Skip to main content

Viral, Nonviral, and Physical Methods for Gene Delivery

  • Chapter
Biopharmaceutical Drug Design and Development

Abstract

Gene transfer is an emerging therapeutic modality for a wide spectrum of diseases. Its clinical adoption is, however, limited by the lack of safe and efficient gene delivery methods. Three classes of methods are currently under evaluation. The first class consists of genetically modified viruses, which include retroviruses, adenoviruses, adeno-associated viruses, and several others. These vectors are relatively efficient. However, their clinical application is associated with significant safety concerns, such as oncogenesis and acute inflammatory response. The second class is nonviral vectors, which are composed of synthetic components. These include complexes of DNA with lipids, polymers, or their combination. Many nonviral vector formulations, which incorporate functional components to facilitate nuclease protection, cellular/tissue targeting, endosomal release, and nuclear localization, have been investigated, mostly in vitro. These efforts have resulted in incremental advances in gene transfer efficiency, requiring further improvements for clinical applications. The third class of methods is based on the use of physical energy or force. Examples are gene gun, electroporation, and magnetofection. These methods are suitable for locoregional gene delivery. In this chapter, we will provide an overview of the state-of-the-art gene transfer methods, their strengths and weaknesses, and challenges and opportunities in this critical area of research, which will, to a large extent, determine the future prospect of gene therapy in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gregersen, J. P. (2001) DNA vaccines. Naturwissenschaften 88, 504–513.

    Article  CAS  PubMed  Google Scholar 

  2. Freeman, S. M., Abboud, C. N., Whartenby, K. A., et al. (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283.

    CAS  PubMed  Google Scholar 

  3. Blaese, R. M., Culver, K. W., Miller, A. D., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480.

    Article  CAS  PubMed  Google Scholar 

  4. Schroder, A. R., Shinn, P., Chen, H., Berry, C., Ecker, J. R., and Bushman, F. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, X., Li, Y., Crise, B., and Burgess, S. M. (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  6. Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., et al. (2000) Gene therapy of human severe combined immune deficiency (SCID)-X1 disease. Science 288, 669–672.

    Article  CAS  PubMed  Google Scholar 

  7. Romano, G. (2005) Current development of lentiviral-mediated gene transfer. Drug News Perspect. 18, 128–134.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, M., Keller, B., Makalou, N., and Sutton, R. E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 12, 1893–1905.

    Article  CAS  PubMed  Google Scholar 

  9. De Palma, M., Venneri, M. A., and Naldini, L. (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum. Gene Ther. 14, 1193–1206.

    Article  PubMed  CAS  Google Scholar 

  10. Totsugawa, T., Kobayashi, N., Maruyama, M., et al. (2003) Lentiviral vector: a useful tool for transduction of human liver endothelial cells. ASAIO J. 49, 635–640.

    Article  CAS  PubMed  Google Scholar 

  11. Consiglio, A., Gritti, A., Dolcetta, D. (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proc. Natl Acad. Sci. U. S. A. 101, 14,835–14,840.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, Y., Ramezani, A., Lewis, R., Hawley, R. G., and Thomson, J. A. (2003) High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111–117.

    Article  CAS  PubMed  Google Scholar 

  13. Woods, N. B., Mikkola, H., Nilsson, E., Olsson, K., Trono, D., and Karlsson, S. (2001) Lentiviral-mediated gene transfer into haematopoietic stem cells. J. Intern. Med. 249, 339–343.

    Article  CAS  PubMed  Google Scholar 

  14. Condiotti, R., Curran, M. A., Nolan, G. P., et al. (2004) Prolonged liver-specific transgene expression by a non-primate lentiviral vector. Biochem. Biophys. Res. Commun. 320, 998–1006.

    Article  CAS  PubMed  Google Scholar 

  15. Stein, C. S., Kang, Y., Sauter, S. L., et al. (2001) In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol. Ther. 3, 850–856.

    Article  CAS  PubMed  Google Scholar 

  16. Cefai, D., Simeoni, E., Ludunge, K. M., et al. (2005) Multiply attenuated, selfinactivating lentiviral vectors efficiently transduce human coronary artery cells in vitro and rat arteries in vivo. J. Mol. Cell Cardiol. 38, 333–344.

    Article  CAS  PubMed  Google Scholar 

  17. Wong, L. F., Ralph, G. S., Walmsley, L. E., et al. (2005) Lentiviral-mediated delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat hippocampus. Mol. Ther. 11, 89–95.

    Article  CAS  PubMed  Google Scholar 

  18. Vigna, E. and Naldini, L. (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2, 308–316.

    Article  CAS  PubMed  Google Scholar 

  19. Zufferey, R., Dull, T., Mandel, R. J., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    CAS  PubMed  Google Scholar 

  20. Harui, A., Suzuki, S., Kochanek, S., and Mitani, K. (1999) Frequency and stability of chromosomal integration of adenovirus vectors. J. Virol. 73, 6141–6146.

    CAS  PubMed  Google Scholar 

  21. Kochanek, S., Schiedner, G., and Volpers, C. (2001) High-capacity ‘gutless’ adenoviral vectors. Curr. Opin. Mol. Ther. 3, 454–463.

    CAS  PubMed  Google Scholar 

  22. Kim, I. H., Jozkowicz, A., Piedra, P. A., Oka, K., and Chan, L. (2001) Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc. Natl Acad. Sci. U. S. A. 98, 13,282–13,287.

    Article  CAS  PubMed  Google Scholar 

  23. Dudley, R. W., Lu, Y., Gilbert, R., et al. (2004) Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum. Gene Ther. 15, 145–156.

    Article  CAS  PubMed  Google Scholar 

  24. Kotin, R. M., Siniscalco, M., Samulski, R. J., et al. (1990) Site-specific integration by adeno-associated virus. Proc. Natl Acad. Sci. U. S. A. 87, 2211–2215.

    Article  CAS  PubMed  Google Scholar 

  25. Kearns, W. G., Afione, S. A., Fulmer, S. B., et al. (1996) Recombinant adenoassociated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther. 3, 748–755.

    CAS  PubMed  Google Scholar 

  26. Nakai, H., Storm, T. A., and Kay, M. A. (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat. Biotechnol. 18, 527–532.

    Article  CAS  PubMed  Google Scholar 

  27. Flotte, T. R. (2005) Recent developments in recombinant AAV-mediated gene therapy for lung diseases. Curr. Gene Ther. 5, 361–366.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, L. and Herzog, R. W. (2005) AAV-mediated gene transfer for treatment of hemophilia. Curr. Gene Ther. 5, 349–360.

    Article  CAS  PubMed  Google Scholar 

  29. Athanasopoulos, T., Graham, I. R., Foster, H., and Dickson, G. (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther. 11(Suppl 1), S109–S121.

    Article  CAS  PubMed  Google Scholar 

  30. Ruitenberg, M. J., Eggers, R., Boer, G. J., and Verhaagen, J. (2002) Adenoassociated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system. Methods 28, 182–194.

    Article  CAS  PubMed  Google Scholar 

  31. Martin, K. R., Klein, R. L., and Quigley, H. A. (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28, 267–275.

    Article  CAS  PubMed  Google Scholar 

  32. Cottard, V., Mulleman, D., Bouille, R, Mezzina, M., Boissier, M. C., and Bessis, N. (2000) Adeno-associated virus-mediated delivery of IL-4 prevents collagen-induced arthritis. Gene Ther. 7, 1930–1939.

    Article  CAS  PubMed  Google Scholar 

  33. Latchman, D. S. (2001) Gene delivery and gene therapy with herpes simplex virus-based vectors. Gene 264, 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Moriuchi, S., Wolfe, D., Tamura, M., et al. (2002) Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Ther. 9, 584–591.

    Article  CAS  PubMed  Google Scholar 

  35. Mata, M., Glorioso, J., and Fink, D. J. (2003) Development of HSV-mediated gene transfer for the treatment of chronic pain. Exp. Neurol. 184(Suppl 1), S25–S29.

    Article  CAS  PubMed  Google Scholar 

  36. Fink, D. J., Glorioso, J., and Mata, M. (2003) Therapeutic gene transfer with herpesbased vectors: studies in Parkinson’s disease and motor nerve regeneration. Exp. Neurol. 184(Suppl 1), S19–S24.

    Article  CAS  PubMed  Google Scholar 

  37. Natsume, A., Mata, M., Wolfe, D., et al. (2002) Bcl-2 and GDNF delivered by HSV-mediated gene transfer after spinal root avulsion provide a synergistic effect. J. Neurotrauma 19, 61–68.

    Article  PubMed  Google Scholar 

  38. Smith, G. L. and Moss, B. (1983) Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 25, 21–28.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, B., Timiryasova, T. M., Andres, M. L., et al. (2000) Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther. 7, 1437–1447.

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman, H. L., Flanagan, K., Lee, C. S., Perretta, D. J., and Horig, H. (2002) Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20, 1862–1869.

    Article  CAS  PubMed  Google Scholar 

  41. Timiryasova, T. M., Gridley, D. S., Chen, B., et al. (2003) Radiation enhances the anti-tumor effects of vaccinia-p53 gene therapy in glioma. Technol Cancer Res. Treat. 2, 223–235.

    CAS  PubMed  Google Scholar 

  42. Gulley, J., Chen, A. P., Dahut, W., et al. (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgenindependent prostate cancer. Prostate 53, 109–117.

    Article  CAS  PubMed  Google Scholar 

  43. Wagner, E., Cotten, M., Foisner, R., and Birnstiel, M. L. (1991) Transferrinpolycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl Acad. Sci. U. S. A. 88, 4255–4259.

    Article  CAS  PubMed  Google Scholar 

  44. Abdelhady, H. G., Allen, S., Davies, M. C., Roberts, C. J., Tendler, S. J., and Williams, P. M. (2003) Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I. Nucleic Acids Res. 31, 4001–4005.

    Article  CAS  PubMed  Google Scholar 

  45. Sternberg, B., Sorgi, F. L., and Huang, L. (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 356, 361–366.

    Article  CAS  PubMed  Google Scholar 

  46. Schaffer, D. V., Fidelman, N. A., Dan, N., and Lauffenburger, D. A. (2000) Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67, 598–606.

    Article  CAS  PubMed  Google Scholar 

  47. Dash, P. R., Read, M. L., Barrett, L. B., Wolfert, M. A., and Seymour, L. W. ( 1999) Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6, 643–650.

    Article  CAS  PubMed  Google Scholar 

  48. Hong, K., Zheng, W., Baker, A., and Papahadjopoulos, D. (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett. 400, 233–237.

    Article  CAS  PubMed  Google Scholar 

  49. Toncheva, V., Wolfert, M. A., Dash, P. R., et al. (1998) Novel vectors for gene delivery formed by self-assembly of DNA with poly(l-lysine) grafted with hydrophilic polymers. Biochim. Biophys. Acta 1380, 354–368.

    CAS  PubMed  Google Scholar 

  50. Kircheis, R., Wightman, L., Schreiber, A., et al. (2001) Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8, 28–40.

    Article  CAS  PubMed  Google Scholar 

  51. Mishra, S., Webster, P., and Davis, M. E. (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111.

    Article  CAS  PubMed  Google Scholar 

  52. Frederiksen, K. S., Abrahamsen, N., Cristiano, R. J., Damstrup, L., and Poulsen, H. S. (2000) Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor. Cancer Gene Ther. 7, 262–268.

    Article  CAS  PubMed  Google Scholar 

  53. Chiu, S. J., Ueno, N. T., and Lee, R. J. (2004) Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J. Control. Release 97, 357–369.

    Article  CAS  PubMed  Google Scholar 

  54. Lee, R. J. and Huang, L. (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271, 8481–8487.

    Article  CAS  PubMed  Google Scholar 

  55. Labat-Moleur, F., Steffan, A. M., Brisson, C., et al. (1996) An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. 3, 1010–1017.

    CAS  PubMed  Google Scholar 

  56. Tseng, W. C., Haselton, F. R., and Giorgio, T. D. (1997) Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 272, 25,641–25,647.

    Article  CAS  PubMed  Google Scholar 

  57. Hasegawa, S., Hirashima, N., and Nakanishi, M. (2001) Microtubule involvement in the intracellular dynamics for gene transfection mediated by cationic liposomes. Gene Ther. 8, 1669–1673.

    Article  CAS  PubMed  Google Scholar 

  58. Xu, Y. and Szoka, F. C. Jr. (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623.

    Article  CAS  PubMed  Google Scholar 

  59. Hui, S.W., Langner, M., Zhao, Y. L., Ross, P., Hurley, E., and Chan, K. (1996) The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 71, 590–599.

    Article  CAS  PubMed  Google Scholar 

  60. Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel, M. L. (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl Acad. Sci. U. S. A. 89, 7934–7938.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, H., Jeong, J. H., and Park, T. G. (2001) A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release 76, 183–192.

    Article  CAS  PubMed  Google Scholar 

  62. Boussif, O., Lezoualc’h, F., Zanta, M. A., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. U. S. A. 92, 7297–7301.

    Article  CAS  PubMed  Google Scholar 

  63. Pack, D. W., Hoffman, A. S., Pun, S., and Stayton, P. S. (2005) Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593.

    Article  CAS  PubMed  Google Scholar 

  64. Legendre, J. Y. and Szoka, F. C. Jr. (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm. Res. 9, 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  65. Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., and Verkman, A. S. (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275, 1625–1629.

    Article  CAS  PubMed  Google Scholar 

  66. Lechardeur, D., Sohn, K. J., Haardt, M., et al. (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497.

    Article  CAS  PubMed  Google Scholar 

  67. Ryan, K. J. and Wente, S. R. (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371.

    Article  CAS  PubMed  Google Scholar 

  68. Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., and Wagner, E. (2000) Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 7, 401–407.

    Article  CAS  PubMed  Google Scholar 

  69. Zanta, M. A., Belguise-Valladier, P., and Behr, J. P. (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl Acad. Sci. U. S. A. 96, 91–96.

    Article  CAS  PubMed  Google Scholar 

  70. Branden, L. J., Mohamed, A. J., and Smith, C. I. (1999) A peptide nucleic acidnuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787.

    Article  CAS  PubMed  Google Scholar 

  71. Chan, C. K. and Jans, D. A. (1999) Enhancement of polylysine-mediated transferrinfection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum. Gene Ther. 10, 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  72. Chan, C. K., Senden, T., and Jans, D. A. (2000) Supramolecular structure and nuclear targeting efficiency determine the enhancement of transfection by modified polylysines. Gene Ther. 7, 1690–1697.

    Article  CAS  PubMed  Google Scholar 

  73. Bremner, K. H., Seymour, L. W., Logan, A., and Read, M. L. (2004) Factors influencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery. Bioconjug. Chem. 15, 152–161.

    Article  CAS  PubMed  Google Scholar 

  74. Tousignant, J. D., Gates, A. L., Ingram, L. A., et al. (2000) Comprehensive analy sis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum. Gene Ther. 11, 2493–2513.

    Article  CAS  PubMed  Google Scholar 

  75. Freimark, B. D., Blezinger, H. P., Florack, V. J., et al. (1998) Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J. Immunol. 160, 4580–4586.

    CAS  PubMed  Google Scholar 

  76. Qin, L., Ding, Y., Pahud, D. R., Chang, E., Imperiale, M. J., and Bromberg, J. S. (1997) Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum. Gene Ther. 8, 2019–2029.

    Article  CAS  PubMed  Google Scholar 

  77. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  CAS  PubMed  Google Scholar 

  78. Krieg, A. M. (1999) Direct immunologic activities of CpG DNA and implications for gene therapy. J. Gene Med. 1, 56–63.

    Article  CAS  PubMed  Google Scholar 

  79. Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. U. S. A. 84, 7413–7417.

    Article  CAS  PubMed  Google Scholar 

  80. Gao, X. and Huang, L. (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 179, 280–285.

    Article  CAS  PubMed  Google Scholar 

  81. Lee, E. R., Marshall, J., Siegel, C. S., et al. (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. 7, 1701–1717.

    Article  CAS  PubMed  Google Scholar 

  82. Caplen, N. J., Alton, E. W., Middleton, P. G., et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat. Med. 1, 39–46.

    Article  CAS  PubMed  Google Scholar 

  83. McLachlan, G., Ho, L. P., Davidson-Smith, H., et al. (1996) Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther. 3, 1113–1123.

    CAS  PubMed  Google Scholar 

  84. Gill, D. R., Southern, K. W., Mofford, K. A., et al. (1997) A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 4, 199–209.

    Article  CAS  PubMed  Google Scholar 

  85. Laemmli, U. K. (1975) Characterization of DNA condensates induced by poly (ethylene oxide) and polylysine. Proc. Natl Acad. Sci. U. S. A. 72, 4288–4292.

    Article  CAS  PubMed  Google Scholar 

  86. Akinc, A. and Langer, R. (2002) Measuring the pH environment of DNA delivered using nonviral vectors: implications for lysosomal trafficking. Biotechnol. Bioeng. 78, 503–508.

    Article  CAS  PubMed  Google Scholar 

  87. Forrest, M. L. and Pack, D. W. (2002) On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design. Mol. Ther. 6, 57–66.

    Article  CAS  PubMed  Google Scholar 

  88. Mislick, K. A., Baldeschwieler, J. D., Kayyem, J. F., and Meade, T. J. (1995) Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug. Chem. 6, 512–515.

    Article  CAS  PubMed  Google Scholar 

  89. Suh, W., Chung, J. K., Park, S. H., and Kim, S. W. (2001) Anti-JL1 antibodyconjugated poly (l-lysine) for targeted gene delivery to leukemia T cells. J. Control. Release 72, 171–178.

    Article  CAS  PubMed  Google Scholar 

  90. Leamon, C. P., Weigl, D., and Hendren, R. W. (1999) Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. 10, 947–957.

    Article  CAS  PubMed  Google Scholar 

  91. Harbottle, R. P., Cooper, R. G., Hart, S. L., et al. (1998) An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum. Gene Ther. 9, 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  92. Zatloukal, K., Wagner, E., Cotten, M., et al. (1992) Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann. N. Y. Acad. Sci. 660, 136–153.

    Article  CAS  PubMed  Google Scholar 

  93. Choi, Y. H., Liu, F., Kim, J. S., Choi, Y. K., Park, J. S., and Kim, S. W. (1998) Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J. Control. Release 54, 39–48.

    Article  PubMed  Google Scholar 

  94. Lim, Y. B., Han, S. O., Kong, H. U., et al. (2000) Biodegradable polyester, poly[alpha-(4-aminobutyl)-l-glycolic acid], as a non-toxic gene carrier. Pharm. Res. 17, 811–816.

    Article  CAS  PubMed  Google Scholar 

  95. Benns, J. M., Maheshwari, A., Furgeson, D. Y., Mahato, R. I., and Kim, S. W. (2001) Folate-PEG-folate-graft-polyethylenimine-based gene delivery. J. Drug Target 9, 123–139.

    Article  CAS  PubMed  Google Scholar 

  96. Kircheis, R., Blessing, T., Brunner, S., Wightman, L., and Wagner, E. (2001) Tumor targeting with surface-shielded ligand-polycation DNA complexes. J. Control. Release 72, 165–170.

    Article  CAS  PubMed  Google Scholar 

  97. Haensler, J. and Szoka, F. C. Jr. (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379.

    Article  CAS  PubMed  Google Scholar 

  98. Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., and Hoffman, A. S. (1999) The design and synthesis of polymers for eukaryotic membrane disruption. J. Control Release 61, 137–143.

    Article  CAS  PubMed  Google Scholar 

  99. Kyriakides, T. R., Cheung, C. Y., Murthy, N., Bornstein, P., Stayton, P. S., and Hoffman, A. S. (2002) pH-sensitive polymers that enhance intracellular drug delivery in vivo. J. Control. Release 78, 295–303.

    Article  CAS  PubMed  Google Scholar 

  100. Murthy, N., Campbell, J., Fausto, N., Hoffman, A. S., and Stayton, P. S. (2003) Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Control. Release 89, 365–374.

    Article  CAS  PubMed  Google Scholar 

  101. Lim, Y., Choi, Y H., and Park, J. (1999) A Self-Destroying Polycationic Polymer: Biodegradable Poly(4-hydroxy-l-proline ester). J. Am. Chem. Soc. 121, 5633–5639.

    Article  CAS  Google Scholar 

  102. Lim, Y., Kim, S. M., Lee, Y., et al. (2001) Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc. 123, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  103. Forrest, M. L., Koerber, J. T., and Pack, D. W. (2003) A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14, 934–940.

    Article  CAS  PubMed  Google Scholar 

  104. Gonzalez, H., Hwang, S. J., and Davis, M. E. (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 10, 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  105. Borchard, G. (2001) Chitosans for gene delivery. Adv. Drug Deliv. Rev. 52, 145–150.

    Article  CAS  PubMed  Google Scholar 

  106. Gao, X. and Huang, L. (1996) Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 35, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  107. Graessmann, M. and Graessmann, A. (1983) Microinjection of tissue culture cells. Methods Enzymol. 101, 482–492.

    Article  CAS  PubMed  Google Scholar 

  108. Masuda, T., Akita, H., and Harashima, H. (2005) Evaluation of nuclear transfer and trans-cription of plasmid DNA condensed with protamine by microinjection: the use of a nuclear transfer score. FEBS Lett. 579, 2143–2148.

    Article  CAS  PubMed  Google Scholar 

  109. Hammer, R. E., Pursel, V. G., Rexroad, C. E. Jr., et al. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.

    Article  CAS  PubMed  Google Scholar 

  110. Matsuoka, H., Komazaki, T., Mukai, Y., et al. (2005) High throughput easy microinjection with a single-cell manipulation supporting robot. J. Biotechnol. 116, 185–194.

    Article  CAS  PubMed  Google Scholar 

  111. Yang, N. S., Burkholder, J., Roberts, B., Martinell, B., and McCabe, D. (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl Acad. Sci. U. S. A. 87, 9568–9572.

    Article  CAS  PubMed  Google Scholar 

  112. O’Brien, J. and Lummis, S. C. (2004) Biolistic and diolistic transfection: using the gene gun to deliver DNA and lipophilic dyes into mammalian cells. Methods 33, 121–125.

    Article  PubMed  CAS  Google Scholar 

  113. Murphy, R. C. and Messer, A. (2001) Gene transfer methods for CNS organotypic cultures: a comparison of three nonviral methods. Mol. Ther. 3, 113–121.

    Article  CAS  PubMed  Google Scholar 

  114. Kuriyama, S., Mitoro, A., Tsujinoue, H., et al. (2000) Particle-mediated gene transfer into murine livers using a newly developed gene gun. Gene Ther. 7, 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  115. Lauritzen, H. P., Reynet, C., Schjerling, P., et al. (2002) Gene gun bombardmentmediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo. Pflugers Arch. 444, 710–721.

    Article  CAS  PubMed  Google Scholar 

  116. Sato, H., Hattori, S., Kawamoto, S., et al. (2000) In vivo gene gun-mediated DNA delivery into rodent brain tissue. Biochem. Biophys. Res. Commun. 270, 163–170.

    Article  CAS  PubMed  Google Scholar 

  117. Matsuno, Y., Iwata, H., Umeda, Y., et al. (2003) Nonviral gene gun mediated transfer into the beating heart. ASAIO J. 49, 641–644.

    Article  CAS  PubMed  Google Scholar 

  118. Chuang, Y. C., Yang, L. C., Chiang, P. H., et al. (2005) Gene gun particle encoding preproenkephalin cDNA produces analgesia against capsaicin-induced bladder pain in rats. Urology 65, 804–810.

    Article  PubMed  Google Scholar 

  119. Lin, M. T., Pulkkinen, L., Uitto, J., and Yoon, K. (2000) The gene gun: current applications in cutaneous gene therapy. Int. J. Dermatol. 39, 161–170.

    Article  CAS  PubMed  Google Scholar 

  120. Dean, H. J., Haynes, J., and Schmaljohn, C. (2005) The role of particle-mediated DNA vaccines in biodefense preparedness. Adv. Drug Deliv. Rev. 57, 1315–1342.

    Article  CAS  PubMed  Google Scholar 

  121. Trimble, C., Lin, C. T., Hung, C. F., et al. (2000) Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 21, 4036–4042.

    Article  CAS  Google Scholar 

  122. Davidson, J. M., Krieg, T., and Eming, S. A. (2000) Particle-mediated gene therapy of wounds. Wound Repair Regen. 8, 452–459.

    Article  CAS  PubMed  Google Scholar 

  123. Furth, P. A., Shamay, A., and Hennighausen, L. (1995) Gene transfer into mammalian cells by jet injection. Hybridoma 14, 149–152.

    Article  CAS  PubMed  Google Scholar 

  124. Haensler, J., Verdelet, C., Sanchez, V., et al. (1999) Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 17, 628–638.

    Article  CAS  PubMed  Google Scholar 

  125. Lundholm, P., Asakura, Y., Hinkula, J., Lucht, E., and Wahren, B. (1999) Induction of mucosal IgA by a novel jet delivery technique for HIV-1 DNA. Vaccine 17, 2036–2042.

    Article  CAS  PubMed  Google Scholar 

  126. Horiki, M., Yamato, E., Ikegami, H., Ogihara, T., and Miyazaki, J. Needleless in vivo gene transfer into muscles by jet injection in combination with electroporation. J. Gene Med. 6, 1134–1138.

    Google Scholar 

  127. Walther, W., Stein, U., Fichtner, L, Malcherek, L., Lemm, M., and Schlag, P. M. (2001) Nonviral in vivo gene delivery into tumors using a novel low volume jetinjection technology. Gene Ther. 8, 173–180.

    Article  CAS  PubMed  Google Scholar 

  128. Walther, W., Stein, U., Fichtner, I., et al. (2002) Intratumoral low-volume jetinjection for efficient nonviral gene transfer. Mol. Biotechnol. 21, 105–115.

    Article  CAS  PubMed  Google Scholar 

  129. Walther, W., Stein, U., Siegel, R., Fichtner, I., and Schlag, P. M. (2005) Use of the nuclease inhibitor aurintricarboxylic acid (ATA) for improved non-viral intratumoral in vivo gene transfer by jet-injection. J. Gene Med. 7, 477–485.

    Article  CAS  PubMed  Google Scholar 

  130. Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, E. (1994) Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophys. Chem. 52, 267–274.

    Article  CAS  PubMed  Google Scholar 

  131. Chang, D. C. (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds), Academic Press, San Diego, pp. 9–27.

    Google Scholar 

  132. Mir, L. M., Bureau, M. F., Gehl, J., et al. (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. U. S. A. 96, 4262–4267.

    Article  CAS  PubMed  Google Scholar 

  133. Leclere, P. G., Panjwani, A., Docherty, R., Berry, M., Pizzey, J., and Tonge, D. A. (2005) Effective gene delivery to adult neurons by a modified form of electroporation. J. Neurosci. Methods 142, 137–143.

    Article  CAS  PubMed  Google Scholar 

  134. Hamm, A., Krott, N., Breibach, I., Blindt, R., and Bosserhoff, A. K. (2002) Efficient transfection method for primary cells. Tissue Eng. 8, 235–245.

    Article  CAS  PubMed  Google Scholar 

  135. Lakshmipathy, U., Pelacho, B., Sudo, K., et al. (2004) Efficient transfection of embryonic and adult stem cells. Stem Cells 22, 531–543.

    Article  PubMed  Google Scholar 

  136. Jeong, J. G., Kim, J. M., Ho, S. H., Hahn, W., Yu, S. S., and Kim, S. (2004) Electrotransfer of human IL-1Ra into skeletal muscles reduces the incidence of murine collagen-induced arthritis. J. Gene Med. 6, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  137. Bettan, M., Emmanuel, F., Darteil, R., et al. (2000) High-level protein secretion into blood circulation after electric pulse-mediated gene transfer into skeletal muscle. Mol. Ther. 2, 204–210.

    Article  CAS  PubMed  Google Scholar 

  138. Long, Y. C., Jaichandran, S., Ho, L. P., Tien, S. L., Tan, S. Y., and Kon, O. L. (2005) FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J. Gene Med. 7, 494–505.

    Article  CAS  PubMed  Google Scholar 

  139. Tjelle, T. E., Corthay, A., Lunde, E., et al. (2004) Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol. Ther. 9, 328–336.

    Article  CAS  PubMed  Google Scholar 

  140. Rizzuto, G., Cappelletti, M., Maione, D., et al. (1999) Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc. Natl Acad. Sci. U. S. A. 96, 6417–6422.

    Article  CAS  PubMed  Google Scholar 

  141. Muramatsu, T., Arakawa, S., Fukazawa, K., et al. (2001) In vivo gene electroporation in skeletal muscle with special reference to the duration of gene expression. Int. J. Mol. Med. 7, 37–42.

    CAS  PubMed  Google Scholar 

  142. Murakami, T., Nishi, T., Kimura, E., et al. (2003) Full-length dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve 27, 237–241.

    Article  CAS  PubMed  Google Scholar 

  143. Ferrer, A., Foster, H., Wells, K. E., Dickson, G., and Wells, D. J. (2004) Longterm expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Ther. 11, 884–893.

    Article  CAS  PubMed  Google Scholar 

  144. Medi, B. M., Hoselton, S., Marepalli, R. B., and Singh, J. (2005) Skin targeted DNA vaccine delivery using electroporation in rabbits. I: efficacy. Int. J. Pharm. 294, 53–63.

    Article  CAS  PubMed  Google Scholar 

  145. Kobayashi, S., Dono, K., Takahara, S., et al. (2003) Electroporation-mediated ex vivo gene transfer into graft not requiring injection pressure in orthotopic liver transplantation. J. Gene Med. 5, 510–517.

    Article  CAS  PubMed  Google Scholar 

  146. Harrison, R. L., Byrne, B. J., and Tung, L. (1998) Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett. 435, 1–5.

    Article  CAS  PubMed  Google Scholar 

  147. Dean, D. A., Machado-Aranda, D., Blair-Parks, K., Yeldandi, A. V., and Young, J. L. (2003) Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther. 10, 1608–1615.

    Article  CAS  PubMed  Google Scholar 

  148. Dezawa, M., Takano, M., Negishi, H., Mo, X., Oshitari, T., and Sawada, H. (2002) Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 33, 1–6.

    Article  CAS  PubMed  Google Scholar 

  149. Wei, F., Xia, X. M., Tang, J., et al. (2003) Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J. Neurosci. 23, 8402–8409.

    CAS  PubMed  Google Scholar 

  150. Bettan, M., Ivanov, M. A., Mir, L. M., Boissiere, F., Delaere, P., and Scherman, D. (2000) Efficient DNA electrotransfer into tumors. Bioelectrochemistry 52, 83–90.

    Article  CAS  PubMed  Google Scholar 

  151. Babiuk, S., Baca-Estrada, M. E., Foldvari, M., et al. (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. 110, 1–10.

    Article  CAS  PubMed  Google Scholar 

  152. Bao, S., Thrall, B. D., and Miller, D. L. (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23, 953–959.

    Article  CAS  PubMed  Google Scholar 

  153. Marmottant, P. and Hilgenfeldt, S. (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153–156.

    Article  CAS  PubMed  Google Scholar 

  154. Wu, J. (2002) Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med. Biol. 28, 125–129.

    Article  PubMed  Google Scholar 

  155. Brujan, E. A. (2004) The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med. Biol. 30, 381–387.

    Article  CAS  PubMed  Google Scholar 

  156. Holt, R. G. and Roy, R. A. (2001) Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med. Biol. 27, 1399–1412.

    Article  CAS  PubMed  Google Scholar 

  157. Zhong, P., Lin, H., Xi, X., Zhu, S., and Bhoghte, E. S. (1999) Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J. Acoust. Soc. Am. 105, 1997–2009.

    Article  CAS  PubMed  Google Scholar 

  158. Li, T., Tachibana, K., Kuroki, M., and Kuroki, M. (2003) Gene transfer with echoenhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice—initial results. Radiology 229, 423–428.

    Article  PubMed  Google Scholar 

  159. Taniyama, Y., Tachibana, K., Hiraoka, K., et al. (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9, 372–380.

    Article  CAS  PubMed  Google Scholar 

  160. Taniyama, Y., Tachibana, K., Hiraoka, K., et al. (2002) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105, 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  161. Frenkel, P. A., Chen, S., Thai, T., Shohet, R. V., and Grayburn, P. A. (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med. Biol. 28, 817–822.

    Article  PubMed  Google Scholar 

  162. Lawrie, A., Brisken, A. F., Francis, S. E., Cumberland, D. C., Crossman, D. C., and Newman, C. M. (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7, 2023–2027.

    Article  CAS  PubMed  Google Scholar 

  163. Bao, S., Thrall, B. D., and Miller, D. L. (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23, 953–959.

    Article  CAS  PubMed  Google Scholar 

  164. Kondo, I., Ohmori, K., Oshita, A., et al. (2004) Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol. 44, 644–653.

    Article  CAS  PubMed  Google Scholar 

  165. Anwer, K., Kao, G., Proctor, B., et al. (2000) Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7, 1833–1839.

    Article  CAS  PubMed  Google Scholar 

  166. Scherer, F., Anton, M., Schillinger, U., et al. (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9, 102–109.

    Article  CAS  PubMed  Google Scholar 

  167. Huth, S., Lausier, J., Gersting, S. W., et al. (2004) Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med. 6, 923–936.

    Article  CAS  PubMed  Google Scholar 

  168. Gersting, S. W., Schillinger, U., Lausier, J., et al. (2004) Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med. 6, 913–922.

    Article  CAS  PubMed  Google Scholar 

  169. Krotz, F., Sohn, H. Y., Gloe, T., Plank, C., and Pohl, U. (2003) Magnetofection potentiates gene delivery to cultured endothelial cells. J. Vasc. Res. 40, 425–434.

    Article  PubMed  CAS  Google Scholar 

  170. Schillinger, U., Brill, T., Rudolph, C., et al. (2005) Advances in magnetofectionmagnetically guided nucleic acid delivery. J. Magnetism Magnetic Mater. 293, 501–508.

    Article  CAS  Google Scholar 

  171. Griesenbach, U., Dean, P., Marshall, N., et al. (2004) Magnetofection and Ultrasound To Increase “Naked” DNA Delivery to the Myocardium, Mol. Ther. 9(Suppl. 1), 358.

    Google Scholar 

  172. Jiang, H., Zhang, T, and Sun, X. (2005) Vascular Endothelial Growth Factor Gene Delivery by Magnetic DNA Nanospheres Ameliorates Limb Ischemia in Rabbits. J. Surg. Res. 126, 48–54.

    Article  CAS  PubMed  Google Scholar 

  173. Xenariou, S., Griesenbach, U., Ferrari, S., et al. (2004) Magnetofection to enhance airway gene transfer. Mol. Ther. 9(Suppl. 1), 180.

    Google Scholar 

  174. Herweijer, H. and Wolff, J. A. (2003) Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 10, 453–458.

    Article  CAS  PubMed  Google Scholar 

  175. Andrianaivo, F., Lecocq, M., Wattiaux-De Coninck, S., Wattiaux, R., and Jadot, M. (2004) Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J. Gene Med. 6, 877–883.

    Article  CAS  PubMed  Google Scholar 

  176. Kobayashi, N., Nishikawa, M., Hirata, K., and Takakura, Y. (2004) Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J. Gene Med. 6, 584–592.

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, G., Gao, X., Song, Y. K., et al. (2004) Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 11, 675–682.

    Article  CAS  PubMed  Google Scholar 

  178. Budker, V., Zhang, G., Danko, I., Williams, P., and Wolff, J. (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther. 5, 272–276.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, G., Budker, V., Williams, P., Subbotin, V., and Wolff, J. A. (2001) Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum. Gene Ther. 12, 427–438.

    Article  CAS  PubMed  Google Scholar 

  180. Liang, K. W., Nishikawa, M., Liu, F., Sun, B., Ye, Q., and Huang, L. (2004) Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther. 11, 901–908.

    Article  CAS  PubMed  Google Scholar 

  181. Hagstrom, J. E., Hegge, J., Zhang, G., et al. (2004) A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol. Ther. 10, 386–398.

    Article  CAS  PubMed  Google Scholar 

  182. Liu, F. and Huang, L. (2001) Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature. J. Gene Med. 3, 569–576.

    Article  CAS  PubMed  Google Scholar 

  183. Liu, F., Nishikawa, M., Clemens, P. R., and Huang, L. (2001) Transfer of fulllength Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA. Mol. Ther. 4, 45–51.

    Article  CAS  PubMed  Google Scholar 

  184. Budker, V., Budker, T., Zhang, G., Subbotin, V., Loomis, A., and Wolff, J. A. (2000) Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptormediated process. J. Gene Med. 2, 76–88.

    Article  CAS  PubMed  Google Scholar 

  185. Miao, C. H., Thompson, A. R., Loeb, K., and Ye, X. (2001) Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol. Ther. 3, 947–957.

    Article  CAS  PubMed  Google Scholar 

  186. Maruyama, H., Higuchi, N., Nishikawa, Y., et al. (2002) High-level expression of naked DNA delivered to rat liver via tail vein injection. J. Gene Med. 4, 333–341.

    Article  CAS  PubMed  Google Scholar 

  187. Eastman, S. J., Baskin, K. M, Hodges, B. L., et al. (2002) Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum. Gene Ther. 13, 2065–2077.

    Article  CAS  PubMed  Google Scholar 

  188. Kurata, S., Tsukakoshi, M., Kasuya, T., and Ikawa, Y. (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exp. Cell Res. 162, 372–378.

    Article  CAS  PubMed  Google Scholar 

  189. Tao, W., Wilkinson, J., Stanbridge, E. J., and Berns, M. W. (1987) Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc. Natl Acad. Sci. U. S. A. 84, 4180–4184.

    Article  CAS  PubMed  Google Scholar 

  190. Tirlapur, U. K. and Konig, K. (2002) Targeted transfection by femtosecond laser. Nature 418, 290–291.

    Article  CAS  PubMed  Google Scholar 

  191. Shirahata, Y., Ohkohchi, N., Itagak, H., and Satomi, S. (2001) New technique for gene transfection using laser irradiation. J. Investig. Med. 49, 184–190.

    Article  CAS  PubMed  Google Scholar 

  192. Terakawa, M., Ogura, M., Sato, S., et al. (2004) Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave. Opt. Lett. 29, 1227–1229.

    Article  PubMed  Google Scholar 

  193. Umebayashi, Y., Miyamoto, Y., Wakita, M., Kobayashi, A., and Nishisaka, T. (2003) Elevation of plasma membrane permeability on laser irradiation of extracellular latex particles. J. Biochem. (Tokyo) 134, 219–224.

    CAS  Google Scholar 

  194. Palumbo, G., Caruso, M., Crescenzi, E., Tecce, M. F., Roberti, G., and Colasanti, A. (1996) Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J. Photochem. Photobiol. B 36, 41–46.

    Article  CAS  PubMed  Google Scholar 

  195. Ogura, M., Sato, S., Nakanishi, K., et al. (2004) In vivo targeted gene transfer in skin by the use of laser-induced stress waves. Lasers Surg. Med. 34, 242–248.

    Article  PubMed  Google Scholar 

  196. Zeira, E., Manevitch, A., Khatchatouriants, A., et al. (2003) Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol. Ther. 8, 342–350.

    Article  CAS  PubMed  Google Scholar 

  197. Song, L., Chau, L., Sakamoto, Y., Nakashima, J., Koide, M, and Tuan, R. S. (2004) Electric field-induced molecular vibration for noninvasive, high-efficiency DNA transfection.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Guan, J., Pan, X., Lee, L.J., Lee, R.J. (2008). Viral, Nonviral, and Physical Methods for Gene Delivery. In: Wu-Pong, S., Rojanasakul, Y. (eds) Biopharmaceutical Drug Design and Development. Humana Press. https://doi.org/10.1007/978-1-59745-532-9_8

Download citation

Publish with us

Policies and ethics