Skip to main content

DNA Microarrays in Drug Discovery and Development

  • Chapter
Book cover Biopharmaceutical Drug Design and Development

Abstract

Ever since the completion of the human genome project, there has been great interest in the research community toward addressing the role played by multiple genes to orchestrate complex cellular functions. This requires techniques that allow high-throughput analysis of such target genes. Low manufacturing and application costs, flexibility, and speed of analyses in a high-throughput fashion make DNA microarrays one of the most invaluable tools in this endeavor. DNA microarrays have revolutionized genomic and pharmacologic investigations by allowing simultaneous monitoring of all the genes in different genomes, thus linking the entire genome expression with the function of the whole organism. Microarrays are widely used to address a plethora of scientific questions in the pharmaceutical industry, particularly in drug discovery and development. The technique has immense potential and promises to play a key role in furthering research in a number of fields, as discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wiseman, S.B. and Singer, T. D. (2002) Applications of DNA and protein microarrays in comparative physiology. Biot echnol Adv. 20, 379–389.

    Article  CAS  Google Scholar 

  2. Greenberg, M. E. and Ziff, E. B. (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438.

    Article  CAS  PubMed  Google Scholar 

  3. Manley, J. L. and Gefter, M. L. (1981) Transcription of mammalian genes in vitro. Gene Amplif. Anal. 2, 369–382.

    CAS  PubMed  Google Scholar 

  4. Marzluff, W. F. Jr. (1978) Transcription of RNA in isolated nuclei. Methods Cell Biol. 19, 317–332.

    Article  PubMed  Google Scholar 

  5. Lennon, G. G. (2000) High-throughput gene expression analysis for drug discovery. Drug Discov. TO’Day 5, 59–66.

    Article  CAS  Google Scholar 

  6. Gerhold, D. L., Jensen, R. V., and Gullans, S. R. (2002) Better therapeutics through microarrays. Nat. Genet. 32, (Suppl), 547–551.

    Article  CAS  PubMed  Google Scholar 

  7. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  8. Cojocaru, G. S., Rechavi, G., and Kaminski, N. (2001) The use of microarrays in medicine. Isr. Med. Assoc. J. 3, 292–296.

    CAS  PubMed  Google Scholar 

  9. Iyer, V. R., Eisen, M. B., Ross, D. T., et al. (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87.

    Article  CAS  PubMed  Google Scholar 

  10. Spellman, P. T, Sherlock, G., Zhang, M. Q., et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297.

    CAS  PubMed  Google Scholar 

  11. Street, M. (2002) DNA microarrays: manufacture and applications. Austr. Biotechnol. 12, 38–39.

    Google Scholar 

  12. Debouck, C. and Goodfellow, P. N. (1999) DNA microarrays in drug discovery and development. Nat. Genet. 21, 48–50.

    Article  CAS  PubMed  Google Scholar 

  13. Meloni, R., Khalfallah, O., and Biguet, N. F. (2004) DNA microarrays and pharmacogenomics. Pharmacol. Res. 49, 303–308.

    Article  CAS  PubMed  Google Scholar 

  14. Lock, C., Hermans, G., Pedotti, R., et al. (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508.

    Article  CAS  PubMed  Google Scholar 

  15. van’ t Veer, L. J., Dai, H., van de Vijver, M. J., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.

    Article  Google Scholar 

  16. Chin, K. V. and Kong, A. N. (2002) Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm. Res. 19, 1773–1778.

    Article  CAS  PubMed  Google Scholar 

  17. Brazma, A. and Vilo, J. (2000) Gene expression data analysis. FEBS Lett. 480, 17–24.

    Article  CAS  PubMed  Google Scholar 

  18. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  19. Stoughton, R. B. (2005) Applications of DNA microarrays in biology. Annu. Rev. Biochem. 74, 53–82.

    Article  CAS  PubMed  Google Scholar 

  20. Villeneuve, D. J. and Parissenti, A. M. (2004) The use of DNA microarrays to investigate the pharmacogenomics of drug response in living systems. Curr. Top Med. Chem. 4, 1329–1345.

    Article  CAS  PubMed  Google Scholar 

  21. Heller, M. J. (2002) DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4, 129–153.

    Article  CAS  PubMed  Google Scholar 

  22. Advances in Clinical Research with Affymetrix GeneChip® RNA Expression and DNA Analysis Microarrays on World Wide Web.

    Google Scholar 

  23. Afshari, C. A., Nuwaysir, E. F., and Barrett, J. C. (1999) Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 59, 4759–4760.

    CAS  PubMed  Google Scholar 

  24. Bowtell, D. D. (1999) Options available —from start to finish —for obtaining expression data by microarray. Nat. Genet. 21, 25–32.

    Article  CAS  PubMed  Google Scholar 

  25. Holloway, A. J., van Laar, R. K., Tothill, R. W., and Bowtell, D. D. (2002) Options available-from start to finish-for obtaining data from DNA microarrays II. Nat. Genet. 32, (Suppl), 481–489.

    Article  CAS  PubMed  Google Scholar 

  26. Relogio, A., Schwager, C., Richter, A., Ansorge, W., and Valcarcel, J. (2002) Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 30, e51.

    Article  PubMed  Google Scholar 

  27. Rouillard, J. M., Herbert, C. J., and Zuker, M. (2002) OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18, 486–487.

    Article  CAS  PubMed  Google Scholar 

  28. Hegde, P., Qi, R., Abernathy, K., et al. (2000) A concise guide to cDNA microarray analysis. Biotechniques 29, 548–550, 552–544, 556 passim.

    CAS  PubMed  Google Scholar 

  29. Bilban, M., Buehler, L. K., Head, S., Desoye, G., and Quaranta, V (2002) Normalizing DNA microarray data. Curr. Issues Mol. Biol. 4, 57–64.

    CAS  PubMed  Google Scholar 

  30. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32, (Suppl), 496–501.

    Article  CAS  PubMed  Google Scholar 

  31. Stoeckert, C. J. Jr., Causton, H. C., and Ball, C. A. (2002) Microarray databases: standards and ontologies. Nat. Genet. 32, (Suppl), 469–473.

    Article  CAS  PubMed  Google Scholar 

  32. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. U. S. A. 95, 14,863–14,868.

    Article  CAS  PubMed  Google Scholar 

  33. Khan, J., Wei, J. S., Ringner, M., et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673–679.

    Article  CAS  PubMed  Google Scholar 

  34. Saal, L. H., Troein, C., Vallon-Christersson, J., Gruvberger, S., Borg, A., and Peterson, C. (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 3, SOFTWARE0003.

    Google Scholar 

  35. Oksenberg, D., Marsters, S. A., O’Dowd, B. E, et al. (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature 360, 161–163.

    Article  CAS  PubMed  Google Scholar 

  36. Fryer, R. M., Randall, J., Yoshida, T., et al. (2002) Global analysis of gene expression: methods, interpretation, and pitfalls. Exp. Nephrol. 10, 64–74.

    Article  CAS  PubMed  Google Scholar 

  37. Heller, R. A., Schena, M., Chai, A., et al. (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl Acad. Sci. U. S. A. 94, 2150–2155.

    Article  CAS  PubMed  Google Scholar 

  38. Mimics, K., Middleton, F. A., Lewis, D. A., and Levitt, P. (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24, 479–486.

    Article  Google Scholar 

  39. Bugelski, P. J. (2002) Gene expression profiling for pharmaceutical toxicology screening. Curr. Opin. Drug Discov. Dev. 5, 79–89.

    CAS  Google Scholar 

  40. Yang, Y. H. and Speed, T. (2002) Design issues for cDNA microarray experiments. Nat. Rev. Genet. 3, 579–588.

    CAS  PubMed  Google Scholar 

  41. Cho, Y. S., Kim, M. K., Cheadle, C., Neary, C., Becker, K. G., and Cho-Chung, Y. S. (2001) Antisense DNAs as multisite genomic modulators identified by DNA microarray. Proc. Natl Acad. Sci. U. S. A. 98, 9819–9823.

    Article  CAS  PubMed  Google Scholar 

  42. Hughes, T. R., Marton, M. J., Jones, A. R., et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102, 109–126.

    Article  CAS  PubMed  Google Scholar 

  43. Cho-Chung, Y. S., Nesterova, M., Becker, K. G., et al. (2002) Dissecting the circuitry of protein kinase A and cAMP signaling in cancer genesis: antisense, microarray, gene overexpression, and transcription factor decoy. Ann. NY Acad. Sci. 968, 22–36.

    Article  CAS  PubMed  Google Scholar 

  44. Hannon, G. J. (2002) RNA interference. Nature 418, 244–251.

    Article  CAS  PubMed  Google Scholar 

  45. O’Neil, N. J., Martin, R. L., Tomlinson, M. L., Jones, M. R., Coulson, A., and Kuwabara, P. E. (2001) RNA-mediated interference as a tool for identifying drug targets. Am. J. Pharmacogenomics 1, 45–53.

    Article  PubMed  Google Scholar 

  46. Fambrough, D., McClure, K., Kazlauskas, A., and Lander, E. S. (1999) Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, S. B., Huang, K., Palmer, R., et al. (1999) The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98, 663–673.

    Article  CAS  PubMed  Google Scholar 

  48. Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., et al. (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl Acad. Sci. U. S. A. 99, 7560–7565.

    Article  CAS  PubMed  Google Scholar 

  49. Luhe, A., Hildebrand, H., Bach, U., Dingermann, T., and Ahr, H. J. (2003) A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling in vivo and in vitro employing cDNA microarrays. Toxicol. Sci. 73, 315–328.

    Article  PubMed  Google Scholar 

  50. Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C., and Afshari, C. A. (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinog. 24, 153–159.

    Article  CAS  PubMed  Google Scholar 

  51. Pennie, W. D. (2002) Custom cDNA microarrays; technologies and applications. Toxicology 181–182, 551–554.

    Article  PubMed  Google Scholar 

  52. Suter, L., Babiss, L. E., and Wheeldon, E. B. (2004) Toxicogenomics in predictive toxicology in drug development. Chem. Biol. 11, 161–171.

    CAS  PubMed  Google Scholar 

  53. Luhe, A., Suter, L., Ruepp, S., Singer, T, Weiser, T, and Albertini, S. (2005) Toxicogenomics in the pharmaceutical industry: hollow promises or real benefit? Mutat.Res. 515, 102–115.

    Google Scholar 

  54. Suter, L., Haiker, M., De Vera, M. C., and Albertini, S. (2003) Effect of two 5-HT6 receptor antagonists on the rat liver: a molecular approach. Pharmacogenomics J. 3, 320–334.

    Article  CAS  PubMed  Google Scholar 

  55. Moggs, J. G., Tinwell, H., Spurway, T., et al. (2005) Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. Environ. Health Perspect. 112, 1589–1606.

    Google Scholar 

  56. Jung, J. W., Park, J. S., Hwang, J. W., et al. (2004) Gene expression analysis of peroxisome proliferators-and phenytoin-induced hepatotoxicity using cDNA microarray. J. Vet. Med. Sci. 66, 1329–1333.

    Article  CAS  PubMed  Google Scholar 

  57. Hamadeh, H. K., Jayadev, S., Gaillard, E. T., et al. (2004) Integration of clinical and gene expression endpoints to explore furan-mediated hepatotoxicity. Mutat. Res. 549, 169–183.

    CAS  PubMed  Google Scholar 

  58. Amin, R. P., Vickers, A. E., Sistare, F., et al. (2004) Identification of putative gene based markers of renal toxicity. Environ. Health Perspect. 112, 465–479.

    CAS  PubMed  Google Scholar 

  59. Ourlin, J. C., Handschin, C., Kaufmann, M., and Meyer, U. A. (2002) A Link between cholesterol levels and phénobarbital induction of cytochromes P450 Biochem. Biophys. Res. Commun. 291, 378–384.

    Article  CAS  PubMed  Google Scholar 

  60. Huang, Q., Dunn, R. T. 2nd, Jayadev, S., et al. (2001) Assessment of cisplatin induced nephrotoxicity by microarray technology. Toxicol. Sci. 63, 196–207.

    Article  CAS  PubMed  Google Scholar 

  61. Nishiyama, M. (2005) Polygenetic pharmacogenomic strategies to identify drug sensitivity biomarkers. Gan. Kagaku Ryoho 32, 1902–1907.

    CAS  Google Scholar 

  62. Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.

    Article  CAS  PubMed  Google Scholar 

  63. Gordon, G. J., Jensen, R. V., Hsiao, L. L., et al. (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967.

    CAS  PubMed  Google Scholar 

  64. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442.

    Article  CAS  PubMed  Google Scholar 

  65. Kudoh, K., Ramanna, M., Ravatn, R., et al. (2000) Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res. 60, 4161–4166.

    CAS  PubMed  Google Scholar 

  66. Yuan, R., Fan, S., Achary, M., Stewart, D. M., Goldberg, I. D., and Rosen, E. M. (2001) Altered gene expression pattern in cultured human breast cancer cells treated with hepatocyte growth factor/scatter factor in the setting of DNA damage. Cancer Res. 61, 8022–8031.

    CAS  PubMed  Google Scholar 

  67. Moriyama, M., Hoshida, Y., Otsuka, M., et al. (2003) Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Mol. Cancer Ther. 2, 199–205.

    CAS  PubMed  Google Scholar 

  68. Kumar, A., Soprano, D. R., and Parekh, H. K. (2001) Cross-resistance to the synthetic retinoid CD437 in a paclitaxel-resistant human ovarian carcinoma cell line is independent of the overexpression of retinoic acid receptor-gamma. Cancer Res. 61, 7552–7555.

    CAS  PubMed  Google Scholar 

  69. Marton, M. J., DeRisi, J. L., Bennett, H. A., et al. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 4, 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  70. Lemieux, B., Aharoni, A., and Schena, M. (1998) Overview of DNA chip technology. Mol Breeding 4, 277–289.

    Article  CAS  Google Scholar 

  71. Hamadeh HaA, C. (2000) Gene chips and functional genomics. Am. Scientist 88, 508–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Azad, N., Iyer, A.K.V., Rojanasakul, Y. (2008). DNA Microarrays in Drug Discovery and Development. In: Wu-Pong, S., Rojanasakul, Y. (eds) Biopharmaceutical Drug Design and Development. Humana Press. https://doi.org/10.1007/978-1-59745-532-9_4

Download citation

Publish with us

Policies and ethics