Skip to main content

Biomechanics of Bone

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 938 Accesses

Summary

The ability to bear loads is a critical function of the skeleton, in addition to its metabolic and physiological roles. Load-bearing ability depends on both the applied loads and the structural properties of the loaded bone. When the loads exceed the structural properties, fracture will occur. Because the nature of the applied loads can be difficult to predict, the greatest potential impact on minimizing fracture risk is through targeted interventions and therapies to improve bone strength. The strength and fracture resistance of the skeleton depend primarily on the mass, morphology/architecture, and material properties of bone tissue. Although each of these attributes has been examined independently in both cortical and cancellous bone, no single measurement can fully characterize the structural integrity of bone or reliably predict the occurrence of a fracture. In addition, factors such as aging, trauma, and disease affect the tissue properties and can compromise bone strength. While bone mass and, more recently, morphology have been widely examined in vivo, to date these measures do not fully explain variations in bone mechanical properties observed experimentally in vitro. Healthy bone tissue exhibits spatial and temporal variations in tissue-level material properties that are altered by aging and disease. Characterizing bone material properties, whether at the tissue level or at the chemical composition level of the mineral and matrix constituents, may improve the ability to predict structural competence and fracture risk reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. None. Bone density reference data. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. Philadelphia: Lippincott Williams & Wilkins, 1996:483.

    Google Scholar 

  2. Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 1987;215:260–271.

    PubMed  Google Scholar 

  3. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med 2003;349(4):327–334.

    Article  PubMed  Google Scholar 

  4. Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 2004;34(3):443–453.

    Article  CAS  PubMed  Google Scholar 

  5. Aloia JF, Vaswani A, Mikhail M, Badshah M, Flaster E. Cancellous bone of the spine is greater in black women. Calcif Tissue Int 1999;65(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  6. Aris RM, Neuringer IP, Weiner MA, Egan TM, Ontjes D. Severe osteoporosis before and after lung transplantation. Chest 1996;109(5):1176–1183.

    Article  CAS  PubMed  Google Scholar 

  7. Aris RM, Renner JB, Winders AD, Buell HE, Riggs DB, Lester GE, Ontjes DA. Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis. Ann Intern Med 1998;128(3):186–193.

    CAS  PubMed  Google Scholar 

  8. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD. Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 1997;12(4):683–690.

    Article  CAS  PubMed  Google Scholar 

  9. Bachrach LK, Loutit CW, Moss RB. Osteopenia in adults with cystic fibrosis. Am J Med 1994;96(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  10. Barden H. Bone mineral density of the spine and femur in normal U.S. white females. J Bone Miner Res 1997;12(Suppl. 1):S248.

    Google Scholar 

  11. Baroncelli GI, De Luca F, Magazzu G, Arrigo T, Sferlazzas C, Catena C, Bertelloni S, Saggese G. Bone demineralization in cystic fibrosis: evidence of imbalance between bone formation and degradation. Pediatr Res 1997;41(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  12. Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 2001;16(6):1108–1119.

    Article  CAS  PubMed  Google Scholar 

  13. Beck TJ, Ruff CB, Scott WW, Jr, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 1992;50:24–29.

    Article  CAS  PubMed  Google Scholar 

  14. Beck TJ, Ruff CB, Warden KE, Scott WWJ, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 1990;25:6–18.

    Article  CAS  PubMed  Google Scholar 

  15. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993;26(8):969–990.

    Article  CAS  PubMed  Google Scholar 

  16. Bergot C, Laval-Jeantet AM, Preteux F, Meunier A. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int 1988;43(3):143–149.

    Article  CAS  PubMed  Google Scholar 

  17. Bhudhikanok GS, Lim J, Marcus R, Harkins A, Moss RB, Bachrach LK. Correlates of osteopenia in patients with cystic fibrosis. Pediatrics 1996;97(1):103–111.

    CAS  PubMed  Google Scholar 

  18. Bhudhikanok GS, Wang MC, Eckert K, Matkin C, Marcus R, Bachrach LK. Differences in bone mineral in young Asian and Caucasian Americans may reflect differences in bone size. J Bone Miner Res 1996;11(10):1545–1556.

    Article  CAS  PubMed  Google Scholar 

  19. Bonucci E, Ballanti P, Della Rocca C, Milani S, Lo Cascio V, Imbimbo B. Technical variability of bone histomorphometric measurements. Bone Miner 1990;11(2):177–186.

    Article  CAS  PubMed  Google Scholar 

  20. Boskey AL, Dicarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 2005;16:2031–2038.

    Article  CAS  PubMed  Google Scholar 

  21. Bouxsein ML, Melton LJ, III, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA, Camp JJ, Rouleau PA, McCollough CH, Khosla S. Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 2006;21(9):1475–1482.

    Article  PubMed  Google Scholar 

  22. Buckley JM, Cheng L, Loo K, Slyfield C, Xu Z. Quantitative computed tomography-based predictions of vertebral strength in anterior bending. Spine 2007;32(9):1019–1027.

    Article  PubMed  Google Scholar 

  23. Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 2007;40(3):767–774.

    Article  PubMed  Google Scholar 

  24. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 1997;12(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  25. Burstein AH, Zika JM, Heiple K, Klein L. Contribution of collagen and mineral to the elastic–plastic properties of bone. J Bone Joint Surg (Am) 1975;57(7):956–961.

    CAS  Google Scholar 

  26. Busa B, Miller LM, Rubin CT, Qin YX, Judex S. Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 2005;77(6):386–394.

    Article  CAS  PubMed  Google Scholar 

  27. Camacho NP, Landis WJ, Boskey AL. Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect Tissue Res 1996;35(1–4):259–265.

    Article  CAS  PubMed  Google Scholar 

  28. Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987;20:1095–1109.

    Article  CAS  PubMed  Google Scholar 

  29. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7(2):137–145.

    Article  CAS  PubMed  Google Scholar 

  30. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977;59-A:954–962.

    Google Scholar 

  31. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 1990;23(11):1103–1113.

    Article  CAS  PubMed  Google Scholar 

  32. Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 2000;15(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  33. Cody DD, Hou FJ, Divine GW, Fyhrie DP. Femoral structure and stiffness in patients with femoral neck fracture. J Orthop Res 2000;18(3):443–448.

    Article  CAS  PubMed  Google Scholar 

  34. Cole WG. Osteogenesis imperfecta. Baillieres Clin Endocrinol Metab 1988;2(1):243–265.

    Article  CAS  PubMed  Google Scholar 

  35. Cooper A. A treatise on dislocations and fractures of the joints. London: Longman, Hurst, Rees, Orme, and Brown, 1842.

    Google Scholar 

  36. Cowin SC. The relationship between the elasticity tensor and the fabric tensor. Mech Mater 1985;4:137–147.

    Article  Google Scholar 

  37. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003;33(4):744–750.

    Article  PubMed  Google Scholar 

  38. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359(9319):1761–1767.

    Article  PubMed  Google Scholar 

  39. Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 1988;21(2):131–139.

    Article  CAS  PubMed  Google Scholar 

  40. Currey JD. What determines the bending strength of compact bone? J Exp Biol 1999;202(Pt 18):2495–2503.

    CAS  PubMed  Google Scholar 

  41. Currey JD. Role of collagen and other organics in the mechanical properties of bone. Osteoporos Int 2003;14(Suppl 5):S29-S36.

    Google Scholar 

  42. Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC. Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 1997;15(1):111–117.

    Article  CAS  PubMed  Google Scholar 

  43. De Schepper J, Smitz J, Dab I, Piepsz A, Jonckheer M, Bergmann P. Low serum bone gamma-carboxyglutamic acid protein concentrations in patients with cystic fibrosis: correlation with hormonal parameters and bone mineral density. Horm Res 1993 39(5–6):197–201.

    Article  PubMed  Google Scholar 

  44. Dempster DW, Ferguson-Pell MW, Mellish RW, Cochran GV, Xie F, Fey C, Horbert W, Parisien M, Lindsay R. Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 1993;3(2):90–96.

    Article  CAS  PubMed  Google Scholar 

  45. Diaz Curiel M, Carrasco de la Peña JL, Honorato Perez J, Perez Cano R, Rapado A, Ruiz Martinez I. Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos Int 1997;7(1):59–64.

    CAS  Google Scholar 

  46. Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G. Severe osteopenia in CFTR-null mice. Bone 2004;35(3):595–603.

    Article  CAS  PubMed  Google Scholar 

  47. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 1995;57(5):344–358.

    Article  CAS  PubMed  Google Scholar 

  48. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol 1967;94(2):275–291.

    Article  CAS  PubMed  Google Scholar 

  49. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ III. Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 2002;13(4):323–330.

    Article  CAS  PubMed  Google Scholar 

  50. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac CM. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone 2000;27(4): 541–550.

    Article  CAS  PubMed  Google Scholar 

  51. Galante J, Rostoker W, Ray RD. Physical properties of trabecular bone. Calcif Tissue Res 1970;5:236–246.

    Article  CAS  PubMed  Google Scholar 

  52. Gibson LJ. The mechanical behavior of cancellous bone. J Biomech 1985;18:317–328.

    Article  CAS  PubMed  Google Scholar 

  53. Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 1987;20(11–12):1055–1061.

    Article  CAS  PubMed  Google Scholar 

  54. Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 1993;53:S127–32; discussion S132–133.

    Article  PubMed  Google Scholar 

  55. Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 1983;16(12):965–969.

    Article  CAS  PubMed  Google Scholar 

  56. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 1994;27(4):375–389.

    Article  CAS  PubMed  Google Scholar 

  57. Hamer AJ, Stockley I, Elson RA. Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Br 1999;81(2):342–344.

    Article  CAS  PubMed  Google Scholar 

  58. Handschin RG, Stern WB. Crystallographic and chemical analysis of human bone apatite (Crista Iliaca). Clin Rheumatol 1994;13(Suppl 1):75–90.

    PubMed  Google Scholar 

  59. Handschin RG, Stern WB. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 1995;16(4 Suppl):355S–363S.

    Google Scholar 

  60. Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 1991;29(1):1–18.

    CAS  PubMed  Google Scholar 

  61. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr 1996;128(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  62. Henderson RC, Specter BB. Kyphosis and fractures in children and young adults with cystic fibrosis. J Pediatr 1994;125(2):208–212.

    Article  CAS  PubMed  Google Scholar 

  63. Hibbeler RC. Mechanics of materials. Upper Saddle River, New Jersey: Prentice Hall, 1997.

    Google Scholar 

  64. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 1999;14(7):1167–1174.

    Article  CAS  PubMed  Google Scholar 

  65. Hodgskinson R, Currey JD. Young’s modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 1992;3(377–381)

    Google Scholar 

  66. Hui SL, Slemenda CW, Johnston CC, Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988;81(6):1804–1809.

    Article  CAS  PubMed  Google Scholar 

  67. Johnell O. The socioeconomic burden of fractures: today and in the 21st century. Am J Med 1997;103(2A):20S–25S; discussion 25S–26S.

    Article  CAS  PubMed  Google Scholar 

  68. Kabel J, Odgaard A, van Rietbergen B, Huiskes R. Connectivity and the elastic properties of cancellous bone. Bone 1999;24(2):115–120.

    Article  CAS  PubMed  Google Scholar 

  69. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 2007;22(1):149–157.

    Article  CAS  PubMed  Google Scholar 

  70. Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. Systematic and random errors in compression testing of trabecular bone. J Orthop Res 1997;15(1):101–110.

    Article  CAS  PubMed  Google Scholar 

  71. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 2005;(437):219–228.

    Google Scholar 

  72. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985;37(6): 594–597.

    Article  CAS  PubMed  Google Scholar 

  73. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech 1998;31(7):601–608.

    Article  CAS  PubMed  Google Scholar 

  74. Kotzar GM, Davy DT, Goldberg VM, Heiple KG, Berilla J, Heiple KG, Jr., Brown RH, Burstein AH. Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery. J Orthop Res 1991;9(5):621–633.

    Article  CAS  PubMed  Google Scholar 

  75. Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, Marini JC, Goldstein SA. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res 2004;19(4):614–622.

    Article  PubMed  Google Scholar 

  76. Kuhn JL, Goldstein SA, Choi K, London M, Feldkamp LA, Matthews LS. Comparison of the trabecular and cortical tissue moduli from human iliac crests. J Orthop Res 1989;7(6):876–884.

    Article  CAS  PubMed  Google Scholar 

  77. Kurtz D, Morrish K, Shapiro J. Vertebral bone mineral content in osteogenesis imperfecta. Calcif Tissue Int 1985;37(1):14–18.

    Article  CAS  PubMed  Google Scholar 

  78. Lehmann R, Wapniarz M, Randerath O, Kvasnicka HM, John W, Reincke M, Kutnar S, Klein K, Allolio B. Dual-energy X-ray absorptiometry at the lumbar spine in German men and women: a cross-sectional study. Calcif Tissue Int 1995;56(5):350–354.

    Article  CAS  PubMed  Google Scholar 

  79. Linde F, Gøthgen CB, Hvid I, Pongsoipetch B. Mechanical properties of trabecular bone by a non-destructive compression testing approach. Eng Med 1988;17(1):23–29.

    Article  CAS  PubMed  Google Scholar 

  80. Linde F, Hvid I, Pongsoipetch B. Energy absorptive properties of human trabecular bone specimens during axial compression. J Orthop Res 1989;7(3):432–439.

    Article  CAS  PubMed  Google Scholar 

  81. Löfman O, Larsson L, Ross I, Toss G, Berglund K. Bone mineral density in normal Swedish women. Bone 1997;20(2):167–174.

    Article  PubMed  Google Scholar 

  82. Lund AM, Molgaard C, Muller J, Skovby F. Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Paediatr 1999;88(10):1083–1088.

    Article  CAS  PubMed  Google Scholar 

  83. Malluche HH, Meyer W, Sherman D, Massry SG. Quantitative bone histology in 84 normal American subjects. Micromorphometric analysis and evaluation of variance in iliac bone. Calcif Tissue Int 1982;34(5):449–455.

    Article  CAS  PubMed  Google Scholar 

  84. Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, mineralization on bovine cortical bone bending properties. J Biomech 1993;26(9):1047–1054.

    Article  CAS  PubMed  Google Scholar 

  85. Martin RB, Burr DB. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 1984;17(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  86. Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. New York: Springer, 1998.

    Google Scholar 

  87. Matousek P, Draper ER, Goodship AE, Clark IP, Ronayne KL, Parker AW. Noninvasive Raman spectroscopy of human tissue in vivo. Appl Spectrosc 2006;60(7):758–763.

    Article  CAS  PubMed  Google Scholar 

  88. McCreadie BR, Morris MD, Chen TC, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 2006;39(6):1190–1195.

    Article  CAS  PubMed  Google Scholar 

  89. Melton LJ III. Hip fractures: a worldwide problem today and tomorrow. Bone 1993;14:S1–8.

    Article  PubMed  Google Scholar 

  90. Melton LJ III. Who has osteoporosis? A conflict between clinical and public health perspectives. J Bone Miner Res 2000;15(12):2309–2314.

    Article  PubMed  Google Scholar 

  91. Melton LJ, 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J Bone Miner Res 1992;7(9):1005–1010.

    Article  PubMed  Google Scholar 

  92. Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L, Boskey AL, Klaushofer K, Fratzl P, Camacho NP. Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 2005;36(1):150–158.

    Article  CAS  PubMed  Google Scholar 

  93. Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 2005;38(6):1229–1237.

    Article  PubMed  Google Scholar 

  94. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 2003;36(7):897–904.

    Article  PubMed  Google Scholar 

  95. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 1995;56(3):206–209.

    Article  CAS  PubMed  Google Scholar 

  96. Moro M, van der Meulen MC, Kiratli BJ, Marcus R, Bachrach LK, Carter DR. Body mass is the primary determinant of midfemoral bone acquisition during adolescent growth. Bone 1996;19(5):519–526.

    Article  CAS  PubMed  Google Scholar 

  97. Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure – biomechanical consequences. Bone 1989;10:425–432.

    Article  CAS  PubMed  Google Scholar 

  98. Mosekilde L. Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner 1990;10(1):13–35.

    Article  CAS  PubMed  Google Scholar 

  99. Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 1990;11:67–73.

    Article  CAS  PubMed  Google Scholar 

  100. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 1987;8(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  101. Myers ER, Hecker AT, Rooks DS, Hipp JA, Hayes WC. Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 1993;52(3):199–204.

    Article  CAS  PubMed  Google Scholar 

  102. National Osteoporosis Foundation. America’s bone health: the state of osteoporosis and low bone mass in our nation. Washington D.C.: National Osteoporosis Foundation, 2002.

    Google Scholar 

  103. Ninomiya JT, Tracy RP, Calore JD, Gendreau MA, Kelm RJ, Mann KG. Heterogeneity of human bone. J Bone Miner Res 1990;5(9):933–938.

    Article  CAS  PubMed  Google Scholar 

  104. Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R. Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 1997;30(5):487–495.

    Article  CAS  PubMed  Google Scholar 

  105. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R. Infrared microscopic imaging of bone: spatial distribution of CO3(2-). J Bone Miner Res 2001;16(5):893–900.

    Article  CAS  PubMed  Google Scholar 

  106. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 1983;72(4):1396–1409.

    Article  CAS  PubMed  Google Scholar 

  107. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 1997;61(6):487–492.

    Article  CAS  PubMed  Google Scholar 

  108. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 1997;61(6):480–486.

    Article  CAS  PubMed  Google Scholar 

  109. Pugh JW, Rose RM, Radin EL. A structural model for the mechanical behavior of trabecular bone. J Biomech 1973;6(6):657–670.

    Article  CAS  PubMed  Google Scholar 

  110. Raux P, Townsend PR, Miegel R, Rose RM, Radin EL. Trabecular architecture of the human patella. J Biomech 1975;8(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  111. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 1993;26(2):111–119.

    Article  CAS  PubMed  Google Scholar 

  112. Rho JY, Roy ME II, Tsui TY, Pharr GM. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 1999;45(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  113. Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 1997;18(20):1325–1330.

    Article  CAS  PubMed  Google Scholar 

  114. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 1988;21(2):155–168.

    Article  CAS  PubMed  Google Scholar 

  115. Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002;23(3):279–302.

    Article  CAS  PubMed  Google Scholar 

  116. Riggs BL, Melton LJ, 3rd, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, McCollough CH, Khosla S, Bouxsein ML. Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 2006;21(2):315–323.

    Article  PubMed  Google Scholar 

  117. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ III. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982;70(4):716–723.

    Article  CAS  PubMed  Google Scholar 

  118. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1991;114(11):919–923.

    CAS  PubMed  Google Scholar 

  119. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 1990;46(3):149–161.

    Article  CAS  PubMed  Google Scholar 

  120. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004;34(1):195–202.

    Article  CAS  PubMed  Google Scholar 

  121. Schulmerich MV, Dooley KA, Vanasse TM, Goldstein SA, Morris MD. Subsurface and transcutaneous Raman spectroscopy and mapping using concentric illumination rings and collection with a circular fiber-optic array. Appl Spectrosc 2007;61(7):671–678.

    Google Scholar 

  122. Schulmerich MV, Finney WF, Fredricks RA, Morris MD. Subsurface Raman spectroscopy and mapping using a globally illuminated non-confocal fiber-optic array probe in the presence of Raman photon migration. Appl Spectrosc 2006;60(2):109–114.

    Article  CAS  PubMed  Google Scholar 

  123. Shane E, Silverberg SJ, Donovan D, Papadopoulos A, Staron RB, Addesso V, Jorgesen B, McGregor C, Schulman L. Osteoporosis in lung transplantation candidates with end-stage pulmonary disease. Am J Med 1996;101(3):262–269.

    Article  CAS  PubMed  Google Scholar 

  124. Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 1997;21(2):191–199.

    Article  CAS  PubMed  Google Scholar 

  125. Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 1998;16(3):300–308.

    Article  CAS  PubMed  Google Scholar 

  126. Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC. Predicting fracture through benign skeletal lesions with quantitative computed tomography. J Bone Joint Surg Am 2006;88(1):55–70.

    Article  PubMed  Google Scholar 

  127. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 2005;16(10):1184–1192.

    Article  PubMed  Google Scholar 

  128. Tarnowski CP, Ignelzi MA, Jr., Morris MD. Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 2002;17(6):1118–1126.

    Article  PubMed  Google Scholar 

  129. Thomsen JS, Ebbesen EN, Mosekilde L. A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone. Bone 2000;27(1):129–138.

    Article  CAS  PubMed  Google Scholar 

  130. Thomsen JS, Ebbesen EN, Mosekilde L. Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 2002;30(3):502–508.

    Article  CAS  PubMed  Google Scholar 

  131. Townsend PR, Raux P, Rose RM, Miegel RE, Radin EL. The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J Biomech 1975;8(6):363–367.

    Article  CAS  PubMed  Google Scholar 

  132. Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 1999;32(4):437–441.

    Article  CAS  PubMed  Google Scholar 

  133. Ulrich D, Hildebrand T, van Rietbergen B, Müller R, Rüegsegger P. The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing. Stud Health Technol Inform 1997;40:97–112.

    CAS  PubMed  Google Scholar 

  134. U.S. Department of Health and Human Services, Office of the Surgeon General. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD 2004.

    Google Scholar 

  135. van der Meulen MC, Huiskes R. Why mechanobiology? A survey article. J Biomech 2002;35(4):401–414.

    Article  PubMed  Google Scholar 

  136. van der Meulen MC, Jepsen KJ, Mikić B. Understanding bone strength: size isn’t everything. Bone 2001;29(2):101–104.

    Article  PubMed  Google Scholar 

  137. van Rietbergen B, Majumdar S, Pistoia W, Newitt DC, Kothari M, Laib A, Rüegsegger P. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care 1998;6(5–6):413–420.

    PubMed  Google Scholar 

  138. Vega E, Bagur A, Mautalen CA. Densidad mineral âosea en mujeres osteoporâoticas y normales de Buenos Aires. Medicina 1993;53(3):211–216.

    CAS  PubMed  Google Scholar 

  139. Weaver JK, Chalmers J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg Am 1966;48(2):289–298.

    CAS  PubMed  Google Scholar 

  140. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry [published erratum appears in J Bone Miner Res 1995 Mar;10(3):510]. J Bone Miner Res 1994;9(7):1053–1064.

    Article  CAS  PubMed  Google Scholar 

  141. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 1999;32(10):1005–1012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cole, J.H., van der Meulen, M.C. (2010). Biomechanics of Bone. In: Adler, R. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-459-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-459-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-19-0

  • Online ISBN: 978-1-59745-459-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics