Skip to main content

Bone Mineral Assessment of the Axial Skeleton: Technical Aspects

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 887 Accesses

Summary

The goal of this chapter is to describe the underlying principles and error sources associated with X-ray based bone densitometry methods used to assess the central skeleton. The first portion of the chapter focuses on projectional densitometry measurements which are most widely used in the clinical setting. The concepts of single and dual photon absorptiometry are used to provide a simple and clear explanation of the physical principles underlying dual X-ray absorptiometry (DXA). The section then describes the error sources associated with DXA, including precision errors, bone size dependence and the effect of adipose tissue distribution. The second portion of the chapter describes quantitative X-ray computed tomography (QCT), an adaptation of clinical computed tomography imaging for assessment of skeletal integrity. This section describes how CT images are acquired and the physical meaning of the image units as they relate to bone mineral content and density. The section then describes the use of QCT of the hip and spine to assess cortical and trabecular bone mineral density, the physical errors associated with those assessments, and the application of QCT to assess measures of bone quality such as bone geometry and whole bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Madsen M. Vertebral and peripheral bone mineral content by photon absorptiometry. Invest Radiol 1977;12(2):185–188.

    Article  CAS  PubMed  Google Scholar 

  2. Cameron EC, Boyd RM, Luk D, McIntosh HW, Walker VR. Cortical thickness measurements and photon absorptiometry for determination of bone quantity. Can Med Assoc J 1977;116(2):145–147.

    CAS  PubMed  Google Scholar 

  3. Naftchi NE, Viau AT, Marshall CH, Davis WS, Lowman EW. Bone mineralization in the distal forearm of hemiplegic patients. Arch Phys Med Rehabil 1975;56(11):487–492.

    CAS  PubMed  Google Scholar 

  4. Mazess RB, Peppler WW, Chesnut CH, Nelp WB, Cohn SH, Zanzi I. Total body bone mineral and lean body mass by dual-photon absorptiometry. II. Comparison with total body calcium by neutron activation analysis. Calcif Tissue Int 1981;33(4):361–363.

    Article  CAS  PubMed  Google Scholar 

  5. Mazess RB, Peppler WW, Harrison JE, McNeill KG. Total body bone mineral and lean body mass by dual-photon absorptiometry. III. Comparison with trunk calcium by neutron activation analysis. Calcif Tissue Int 1981;33(4):365–368.

    Article  CAS  PubMed  Google Scholar 

  6. Peppler WW, Mazess RB. Total body bone mineral and lean body mass by dual-photon absorptiometry. I. Theory and measurement procedure. Calcif Tissue Int 1981;33(4):353–359.

    Article  CAS  PubMed  Google Scholar 

  7. Borders J, Kerr E, Sartoris DJ, et al. Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry. Radiology 1989;170(1 Pt 1):129–131.

    CAS  PubMed  Google Scholar 

  8. Stein J, Hochberg AM, Lazetawsky L. Quantitative digital radiography for bone mineral analysis. In: Dequeker JV, Geusens P, Wahner HW, eds. Bone mineral measurements by photon absorptiometry: methodological problems. Louvain, Belgium: Leuven University Press; 1988:411–414.1

    Google Scholar 

  9. Mazess RB, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual energy X-ray bone densitometer. Calcif Tissue Int 1989;44:228–232.

    Article  CAS  PubMed  Google Scholar 

  10. Steiger P, von Stetten E, Weiss H, Stein JA. Paired AP and lateral supine dual X-ray absorptiometry of the spine: initial results with a 32 detector system. Osteoporosis Int 1991;1(3):190.

    Google Scholar 

  11. Lang T, Takada M, Gee R, et al. A preliminary evaluation of the Lunar Expert-XL for bone densitometry and vertebral morphometry. J Bone Miner Res 1997;12(1):136–143.

    Article  CAS  PubMed  Google Scholar 

  12. Mazess RB, Hanson JA, Payne R, Nord R, Wilson M. Axial and total-body bone densitometry using a narrow-angle fan-beam. Osteoporos Int 2000;11(2):158–166.

    Article  CAS  PubMed  Google Scholar 

  13. Crabtree N, Wright J, Walgrove A, et al. Vertebral morphometry: repeat scan precision using the Lunar Expert-XL and the Hologic 4500A. A study for the 'WISDOM' RCT of hormone replacement therapy. Osteoporos Int 2000;11(6):537–543.

    Article  CAS  PubMed  Google Scholar 

  14. Stein JA, Lazewatsky JL, Hochberg AM. Dual energy X-ray bone densitometer incorporating an internal reference system. Radiology 1987;165(P):313.

    Google Scholar 

  15. Lehmann LA, Alvarez RE, Macovski A, Brody WR. Generalized image combinations in dual-kVp-digital radiography. Med Phys 1981;8:659–667.

    Article  CAS  PubMed  Google Scholar 

  16. Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys 1990;17(3):327–341.

    Article  CAS  PubMed  Google Scholar 

  17. Bezakova E, Collins PJ, Beddoe AH. Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol 1997;70(835):172–179.

    CAS  PubMed  Google Scholar 

  18. Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM. Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual X-ray absorptiometry. Br J Radiol 1997;70(835):719–727.

    CAS  PubMed  Google Scholar 

  19. Kalender WA. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporosis Int 1992;2:82–87.

    Article  CAS  Google Scholar 

  20. Adams JE. Single- and dual-energy: X-ray absorptiometry. In: Genant HK, Guglielmi, G, Jergas, M, eds. Bone densitometry and osteoporosis. Berlin: Springer-Verlag; 1998:305–347.

    Google Scholar 

  21. Eiken P, Kolthoff N, Bärenholdt O, Hermansen F, Pors Nielsen S. Switching from DXA pencil-beam to fan-beam. II: studies in vivo. Bone 1994;15(6):671–676.

    Article  CAS  PubMed  Google Scholar 

  22. Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schütte HE. Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int 1996;6(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  23. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C. Accuracy and precision of 62 bone densitometers using a European Spine Phantom. Osteoporos Int 1999;10(1):14–19.

    Article  CAS  PubMed  Google Scholar 

  24. Khan KM, Henzell SL, Broderick C, et al. Instrument performance in bone density testing at five Australian centres [see comments]. Aust N Z J Med 1997;27(5):526–530.

    CAS  PubMed  Google Scholar 

  25. Pors Nielsen S, Bärenholdt O, Diessel E, Armbrust S, Felsenberg D. Linearity and accuracy errors in bone densitometry. Br J Radiol 1998;71(850):1062–1068.

    CAS  PubMed  Google Scholar 

  26. Pouilles JM, Collard P, Tremollieres F, et al. Accuracy and precision of in vivo bone mineral measurements in sheep using dual-energy X-ray absorptiometry. Calcif Tissue Int 2000;66(1):70–73.

    Article  CAS  PubMed  Google Scholar 

  27. Lochmuller EM, Miller P, Burklein D, Wehr U, Rambeck W, Eckstein F. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 2000;11(4):361–367.

    Article  CAS  PubMed  Google Scholar 

  28. Engelke K, Glüer CC, Genant HK. Factors influencing short-term precision of dual X-ray bone absorptiometry (DXA) of spine and femur. Calcif Tissue Int 1995;56(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  29. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995;5(4):262–270.

    Article  CAS  PubMed  Google Scholar 

  30. Mazess RB, Nord R, Hanson JA, Barden HS. Bilateral measurement of femoral bone mineral density. J Clin Densitom 2000;3(2):133–140.

    Article  CAS  PubMed  Google Scholar 

  31. Patel R, Blake GM, Rymer J, Fogelman I. Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 2000;11(1):68–75.

    Article  CAS  PubMed  Google Scholar 

  32. Ravaud P, Reny JL, Giraudeau B, Porcher R, Dougados M, Roux C. Individual smallest detectable difference in bone mineral density measurements. J Bone Miner Res 1999;14(8):1449–1456.

    Article  CAS  PubMed  Google Scholar 

  33. Jergas M, Breitenseher M, Gluer CC, Yu W, Genant H. Estimates of volumetric density from projectional estimates improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 1995;10:1101–1110.

    Article  CAS  PubMed  Google Scholar 

  34. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137–145.

    Article  CAS  PubMed  Google Scholar 

  35. Cummings SR, Cauley JA, Palermo L, et al. Racial differences in hip axis lengths might explain racial differences in rates of hip fractures. Osteoporos Int 1994;4:226–229.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone and Miner Res 1994;9(7):1053–1064.

    Article  CAS  Google Scholar 

  37. Schönau E. Problems of bone analysis in childhood and adolescence. Pediatr Nephrol 1998;12(5):420–429.

    Article  PubMed  Google Scholar 

  38. Sievänen H, Backström MC, Kuusela AL, Ikonen RS, Mäki M. Dual energy X-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Pediatr Res 1999;45(1):100–105.

    Article  PubMed  Google Scholar 

  39. Koo WW. Body composition measurements during infancy. Ann N Y Acad Sci 2000;904(4):383–392.

    CAS  PubMed  Google Scholar 

  40. Lapillonne A, Braillon PM, Delmas PD, Salle BL. Dual-energy X-ray absorptiometry in early life. Horm Res 1997;48 Suppl 1(3):43–49.

    Article  CAS  PubMed  Google Scholar 

  41. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 1999;23(1):130–137.

    Article  CAS  PubMed  Google Scholar 

  42. Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK. Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1994;9(9):1429–1432.

    Article  CAS  PubMed  Google Scholar 

  43. Tothill P, Avenell A. Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol 1994;67(793):71–75.

    Article  CAS  PubMed  Google Scholar 

  44. Svendsen OL, Hassager C, Skødt V, Christiansen C. Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 1995;10(6):868–873.

    Article  CAS  PubMed  Google Scholar 

  45. Formica C, Loro ML, Gilsanz V, Seeman E. Inhomogeneity in body fat distribution may result in inaccuracy in the measurement of vertebral bone mass. J Bone Miner Res 1995;10(10):1504–1511.

    Article  CAS  PubMed  Google Scholar 

  46. Ruetsche AG, Lippuner K, Jaeger P, Casez JP. Differences between dual X-ray absorptiometry using pencil beam and fan beam modes and their determinants in vivo and in vitro. J Clin Densitom 2000;3(2):157–166.

    Article  CAS  PubMed  Google Scholar 

  47. Griffiths MR, Noakes KA, Pocock NA. Correcting the magnification error of fan beam densitometers. J Bone Miner Res 1997;12(1):119–123.

    Article  CAS  PubMed  Google Scholar 

  48. Blake GM, McKeeney DB, Chhaya SC, Ryan PJ, Fogelman J. Dual energy X-ray absorptiometry: the effects of beam hardening on bone density measurements. Med Phys 1992;19(2):459–465.

    Article  CAS  PubMed  Google Scholar 

  49. Pietrobelli A, Gallagher D, Baumgartner R, Ross R, Heymsfield SB. Lean R value for DXA two-component soft-tissue model: influence of age and tissue or organ type. Appl Radiat Isot 1998;49(5–6):743–744.

    Article  CAS  PubMed  Google Scholar 

  50. Gluer CC, Steiger P, Selvidge R, Elliesen-Kliefoth K, Hayashi C, Genant HK. Comparative assessment of dual-photon-absorptiometry and dual-energy-radiography. Radiology 1990;174:223–228.

    CAS  PubMed  Google Scholar 

  51. Grampp S, Genant H, Mathur A, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 1997;12(5):697–711.

    Article  CAS  PubMed  Google Scholar 

  52. Pacifici R, Rupich R, Griffin M, Chines A, Susman N, Avioli LV. Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 1990;70(3):705–710.

    Article  CAS  PubMed  Google Scholar 

  53. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994;843:1–129.

    Google Scholar 

  54. Wainwright SA, Marshall LM, Ensrud KE, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 2005;90(5):2787–2793.

    Article  CAS  PubMed  Google Scholar 

  55. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312(7041):1254–1259.

    CAS  PubMed  Google Scholar 

  56. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int 2005;16(6):581–589.

    Article  PubMed  Google Scholar 

  57. Richards JB, Leslie WD, Joseph L, et al. Changes to osteoporosis prevalence according to method of risk assessment. J Bone Miner Res 2007;22(2):228–234.

    Article  PubMed  Google Scholar 

  58. Kalender WA, Polacin A. Physical performance of spiral CT scanning. Med Phys 1991;18(5):910–915.

    Article  CAS  PubMed  Google Scholar 

  59. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport and continuous scanner rotation. Radiology 1990;176:181–183.

    CAS  PubMed  Google Scholar 

  60. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comp Assist Tomogr 1980;4:493–500.

    Article  CAS  Google Scholar 

  61. Faulkner KG, Glüer CC, Grampp S, Genant HK. Cross calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteo Int 1993;3:36–42.

    Article  CAS  Google Scholar 

  62. Dunnill M, Anderson J, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol 1967;94:275–291.

    Article  CAS  PubMed  Google Scholar 

  63. Cann CE. Low-dose CT scanning for quantitative spinal mineral analysis. Radiology 1981;140:813–815.

    CAS  PubMed  Google Scholar 

  64. Genant HK, Cann CE, Boyd DP, et al. Quantitative computed tomography for vertebral mineral determination. In: Frame B, Potts JT, eds. Clinical disorders of bone and mineral metabolism. Amsterdam–Oxford–Princeton: Excerpta Medica; 1983:40–47.

    Google Scholar 

  65. Kalender WA, Klotz E, Süss C. Vertebral bone mineral analysis: an integrated approach. Radiology 1987;164:419–423.

    CAS  PubMed  Google Scholar 

  66. Steiger P, Block JE, Steiger S, et al. Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique. Radiology 1990;175:537–543.

    CAS  PubMed  Google Scholar 

  67. Laval-Jeantet AM, Genant HK, Wu C, Glüer CC, Faulkner K, Steiger P. Factors influencing long-term in vivo reproducibility of QCT (vertebral densitometry). JCAT 1993;17(6):915–921.

    CAS  Google Scholar 

  68. Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 1997;21(1):101–108.

    Article  CAS  PubMed  Google Scholar 

  69. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999;9(3):555–562.

    Article  CAS  PubMed  Google Scholar 

  70. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 2004;19(6):1006–1012.

    Article  PubMed  Google Scholar 

  71. Kang Y, Engelke K, Kalender WA. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 2003;22(5):586–598.

    Article  PubMed  Google Scholar 

  72. Kang Y, Engelke K, Fuchs C, Kalender WA. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 2005;29(7):533–541.

    Article  PubMed  Google Scholar 

  73. Riggs BL, Melton Iii LJ, III, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004;19(12):1945–1954.

    Article  PubMed  Google Scholar 

  74. Meta M, Lu Y, Keyak JH, Lang T. Young-elderly differences in bone density, geometry and strength indices depend on proximal femur sub-region: a cross sectional study in Caucasian-American women. Bone 2006;39(1):152–158.

    Article  CAS  PubMed  Google Scholar 

  75. Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 2006;21(8):1224–1230.

    Article  PubMed  Google Scholar 

  76. Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003;349(13):1207–1215.

    Article  CAS  PubMed  Google Scholar 

  77. McClung MR, San Martin J, Miller PD, et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 2005;165(15):1762–1768.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng X, Li J, Lu Y, Keyak J, Lang T. Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 2007;40(1):169–174.

    Article  CAS  PubMed  Google Scholar 

  79. Sigurdsson G, Aspelund T, Chang M, et al. Increasing sex difference in bone strength in old age: the age, gene/environment susceptibility-reykjavik study (AGES-REYKJAVIK). Bone 2006;39(3):644–651.

    Article  PubMed  Google Scholar 

  80. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES. Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 2006;21(8):1197–1206.

    Article  PubMed  Google Scholar 

  81. Gluer CC, Cummings SR, Pressman A, et al. Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1994;9(5):671–677.

    Article  CAS  PubMed  Google Scholar 

  82. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 1999;23(1):130–137.

    Article  CAS  PubMed  Google Scholar 

  83. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 2005(437):219–228.

    Google Scholar 

  84. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 2001;23(3):165–173.

    Article  CAS  PubMed  Google Scholar 

  85. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 2001;23(9):657–664.

    Article  CAS  PubMed  Google Scholar 

  86. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 1999;32(10):1013–1020.

    Article  CAS  PubMed  Google Scholar 

  87. Cody DD, Hou FJ, Divine GW, Fyhrie DP. Short term in vivo precision of proximal femoral finite element modeling. Ann Biomed Eng 2000;28(4):408–414.

    Article  CAS  PubMed  Google Scholar 

  88. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 2007;22(1):149–157.

    Article  CAS  PubMed  Google Scholar 

  89. Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng 2003;125(4):434–438.

    Article  PubMed  Google Scholar 

  90. Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 1991;179(3):669–674.

    CAS  PubMed  Google Scholar 

  91. Lian KC, Lang TF, Keyak JH, et al. Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naive postmenopausal women. Osteoporos Int 2005;16(6):642–650.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lang, T.F. (2010). Bone Mineral Assessment of the Axial Skeleton: Technical Aspects. In: Adler, R. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-459-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-459-9_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-19-0

  • Online ISBN: 978-1-59745-459-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics