosclerosis 1996; 1201–2):189–197.

    Article  PubMed  CAS  Google Scholar 

  114. Deng Y, Boomsma F, Yu PH. Deamination of methylamine and aminoacetone increases aldehydes and oxidative stress in rats. Life Sci 1998; 63(23):2049–2058.

    Article  PubMed  CAS  Google Scholar 

  115. Mitchell SC, Zhang AQ. Methylamine in human urine. Clin Chim Acta 2001; 312(1–2):107–114.

    Article  PubMed  CAS  Google Scholar 

  116. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Haberle D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 2003; 16471–2):193–199.

    PubMed  CAS  Google Scholar 

  117. Headlam HA, Mortimer A, Easton CJ. Beta-scission of C-3 (beta carbon) alkoxyl radicals on peptides and proteins: a novel pathway which results in the formation of alpha-carbon radicals and the loss of amino acid side chains. Chem Res Toxicol 2000; 13:1087–1095.

    Article  PubMed  CAS  Google Scholar 

  118. Quievryn G, Zhitkovich A. Loss of DNA-protein crosslinks from formaldehydeexposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteasome function. Carcinogenesis 2000; 21:1573–1580.

    Article  PubMed  CAS  Google Scholar 

  119. Yu PH, Deng Y. Potential cytotoxic effect of chronic administration of creatine, a nutrition supplement to augment athletic performance. Med Hypotheses 2000; 54(5):726–728.

    Article  PubMed  CAS  Google Scholar 

  120. Kapeller-Adler R, Toda K. Uber das vorkommen von monomethylamin im harn. Biochem Z 1932; 248:403–425.

    CAS  Google Scholar 

  121. Boeniger MF. Formate in urine as a biological indicator of formaldehyde exposure: a review. Am Ind Hyg Assoc J 1987; 4811):900–908.

    PubMed  CAS  Google Scholar 

  122. Berode M, Sethre T, Laubli T, Savolainen H. Urinary methanol and formic acid as indicators of occupational exposure to methyl formate. Int Arch Occup Environ Health 2000; 736):410–414.

    Article  PubMed  CAS  Google Scholar 

  123. Kage S, Kudo K, Ikeda H, Ikeda N. Simultaneous determination of formate and acetate in whole blood and urine from humans using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 8051):113–117.

    Article  PubMed  CAS  Google Scholar 

  124. Schmidt FH. [Faulty measurement of urinary glucose concentration by polarization]. Dtsch Med Wochenschr 1967; 92(44):2025–2027.

    Article  PubMed  CAS  Google Scholar 

  125. Yu PH, Zuo DM. Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells. Possible consequences for diabetes. Diabetes 1993; 424):594–603.

    Article  PubMed  CAS  Google Scholar 

  126. Garpenstrand H, Bergqvist M, Brattstrom D, et al. Serum semicarbazide-sensitive amine oxidase (SSAO) activity correlates with VEGF in non-small-cell lung cancer patients. Med Oncol 2004; 213):241–250.

    Article  PubMed  CAS  Google Scholar 

  127. Kinemuchi H, Sugimoto H, Obata T, Satoh N, Ueda S. Selective inhibitors of membrane-bound semicarbazide-sensitive amine oxidase (SSAO) activity in mammalian tissues. Neurotoxicology 2004; 25(1–2):325–335.

    Article  PubMed  CAS  Google Scholar 

  128. Remuzzi G, Weening JJ. Albuminuria as early test for vascular disease. Lancet 2005; 3659459):556, 557.

    PubMed  Google Scholar 

  129. Soffritti M, Belpoggi F, Lambertin L, Lauriola M, Padovani MM, Maltoni C. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann N Y Acad Sci 2002; 982:87–105.

    PubMed  CAS  Google Scholar 

  130. Gooderham NJ, Murray S, Lynch AM, et al. Food-derived heterocyclic amine mutagens: Variable metabolism and significance to humans. Drug Metabol Disposition 2001; 29:529–534.

    CAS  Google Scholar 

  131. Knize MG, Salmon CP, Pais P, Felton JS. Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv Exp Med Biol 1999; 459:179–193.

    PubMed  CAS  Google Scholar 

  132. Heddle JA, Knize MG, Dawod D, Zhang XB. A test of the mutagenicity of cooked meats in vivo. Mutagenesis 2001; 16:103–107.

    Article  PubMed  CAS  Google Scholar 

  133. Wyss M, Schulze A. Health implications of creatine: Can oral creatine supplementation protect against neurological and atherosclerotic disease? Neurosience 2002; 112:243–260.

    Article  CAS  Google Scholar 

  134. Derave W, Vanden Eede E, Hespel P, Carmella SG, Hecht DS. Oral creatine supplementation in humans does not elevate urinary excretion of the carcinogen N-nitrososarcosine. Nutrition 2006; 22:332, 333.

    Article  PubMed  CAS  Google Scholar 

  135. Friesen MD, Rothman N, Strickland PT. Concentration of 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) in urine and alkali-hydrolyzedn urine after consumption of charbroiled beef. Cancer Lett 2001; 173:43–51.

    Article  PubMed  CAS  Google Scholar 

  136. Knize MG, Kulp KS, Malfatti MA, Salmon CP, Felton JS. Liquid chromatography-tandem mass spectrometry method of urine analysis for determining human variation in carcinogen metabolism. J Chromatogr 2001; 914:95–103.

    Article  CAS  Google Scholar 

  137. Knize MG, Kulp KS, Salmon CP, Keating GA, Felton JS. Factors affecting human heterocyclic amine intake and the metabolism of PhIP. Mutation Res 2002; 9377:1–10.

    Google Scholar 

  138. Toribio F, Moyano E, Puignou L, Galceran MT. Ion-trap tandem mass spectrometry for the determination of heterocyclic amines in food. J Chromatogr 2002; 948:267–281.

    Article  CAS  Google Scholar 

  139. Poortmans JR, Francaux M. Renal implications of exogenous creatine monohydrate supplementation. Am J Med Sports 2002; 4:212–216.

    Google Scholar 

  140. Balsom P, Ekblom B, Söderlund K, Sjödin B. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports 1993; 3:143–149.

    Article  Google Scholar 

  141. Balsom P, Harridge S, Söderlund K, Sjödin B, Ekblom B. Creatine supplementaion per se does not enhance endurance exercise performance. Acta Physiol Scand 1993; 149:521–523.

    Article  PubMed  CAS  Google Scholar 

  142. Greenhaff P, Bodin K, Söderlund K, Hutman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 1994; 266:E724–E730.

    Google Scholar 

  143. Stroud M, Holliman D, Bell D, Green A, Macdonald I, Greenhaff P. Effect of oral creatine supplementation on respiratory gas exchange and blood lactate accumulation during steady-stade incremental treadmill exercise znd recovery in man. Clin Sci 1994; 87:707–710.

    PubMed  CAS  Google Scholar 

  144. Balsom P, Söderlund K, Sjödin B, Ekblom B. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 1995; 154:303–310.

    Article  PubMed  CAS  Google Scholar 

  145. Dawson B, Cutler M, Moody A, Lawrence S, Goodman C, Randall N. Effects of oral creatine loading on single and repeated maximal short sprints. Aust J Sci Med Sport 1995; 27:56–61.

    PubMed  CAS  Google Scholar 

  146. Mujika I, Chatard J, Lacoste L, Barale F, Geyssant A. Creatine supplementation does not improve sprint performance in competitive swimmers. Med Sci Sports Exerc 1996; 28:1435–1441.

    PubMed  CAS  Google Scholar 

  147. Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vangerven L, Hespel P. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 1996; 80(452–457).

    Google Scholar 

  148. Becque M, Lochmann J, Melrose D. Effect of creatine supplementation during strength training on 1-RM and body composition. Med Sci Sports Exerc 1997; 29:S146.

    Google Scholar 

  149. Godly A, Yates J. Effects of creatine supplementation on endurance cycling combined with short, high-intensity bouts. Med Sci Sports Exerc 1997; 29:S251.

    Google Scholar 

  150. Grindstaff P, Kreider R, Bishop R, et al. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int J Sports Nutr 1997; 7:330–346.

    CAS  Google Scholar 

  151. Hamilton-Ward K, Meyers M, Skelly W, Marley R, Saunders J. Effect of creatine supplementation on upper extremity anaerobic response in females. Med Sci Sports Exerc 1997; 29:S146.

    Google Scholar 

  152. Prevost M, Nelson A, Morris G. Creatine supplementation enhances intermittent work performance. Res Quart Exerc Sport 1997; 68:233–240.

    CAS  Google Scholar 

  153. Stout J, Echerson J, Nooman D, Moore G, Cullen D. The effects of a supplement designed to augment creatine uptake on exercise performance and fat free mass in football players. Med Sci Sports Exerc 1997; 29:S251.

    Google Scholar 

  154. Terrillion K, Kolkhorst F, Dolgener F, Joslyn S. The effect of creatine supplementation on two 700-m maximal running bouts. Int J Sport Nutr 1997; 7:138–143.

    PubMed  CAS  Google Scholar 

  155. Ööpik V, Pääsuke M, Timpmann S, Medijainen L, Ereline J, Smirnova T. Effect of creatine supplementation during rapid body mass reduction on metabolism and isokinetic muscle performance capacity. Eur J Appl Physiol 1998; 78:83–92.

    Article  Google Scholar 

  156. Snow R, McKenna M, Selig S, Kemp J, Stathis C, Zhao S. Effect of creatine supplementation on sprint exercise performance and muscle metabolism. J Appl Physiol 1998; 84:1667–1673.

    PubMed  CAS  Google Scholar 

  157. Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc 1999; 31:1147–1156.

    Article  PubMed  CAS  Google Scholar 

  158. Ööpik V, Timpmann S, Medijainen L. Metabolic effect of creatine supplementation with or without a concomitant reduction in body weight. J Sports Sci 1999; 17:560–561.

    Google Scholar 

  159. Urbanski RL, Loy SF, Vincent WJ, Yaspelkis BB, III. Creatine supplementation differentially affects maximal isometric strength and time to fatigue in large and small muscle groups. Int J Sports Nutr 1999; 9:136–145.

    CAS  Google Scholar 

  160. Becque MD, Lochmann JD, Melrose DR. Effects of oral creatine supplementation on muscular strength and body composition. Med Sci Sport Exerc 2000; 32:654–658.

    Article  CAS  Google Scholar 

  161. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sport Exerc 2000; 32:291–296.

    Article  CAS  Google Scholar 

  162. Rico-Sanz J, Mendez Marco MT. Cretaine enhances oxygen uptake and performance during alterning intensity exercise. Med Sci Sport Exerc 2000; 32:379–385.

    Article  CAS  Google Scholar 

  163. Shomrat A, Weinstein Y, Katz A. Effect of creratine feeding on maximal exercise performance in vegetarians. Eur J Appl Physiol 2000; 82:321–325.

    Article  PubMed  CAS  Google Scholar 

  164. Deutekom M, Beltman JG, de Ruiter CJ, de Koning JJ, de Haan A. No acute effects of short-term creatine supplementation on muscle properties and sprint performance. Eur J Appl Physiol 2000; 82:223–229.

    Article  PubMed  CAS  Google Scholar 

  165. Bennett T, Bathalon G, Armstrong DR, et al. Effect of creatine on performance of militarily relevant tasks and soldier health. Mil Med 2001; 166:996–1002.

    PubMed  CAS  Google Scholar 

  166. Finn JP, Ebert TR, Withers RT, et al. Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. Eur J Appl Physiol 2001; 84:238–243.

    Article  PubMed  CAS  Google Scholar 

  167. Skare O-C, Skadberg O, Wisnes AR. Cretaine supplementation improves sprint performance in male sprinters. Scand J Med Sci Sports 2001; 11:96–102.

    Article  PubMed  CAS  Google Scholar 

  168. Wilder N, Deivert RG, Hagerman F, Gilders R. The effects of low-dose creatine supplementation versus creatine loading in collegiate football players. J Athletic Training 2001; 36:124–129.

    Google Scholar 

  169. Ziegenfuss TN, Rogers M, Lowery L, et al. Effect of creatine loading on anaerobic performance and skeletal muscle volume in NCAA division I athletes. Nutrition 2002; 18:397–402.

    Article  PubMed  CAS  Google Scholar 

  170. Saab G, Marsh GD, Casselman MA, Thompson RT. Changes in human muscle transverse relaxation following short-term creatine supplementation. Exper Physiol 2002; 87:383–389.

    Article  CAS  Google Scholar 

  171. van Loon LJC, Ooosterlaar AM, Hartgens F, Hesselink MKC, Snow RJ, Wagenmakers AJM. Effects of creatine loading and prolonged creatine supplementation on body composition, fuel selection, sprint and endurance performance un humans. Clin Sci 2003; 104:153–162.

    Article  PubMed  Google Scholar 

  172. Mendes RR, Pires I, Oliveira A, Tirapegui J. Effects of creatine supplementation on the performance and body composition of competitive swimmers. J Nutr Biochem 2004; 15:473–478.

    Article  PubMed  CAS  Google Scholar 

  173. Rosene JM, Whitman SA, Fogarty TD. A comparison of thermoregulation with creatine supplementation between the sexes in a thermoneutral environment. J Athletic Training 2004; 39:50–55.

    Google Scholar 

  174. McConell GK, Shinewell J, Stephens TJ, Stahis CG, Canny BJ, Snow RJ. Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sport Exerc 2005; 37:2054–2061.

    Article  CAS  Google Scholar 

  175. Peyrebrune MC, Stokes K, Hall GM, Nevill ME. Effect of creatine supplementation on training for competition in elite swimmers. Med Sci Sport Exerc 2005; 37:2140–2147.

    Article  CAS  Google Scholar 

  176. Earnest C, Snell P, Rodriguez R, Almada A, Mitchel T. The effect of creatine monohydrate ingstion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand 1995; 153:207–209.

    Article  PubMed  Google Scholar 

  177. Thompson C, Kemp G, Sanderson A, et al. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers. Br J Sports Med 1996; 30:222–225.

    Article  PubMed  CAS  Google Scholar 

  178. Goldberg P, Bechtel P. Effects of low dose creatine supplementation on strength, speed and power events by male athletes. Med Sci Sports Exerc 1997; 29:S251.

    Google Scholar 

  179. Kirksey K, Warren B, Stone MH, Stone MR, Johnson R. The effect of six weeks of creatine monohydrate supplementation in male and female track athletes. Med Sci Sport Exerc 1997; 29:S145.

    Google Scholar 

  180. Volek J, Kraemer W, Bush J, et al. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J Am Diet Assoc 1997; 97:765–770.

    Article  PubMed  CAS  Google Scholar 

  181. Leenders N, Sherman WM, Lamb DR, Nelson TE. Creatine supplementation and swimming performance. Int J Sports Nutr 1999; 9:251–262.

    CAS  Google Scholar 

  182. Stone MH, Sanborn K, Smith LL, et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic preformance and body composition in American football players. Int J Sport Nutr 1999; 9:146–165.

    PubMed  CAS  Google Scholar 

  183. Rawson ES, Wehnert ML, Clarkson PM. Effects of 30 days of creatine ingestion in older men. Eur J Appl Physiol 1999; 80:139–144.

    Article  CAS  Google Scholar 

  184. Francaux M, Demeure R, Goudemant JF, Poortmans JR. Effect of exogenous creatine supplementation on muscle PCr metabolism. Int J Sports Med 2000; 21:1–7.

    Article  Google Scholar 

  185. Burke DG, Silver S, Holt LE, Smith-Palmer T, Culligan CJ, Chilibeck PD. The effect of continuous low dose creatine supplementation on force, power and total work. Int J Sport Nutr Exerc Metabol 2000; 10:235–244.

    CAS  Google Scholar 

  186. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG. Creatine supplementation combined with resistance training in older men. Med Sci Sport Exerc 2001; 33:2111–2117.

    Article  CAS  Google Scholar 

  187. Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric and body composition improvements following strength exercise training in older adults. J Geront A Biol Sci Med Sci 2003; 58:11–19.

    Google Scholar 

  188. Eijnde BO, Van Leemputte M, Goris M, et al. Effects of creatine supplementation and exercise training on fitness in men 55–75 yr old. J Appl Physiol 2003; 95:818–828.

    PubMed  CAS  Google Scholar 

  189. Eckerson JM, Bull AJ, Moore GA. The effect of 30 days of creatine phosphate supplementtion on body weight in men. Med Sci Sport Exerc 2003; 35:S217.

    Google Scholar 

  190. Chilibeck PD, Stride D, Farthing JP, Burke DG. Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sport Exerc 2004; 36:1781–1788.

    Article  CAS  Google Scholar 

  191. Volek JS, Ratamess NA, Rubin MR, et al. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol 2004; 91:628–637.

    Article  PubMed  CAS  Google Scholar 

  192. Brose A, Parise G, Tarnopolsky MA. Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. J Gerontol Biol Sci 2003; 58:11–19.

    Google Scholar 

  193. Schröder H, Terrados N, Tramullas A. Risk assessment of the potential side effects of long-term creatine supplementation in team sport athletes. Eur J Nutr 2005; 44:255–261.

    Article  PubMed  CAS  Google Scholar 

  194. Sandhu RS, Como JJ, Scalea TS, Betts JM. Renal failure and exercise-induced rabdomyolysis in patients taking performance-enhancing compounds. J Trauma 2002; 53:761–763.

    Article  PubMed  CAS  Google Scholar 

  195. Haghighi M, Taylor WC. Effects of oral creatine on renal function. Med Sci Sport Exerc 2003; 35:S314.

    Google Scholar 

  196. Jones EC. Creatine, nephrolithiasis, and medullary sponge kidney. Med Sci Sport Exerc 2004; 36:S330.

    Google Scholar 

  197. Boswell L, Mistry D, Okusa M, et al. Creatine supplementation does not affect renal function at rest or during exercise. Med Sci Sport Exerc 2003; 35(Suppl) S400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Poortmans, J.R., Francaux, M. (2008). Creatine Consumption in Health. In: Stout, J.R., Antonio, J., Kalman, D. (eds) Essentials of Creatine in Sports and Health. Humana Press. https://doi.org/10.1007/978-1-59745-573-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-573-2_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-690-0

  • Online ISBN: 978-1-59745-573-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics