Skip to main content

Part of the book series: Ophthalmology Research ((OPHRES))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta RB. Fundamentals of drug nanoparticles. In: Gupta RB and Kompella UB, editors. New York: Taylor and Francis; 2006).

    Google Scholar 

  2. 2. Katz B and Goldbaum M. Macugen (pegaptanib sodium), a novel ocular therapeutic that targets vascular endothelial growth factor (VEGF). Int Ophthalmol Clin 2006;46:141–54.

    Article  PubMed  Google Scholar 

  3. 3. Niederhafner P, Sebestik J, Jezek J. Peptide dendrimers. J Pept Sci 2005;11:757–88.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57:2177–202.

    Article  PubMed  CAS  Google Scholar 

  5. 5. D'Emanuele A and Attwood D. Dendrimer–drug interactions. Adv Drug Deliv Rev 2005;57:2147–62.

    Article  PubMed  Google Scholar 

  6. 6. Duncan R and Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005;57:2215–37.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 2005;12:1544–50.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Shaunak S. et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22:977–84.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54:759–79.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Danson S, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004;90:2085–91.

    PubMed  CAS  Google Scholar 

  11. 11. Pepic I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm 2004;272:57–64.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Kichler A. Gene transfer with modified polyethylenimines. J Gene Med 2004;6(Suppl 1):S3–10.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Nimesh S, Kumar R, Chandra R. Novel polyallylamine-dextran sulfate-DNA nanoplexes: Highly efficient non-viral vector for gene delivery. Int J Pharm 2006;320:143–9.

    Article  PubMed  CAS  Google Scholar 

  14. Amrite AC and Kompella UB. Nanoparticles for ocular drug delivery. Gupta RB and Kompella UB, editors. New York: Taylor and Francis; 2006).

    Google Scholar 

  15. 15. Kreuter J. Nanoparticles. New York: Marcel Dekker; 1994.

    Google Scholar 

  16. 16. Merodio M, Arnedo A, Renedo MJ, Irache JM. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 2001;12:251–9.

    Article  PubMed  CAS  Google Scholar 

  17. Yun M, Barnett ME, Raghava S, Takemoto D, Kompella UB. In: The 33rd Annual Conference of Controlled Release Society. Vienna, Austria, 2006.

    Google Scholar 

  18. 18. Kaul G and Amiji M. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J Pharm Sci 2005;94:184–98.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Zimmer A, et al. Microspheres and nanoparticles used in ocular drug delivery systems. Adv Drug Deliv Rev 1995;16:61–73.

    Article  CAS  Google Scholar 

  20. 20. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002;238:241–5.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Alonso MJ and Sanchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 2003;55:1451–63.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Marchal-Heussler L, Maincent P, Hoffman M, Sirbat D. [Value of the new drug carriers in ophthalmology: liposomes and nanoparticles]. J Fr Ophtalmol 1990;13:575–82.

    PubMed  CAS  Google Scholar 

  23. 23. Bourges JL, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003;44:3562–9.

    Article  PubMed  Google Scholar 

  24. 24. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 2003;44:1192–201.

    Article  PubMed  Google Scholar 

  25. 25. Marchal-Heussler L, Sirbat D, Hoffman M, Maincent P. Poly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm Res 1993;10:386–90.

    Article  PubMed  CAS  Google Scholar 

  26. 26. De TK, Rodman DJ, Holm BA, Prasad PN, Bergey EJ. Brimonidine formulation in polyacrylic acid nanoparticles for ophthalmic delivery. J Microencapsul 2003;20:361–74.

    PubMed  CAS  Google Scholar 

  27. 27. Gurny R. Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. Pharm Acta Helv 1981;56:130–2.

    PubMed  CAS  Google Scholar 

  28. 28. Harmia T, Speiser P, Kreuter J. Nanoparticles as drug carriers in ophthalmology. Pharm Acta Helv 1987;62:322–31.

    PubMed  CAS  Google Scholar 

  29. 29. Pignatello R, et al. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 2006;7:E27.

    Article  PubMed  Google Scholar 

  30. 30. Langer K, M E, Lambrecht G, Mayer D, Troschau G, Stieneker F, Kreuter J. Methymethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery Part III: Evaluation as drug delivery system for ophthalmic application. Int J Pharm 1997;158:219–231.

    Article  CAS  Google Scholar 

  31. Crommelin DJA and Schreier H. Liposomes. In: Kreuter J, editor. New York: Marcel Dekker; 1994).

    Google Scholar 

  32. 32. Zeimer R and Goldberg MF. Novel ophthalmic therapeutic modalities based on noninvasive light-targeted drug delivery to the posterior pole of the eye. Adv Drug Deliv Rev 2001;52:49–61.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Tans SJ, Vershueren ARM, Dekker C. Room temperature transistor based on a single carbon nanotube. Nature 1998;393:49–52.

    Article  CAS  Google Scholar 

  34. 34. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997;277:1971–1975.

    Article  CAS  Google Scholar 

  35. 35. Panchapakesan B, L S, Shivakumar K, Teker K, Cesarone G, Wickstrom E. Single wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 2005;1:133–139.

    Article  CAS  Google Scholar 

  36. 36. Yu X, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 2006;128:11199–205.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Hu H, et al. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 2005;109:4285–9.

    PubMed  CAS  Google Scholar 

  38. 38. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000;14:175–82.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Shi X, et al. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 2006;7:2237–42.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett 2006;6:562–7.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Aukunuru JV, Ayalasomayajula SP, Kompella UB. Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in human retinal pigment epithelial cells. J Pharm Pharmacol 2003;55:1199–206.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Koushik K and Kompella UB. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res 2004;21:524–35.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Martin TM, Bandi N, Shulz R, Roberts CB, Kompella UB. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech 2002;3:E18.

    Article  PubMed  Google Scholar 

  44. 44. Kompella UB and Koushik K. Preparation of drug delivery systems using supercritical fluid technology. Crit Rev Ther Drug Carrier Syst 2001;18:173–99.

    PubMed  CAS  Google Scholar 

  45. Jani PD, et al. Nanoparticles sustain the release of Flt intraceptors and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci, submitted 2007.

    Google Scholar 

  46. 46. Staples M, Daniel K, Cima MJ, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 2006; 23:847–63.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Martin F, et al. Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J Control Release 2005;102:123–33.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Grayson AC, et al. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 2004;15:1281–304.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Leary SP, Liu CY, Yu C, Apuzzo ML. Toward the emergence of nanoneurosurgery: part I–progress in nanoscience, nanotechnology, and the comprehension of events in the mesoscale realm. Neurosurgery 2005;57:606–34; discussion 606–34.

    Article  PubMed  Google Scholar 

  50. 50. Kim P and Lieber CM. Nanotube nanotweezers. Science 1999;286:2148–50.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron 2005;20:1652–5.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 2005;5:27–30.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Hossain P, Seetho IW, Bowning AC, Amoaku WM. Artificial means of restoring vision. Brit Medical Journal 2006;330:30–33.

    Article  Google Scholar 

  54. 54. Wang K, Lofus D, Leng T, Harris JS, Fishman H. Carbon nanotubes as microelectrodes for retinal prosthesis. Invest Ophthalmol Vis Sci 2003;5054:B713.

    Google Scholar 

  55. 55. Leary SP, Liu CY, Apuzzo ML. Toward the emergence of nanoneurosurgery: part II–nanomedicine: diagnostics and imaging at the nanoscale level. Neurosurgery 2006;58:805–23; discussion 805–23.

    Article  PubMed  Google Scholar 

  56. 56. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 2006;19:142–64.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Langereis S, et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 2006;19:133–41.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Anderson SA, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 2000;44:433–9.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Saini S, et al. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 1987;162:211–6.

    PubMed  CAS  Google Scholar 

  60. 60. Stark DD, et al. Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 1988;168:297–301.

    PubMed  CAS  Google Scholar 

  61. 61. Suzuki M, et al. Development of a target-directed magnetic resonance contrast agent using monoclonal antibody-conjugated magnetic particles. Noshuyo Byori 1996;13:127–32.

    PubMed  CAS  Google Scholar 

  62. 62. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 2005;100:1–11.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Loo C, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3:33–40.

    PubMed  CAS  Google Scholar 

  64. 64. Cang H, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 2005;30:3048–50.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Arya H, et al. Quantum dots in bio-imaging: Revolution by the small. Biochem Biophys Res Commun 2005;329:1173–7.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002;99:12617–21.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Roizenblatt R, et al. Nanobiolistic delivery of indicators to the living mouse retina. J Neurosci Methods 2006;153:154–61.

    Article  PubMed  Google Scholar 

  68. 68. Bejjani RA, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 2005;11:124–32.

    PubMed  CAS  Google Scholar 

  69. 69. Gomes dos Santos AL, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release 2006;112:369–81.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Prow T, et al. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol Vis 2006;12:606–15.

    PubMed  CAS  Google Scholar 

  71. 71. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 2006;12:1185–98.

    PubMed  CAS  Google Scholar 

  72. 72. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A. Int J Pharm 2001;224:159–168.

    Article  PubMed  Google Scholar 

  73. 73. El-Samaligy MS, R Y, Charlton JF, Weinstein GW, Lim JK. Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit's eye. Drug Deliv 1996;3:93–97.

    Article  CAS  Google Scholar 

  74. 74. Li H, et al. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 2006;83:824–33.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Merodio M, Irache JM, Valamanesh F, Mirshahi M. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 2002;23:1587–94.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004;1:99–114.

    Article  PubMed  Google Scholar 

  77. Amrite AC, Ayalasomayajula SP, Kompella UB. Sustained transscleral delivery of budesonide and celecoxib for treating diabetic retinopathy. The Proceedings of the 33rd International Conference of the Controlled Release Society, 2006.

    Google Scholar 

  78. 78. Ayalasomayajula SP and Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 2005;511:191–8.

    Article  PubMed  CAS  Google Scholar 

  79. 79. Amrite AC and Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 2005;57:1555–63.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 2006;47:1149–60.

    Article  PubMed  Google Scholar 

  81. Hammond M and Kompella UB. In: Gupta RB and Kompella UB, editors. Nanoparticle Technology for Drug Delivery. New York: Taylor and Francis; 2006. p. 381–395.

    Google Scholar 

  82. 82. Escobar ER, NPC, Zhan G, Toris CB, Kompella UB. Subconjunctival budesonide and budesonide poly-(lactide) microparticles do not elevate intraocular pressure or induce lens opacities in rabbit model. Invest Ophthalmol Vis Sci 2006;47:E-abstract 4493.

    Google Scholar 

  83. Lutty GA, et al. In: XVII International Congress of Eye Research. Puerto Madero, Buenos Aires, Argentina, 2006.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK064172, EY013842, and EY017045 (through Emory University).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Raghava, S., Goel, G., Kompella, U.B. (2008). Ophthalmic Applications of Nanotechnology. In: Tombran-Tink, J., Barnstable, C.J. (eds) Ocular Transporters In Ophthalmic Diseases And Drug Delivery. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-375-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-375-2_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-958-1

  • Online ISBN: 978-1-59745-375-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics