Skip to main content

The Primate Model of Experimental Glaucoma

  • Chapter
Mechanisms of the Glaucomas

Part of the book series: Ophthalmology Researchâ„¢ ((OPHRES))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hart W.M., Jr. (1989) The epidemiology of primary open-angle glaucoma and ocular hypertension, in The Glaucomas (Ritch R., Shields M.B., Krupin T., eds), St. Louis, C.V. Mosby Co., pp 789–795.

    Google Scholar 

  2. Sommer A, Tielsch J.M., Katz J, Quigley H.A., Gottsch J.D., Javitt J, and Singh K. (1991) Relationship between intraocular pressure and primary open angle glaucoma among White and Black Americans. Arch. Ophthalmol. 109, 1090–1095.

    PubMed  CAS  Google Scholar 

  3. Teilsch J.M., Sommer A., Katz J., Royall R.M., Quigley H.A., Javitt J. (1991) Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore eye survey. JAMA 266, 369–374.

    Article  Google Scholar 

  4. Quigley H.A (1993) Open-angle glaucoma. N. Engl. J. Med. 328, 1097–1106.

    Article  PubMed  CAS  Google Scholar 

  5. Gelatt K.N. (1977) Animal models for glaucoma. Invest. Ophthalmol. Vis. Sci. 16,592–596.

    PubMed  CAS  Google Scholar 

  6. Levkovitch-Verbin H. (2004) Animal models of optic nerve diseases. Eye 18, 1066–1074.

    Article  PubMed  CAS  Google Scholar 

  7. Weinreb R.N. and Lindsey J.D. (2005) The importance of models in glaucoma research. J. Glaucoma 14, 302–304.

    Article  PubMed  Google Scholar 

  8. Rasmussen C.A. and Kaufman P.L. (2005) Primate glaucoma models. J. Glaucoma 14, 311–314.

    Article  PubMed  Google Scholar 

  9. Quigley H.A., Nickells R.W., Kerrigan L.A., Pease M.E., Thibault D.J., and Zack D.J. (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest. Ophthalmol. Vis. Sci. 36, 774–786.

    PubMed  CAS  Google Scholar 

  10. Nickells R.W. (1996) Retinal ganglion cell death in glaucoma: the how, they why, and the maybe. J. Glaucoma 5, 345–356.

    Article  PubMed  CAS  Google Scholar 

  11. Harwerth R.S., Crawford M.L., Frishman L.J., Viswanathan S., Smith E.L. III, and Carter-Dawson L. (2002) Visual field defects and neural losses from experimental glaucoma. Prog. Retin. Eye Res. 21, 91–125.

    Article  PubMed  Google Scholar 

  12. Rodieck, R.W. (1998) The First Steps in Seeing. Sinauer, Sunderland, MA.

    Google Scholar 

  13. Kalvin N.H., Hamasaki D.I., and Gass J.D.M. (1966) Experimental glaucoma in monkeys. Arch. Ophthalmol. 76, 82–93.

    PubMed  CAS  Google Scholar 

  14. Zimmerman L.E., de Venecia G., and Hamasaki D.I. (1967) Pathology of the optic nerve in experimental acute glaucoma. Invest. Ophthalmol. Vis. Sci. 6, 109–125.

    CAS  Google Scholar 

  15. Lessell S. and Kuwabara T. (1969) Experimental α-chymotrypsin glaucoma. Arch. Ophthalmol. 81, 853–864.

    PubMed  CAS  Google Scholar 

  16. Levy N.S. (1974) The effects of elevated intraocular pressure on slow axonal protein flow. Invest. Ophthalmol. 13, 691–695.

    PubMed  CAS  Google Scholar 

  17. Gaasterland D. and Kupfer C. (1974) Experimental glaucoma in the rhesus monkey. Invest. Ophthalmol. Vis. Sci. 13, 455–457.

    CAS  Google Scholar 

  18. Quigley H.A. and Hohman R.M. (1983) Laser energy levels for trabecular meshwork damage in the primate eye. Invest. Ophthalmol. Vis. Sci. 24, 1305–1307.

    PubMed  CAS  Google Scholar 

  19. Wang R.F., Schumer R.A., Serle J.B., and Podos S.M. (1998) A comparison of Argon laser and diode laser photocoagulation of the trabecular meshwork to produce the glaucoma Monkey model. J. Glaucoma 7, 45–49.

    Article  PubMed  CAS  Google Scholar 

  20. Pederson J.E. and Gaasterland D.E. (1984) Laser-induced primate glaucoma. Arch. Ophthalmol. 102, 1689–1692.

    PubMed  CAS  Google Scholar 

  21. Konstas A.G., Mantziris D.A., and Stewart W.C. (1997) Diurnal intraocular pressure in untreated exfoliation and primary open-angle glaucoma. Arch. Ophthalmol. 115, 182–185.

    PubMed  CAS  Google Scholar 

  22. Sacca S.C., Rolando M., Marletta A., Macri A., Cerqueti P., and Ciurlo G. (1998) Fluctuations of intraocular pressure during the day in open-angle glaucoma, normal-tension glaucoma and normal subjects. Ophthalmologica 212, 115–119.

    PubMed  CAS  Google Scholar 

  23. Komaromy A.M., Brooks D.E., Kubilis P.S., Dawson W.W., Sapp H.L., Jr., Nelson G., Collins B.R., and Sherwood M.B. (1998) Diurnal intraocular pressure curves in healthy rhesus macaques (Macaca mulatta) and rhesus macaques with normotensive and hypertensive primary open-angle glaucoma. J. Glaucoma 7, 128–131.

    Article  PubMed  CAS  Google Scholar 

  24. Liu J.H., Kripke D.F., Hoffman R.E., Twa M.D., Loving R.T., Rex K.M., Gupta N., and Weinreb R.N. (1998) Nocturnal elevation of intraocular pressure in young adults. Invest. Ophthalmol. Vis. Sci. 39, 2707–2712.

    PubMed  CAS  Google Scholar 

  25. Asrani S., Zeimer R., Wilensky J., Giesser D., Vitale S., and Lindenmuth K. (2000) Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J. Glaucoma 9, 134–142.

    PubMed  CAS  Google Scholar 

  26. Ollivier F.J., Brooks D.E., Kallberg M.E., Sapp H.L., Komaromy A.M., Stevens G.R., Dawson W.W., Sherwood M.B., and Lambrou G.N. (2004) Time-specific intraocular pressure curves in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. Vet. Ophthalmol. 7, 23–27.

    Google Scholar 

  27. Quigley H.A. and Addicks E.M. (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest. Ophthalmol. Vis. Sci. 19, 137–152.

    PubMed  CAS  Google Scholar 

  28. Weber A.J., Kaufman P.L., and Hubbard W.C. (1998) Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 39, 2304–2320.

    PubMed  CAS  Google Scholar 

  29. Weber A.J. and Zelenak D. (2001) Experimental glaucoma in the primate induced by latex microspheres. Invest Ophthalmol. Vis Sci. 111, 39–48.

    CAS  Google Scholar 

  30. Weber A.J. and Harman C.D. (2005) Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 46, 3197–3207.

    Article  PubMed  Google Scholar 

  31. Dawson W.W., Brooks D.E., Hope G.M., Samuelson D.A., Sherwood M.B., Engel H.M., and Kessler M.J. (1993) Primary open angle glaucomas in the rhesus monkey. Br. J. Ophthalmol. 77, 302–310.

    Article  PubMed  CAS  Google Scholar 

  32. Dawson W.W., Brooks D.E., Dawson J.C., Sherwood M.B., Kessler M.J., and Garcia A. (1998) Signs of glaucoma in rhesus monkeys from a restricted gene pool. J. Glaucoma 7, 343–348.

    Article  PubMed  CAS  Google Scholar 

  33. Rohen J.W., Futa R., and Lütjen-Drecoll E. (1981) The fine structure of the cribiform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest. Ophthalmol. Vis. Sci. 21, 574–585.

    PubMed  CAS  Google Scholar 

  34. Samuelson D.A. (1996) A reevaluation of the comparative anatomy of the eutherian iridocorneal angle and associated ciliary body musculature. Vet. Comp. Ophthalmol. 6, 153–172.

    Google Scholar 

  35. Ethier C.R., Kamm R.D., Palaszewski B.A., Johnson M.C., and Richardson T.M. (1986) Calculation of flow resistance in the juxtacanalicular meshwork. Invest. Ophthalmol. Vis. Sci. 27, 1741–1750.

    PubMed  CAS  Google Scholar 

  36. Mäepea O. and Bill A. (1989) The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Exp. Eye Res. 49, 645–663.

    Article  PubMed  Google Scholar 

  37. Fine B.S. (1964) Observations on the drainage angle in man and rhesus monkey: a concept of the pathogenesis of chronic simple glaucoma. Invest. Ophthalmol. 3, 609–646.

    PubMed  CAS  Google Scholar 

  38. Inomata H., Bill A., and Smelser G.K. (1972) Aqueous humour pathways through the trabecular meshwork and into Schlemm’s canal in the cynomolgus monkey (Macaca irus). And electron microscopic study. Am. J. Ophthalmol. 73, 760–789.

    PubMed  CAS  Google Scholar 

  39. Epstein D.L. and Rohen J.W. (1991) Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye. Invest. Ophthalmol. Vis. Sci. 32, 160–171.

    PubMed  CAS  Google Scholar 

  40. Parc C.E., Johnson D.H., and Brilakis H.S. (2000) Giant vacuoles are found preferentially near collector channels. Invest. Ophthalmol. Vis. Sci. 41, 2984–2990.

    PubMed  CAS  Google Scholar 

  41. Johnstone M.A. and Grant W.M. (1973) Pressure-dependent changes in the structures of the aqueous outflow system of human and monkey eyes. Am. J. Ophthalmol. 75, 365.

    PubMed  CAS  Google Scholar 

  42. Grierson I .and Lee W.R. (1974) Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp. Eye Res. 19, 21–33.

    Article  PubMed  CAS  Google Scholar 

  43. Johnstone M.A. (1979) Pressure-dependent changes in nuclei and the process origins of the endothelial cells lining Schlemm’s canal. Invest. Ophthalmol. Vis. Sci. 18, 44–51.

    PubMed  CAS  Google Scholar 

  44. Ye W., Gong H., Sit A., Johnson M., and Freddo T.F.(1997) Interendothelial junctions in normal human Schlemm’s canal respond to changes in pressure. Invest. Ophthalmol. Vis. Sci. 38, 2460–2468.

    Google Scholar 

  45. Brilakis H.S. and Johnson D.H. (2001) Giant vacuole survival time and implications for aqueous humour outflow. J. Glaucoma 10, 277–283.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson M., Chan D., Read A.T., Christensen C., Sit A., and Ethier C.R. (2002) The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 43, 2950–2955.

    PubMed  Google Scholar 

  47. Kaufman P.L. and Bárány E.H. (1977) Cytochalasin B reversibly increases outflow facility in the eye of the cynomolgus monkey. Invest. Ophthalmol. Vis. Sci. 16, 47–53.

    PubMed  CAS  Google Scholar 

  48. Lindenmayer J.M., Kahn M.G., Hertzmark E., and Epstein D.L. (1983) Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl reagents. Invest. Ophthalmol. Vis. Sci. 24, 710–717.

    PubMed  CAS  Google Scholar 

  49. Weinreb R.N., Mitchell M.D., and Polansky J.R. (1983) Prostaglandin production by human trabecular cells: in vitro inhibition by dexamethasone. Invest. Ophthalmol. Vis. Sci. 24, 1541–1545.

    PubMed  CAS  Google Scholar 

  50. Ryder M.I. and Weinreb R.N. (1986) The cytoskeleton of the cynomolgus monkey trabecular cell. Invest. Ophthalmol. Vis Sci. 27, 1305–1311.

    PubMed  CAS  Google Scholar 

  51. Weinreb R.N., Ryder M.I., and Polansky J.R. (1986) The cytoskeleton of the cynomolgus monkey trabecular cell II: influence of cytoskeleton-active drugs. Invest. Ophthalmol. Vis. Sci. 27, 1312–1317.

    PubMed  CAS  Google Scholar 

  52. Tian B., Geiger B., Epstein D.L., and Kaufman P.L. (2000) Cytoskeletal involvement in the regulation of aqueous humour outflow. Invest. Ophthalmol. Vis. Sci. 41, 619–623.

    PubMed  CAS  Google Scholar 

  53. Tripathi, R.C., Borisuth N.S., Kolli S.P., and Tripathi B.J. (1993) Trabecular cells express receptors that bind TGF-beta 1 and TGF-beta 2: a qualitative and quantitative characterization. Invest Ophthalmol. Vis. Sci. 34, 260–263.

    PubMed  CAS  Google Scholar 

  54. Tripathi R.C., Chan W.F., Li J., and Tripathi B.J. (1994) Trabecular cells express the TGF-beta 2 gene and secrete the cytokine. Exp. Eye Res. 58, 523–528.

    Article  PubMed  CAS  Google Scholar 

  55. Tamm E.R., Siegner A., Baur A., and Lutjen-Drecoll E. (1996) Transforming growth factor-beta 1 induces alpha-smooth muscle-actin expression in cultured human and monkey trabecular meshwork. Exp. Eye Res. 62, 389–397.

    Article  PubMed  CAS  Google Scholar 

  56. Zhao X., Ramsey K.E., Stephan D.A., and Russell P. (2004) Gene and protein expression changes in human trabecular meshwork cells treated with transforming growth factor-beta. Invest. Ophthalmol. Vis. Sci. 45, 4023–4034.

    Article  PubMed  Google Scholar 

  57. Welge-Lussen U., May C.A., and Lutjen-Drecoll E. (2000) Induction of tissue transglutaminase in trabecular meshwork by TGF-beta 1 and TGF-beta 2. Invest. Ophthalmol. Vis. Sci. 41, 2229–2238.

    CAS  Google Scholar 

  58. Wordinger R.J., Clark A.F., Agarwal R., Lambert W., McNatt L., Wilson S.E., Qu Z., and Fung B.K. (1998) Cultured human trabecular meshwork cells express functional growth factor receptors. Invest. Ophthalmol. Vis. Sci . 39, 1575–1589.

    PubMed  CAS  Google Scholar 

  59. Ethier, C.R. (2002) The inner wall of Schlemm’s canal. Exp. Eye Res. 74, 161–172.

    Article  PubMed  CAS  Google Scholar 

  60. Hu Y., Gabelt B.T., and Kaufman P.L. (2006) Monkey organ-cultured anterior segments: technique and response to H-7. Exp. Eye Res. 82, 1100–1108.

    Google Scholar 

  61. Borras T., Gabelt B.T., Peterson J.C., and Kaufman P.L. (2001) Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. J. Gene Med. 3, 437–449.

    Article  PubMed  CAS  Google Scholar 

  62. Gomez-Cabrero A., Comes N., Gonzalez-Linares J., de Lapuente J., Borras M., Pales J., Gual A., Gasull X., and Morales M. (2005) Use of transduction proteins to target trabecular meshwork cells: outflow modulation by profiling I. Mol. Vis. 11, 1071–1082.

    PubMed  CAS  Google Scholar 

  63. Liu X., Hu Y., Filla M.S., Gabelt B.T., Peters D.M., Brandt C.R., and Kaufman P.L. (2005) The effect of C3 transgene expression on actin and cellular adhesions in cultured human trabecular meshwork cells and on outflow facility in organ cultured monkey eyes. Mol. Vis. 11, 1112–1121.

    PubMed  Google Scholar 

  64. Gabelt B.-T., Hu Y., Vittitow J.L., Rasmussen C.R., Grosheva I., Bershadsky A.D., Geiger B., Borras T., and Kaufman P.L. (2006) Caldesmon transgene expression disrupts focal adhesions in HTM cells and increases outflow facility in organ-cultured human and monkey anterior segments. Exp. Eye Res. 82, 935–944.

    Article  PubMed  CAS  Google Scholar 

  65. Bill A. (1965) The aqueous humor drainage mechanism in the cynomolgus monkey (Macaca irus) with evidence for unconventional routes. Invest. Ophthalmol. 1965 4,911–919.

    CAS  Google Scholar 

  66. Nilsson S.F.E. and Bill A. (1994) Physiology and neurophysiology of aqueous humor inflow and outflow, in Glaucoma (Kaufman P.L. and Mittag T.W., eds), St. Louis, C.V. Mosby Co, pp. 1.17–1.34.

    Google Scholar 

  67. Lutjen-Drecoll E. and Tamm E. (1988) Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2 alpha. Exp. Eye Res. 47, 761–769.

    Article  PubMed  CAS  Google Scholar 

  68. Nilsson S.F., Samuelsson M., Bill A., and Stjernschantz J. (1989) Increased uveoscleral outflow as a possible mechanism of ocular hypotension caused by prostaglandin F2 alpha-1-isopropylester in the cynomolgus monkey. Exp. Eye Res. 48, 707–716.

    Article  PubMed  CAS  Google Scholar 

  69. Gabelt B.T., Seeman J.L., Podos S.M., Mittag T.W., and Kaufman P.L. (2004) Aqueous humor dynamics in monkeys after topical 8-iso PGE(2). Invest. Ophthalmol. Vis. Sci. 45, 892–899.

    Article  PubMed  Google Scholar 

  70. Lee P.Y., Podos S.M., Serle J.B., Camras C.B., and Severin C.H. (1987) Intraocular pressure effects of multiple doses of drugs applied to glaucomatous monkey eyes. Arch. Ophthalmol. 105, 249–252.

    PubMed  CAS  Google Scholar 

  71. Wang R.F., Podos S.M., Serle J.B., Mittag T.W., Ventosa F., and Becker B. (2000) Effect of latanoprost or 8-iso prostaglandin E2 alone and in combination on intraocular pressure in glaucomatous monkey eyes. Arch. Ophthalmol. 118, 74–77.

    PubMed  Google Scholar 

  72. Serle J.B., Wang R.F., Mittag T.W., Shen F., and Podos S.M. (2001) Effect of pilocarpine 4% in combination with latanoprost 0.005% or 8-iso prostaglandin E2 0.1% on intraocular pressure in laser-induced glaucomatous monkey eyes. J. Glaucoma 10, 215–219.

    Google Scholar 

  73. Gagliuso D.J., Wang R.F., Mittag T.W., and Podos S.M. (2004) Additivity of bimatoprost or travoprost to latanoprost in glaucomatous monkey eyes. Arch. Ophthalmol. 122,1342–1347.

    Article  PubMed  CAS  Google Scholar 

  74. Kiland J.A., Gabelt B.T., and Kaufman P.L. (2004) Studies on the mechanism of action of timolol and on the effects of suppression and redirection of aqueous flow on outflow facility. Exp. Eye Res. 78, 639–651.

    Article  PubMed  CAS  Google Scholar 

  75. Toris C.B., Zhan G.L., Camras C.B., and McLaughlin M.A. (2005) Effects of travoprost on aqueous humor dynamics in monkeys. J. Glaucoma 14, 70–73.

    Google Scholar 

  76. Toris C.B., Zhan G.L., Feilmeier M.R., Camras C.B., and McLaughlin M.A. (2006) Effects of a prostaglandin DP receptor agonist, AL-6598, on aqueous humor dynamics in a nonhuman primate model of glaucoma. J. Ocul. Pharmacol. Ther. 22, 86–92.

    Article  PubMed  CAS  Google Scholar 

  77. Gaton D.D., Sagara T., Lindsey J.D., Gabelt B.T., Kaufman P.L., and Weinreb R.N. (2001) Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F(2 alpha)-isopropyl ester treatment. Arch. Ophthalmol. 119, 1165–1170.

    PubMed  CAS  Google Scholar 

  78. Sagara T., Gaton D.D., Lindsey J.D., Gabelt B.T., Kaufman P.L., and Weinreb R.N. (1999) Topical prostaglandin F2alpha treatment reduces collagen types I, III, and IV in the monkey uveoscleral outflow pathway. Arch. Ophthalmol. 117, 794–801.

    PubMed  CAS  Google Scholar 

  79. Radius R.L., Pederson J.E. (1984) Laser-induced primate glaucoma. II. Histology. Arch. Ophthalmol. 102, 1693–1698.

    PubMed  CAS  Google Scholar 

  80. Hernandez M.R. and Pena J.D. (1997) The optic nerve head in glaucomatous optic neuropathy. Arch. Ophthalmol. 115, 389–395.

    PubMed  CAS  Google Scholar 

  81. Bellezza A.J., Hart R.T., and Burgoyne C.F. (2000) The optic nerve head as a biomechanical structure: initial finite element modeling. Invest. Ophthalmol. Vis. Sci. 41,2991–3000.

    PubMed  CAS  Google Scholar 

  82. Tezel G., Hernandez M.R., and Wax M.B. (2001) In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 34, 178–189.

    Article  PubMed  CAS  Google Scholar 

  83. Pena J.D., Agapova O., Gabelt B.T., Levin L.A., Lucarelli M.J., Kaufman P.L., and Hernandez M.R. (2001) Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. Invest. Ophthalmol. Vis. Sci. 42, 2303–2314.

    PubMed  CAS  Google Scholar 

  84. Hernandez M.R., Igoe F., and Neufeld A.H. (1986) Extracellular matrix of the human optic nerve head. Am. J. Ophthalmol. 102, 139–148.

    Article  PubMed  CAS  Google Scholar 

  85. Hernandez M.R. (1992) Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa: changes in elastic fibers in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 33, 2891–2903.

    PubMed  CAS  Google Scholar 

  86. Morrison J.C., L’Hernault N.L., Jerdan J.A., and Quigley H.A. (1988) Extracellular matrix composition of the monkey optic nerve head. Invest. Ophthalmol. Vis. Sci. 29, 1141–1150.

    PubMed  CAS  Google Scholar 

  87. Morrison J.C., L’Hernault N.L., Jerdan J.A., and Quigley H.A. (1989) Ultrastructural location of extracellular matrix components in the optic nerve head. Arch. Ophthalmol. 107, 123–129.

    PubMed  CAS  Google Scholar 

  88. Minckler D.S. and Spaeth G.L. (1981) Optic nerve damage in glaucoma. Surv. Ophthalmol. 26, 128–148.

    Article  PubMed  CAS  Google Scholar 

  89. Quigley H.A., Brown A., and Dorman-Pease M.E. (1992) Alterations in elastin of the optic nerve head in human glaucoma and experimental glaucoma. Brit. J. Ophthalmol. 75, 552–557.

    Article  Google Scholar 

  90. Hernandez M.R. and Ye H. (1993) Glaucoma: changes in extracellular matrix in the optic nerve head. Ann. Med. 25, 309–315.

    Article  PubMed  CAS  Google Scholar 

  91. Sawaguchi S., Yue B.Y., Fukuchi T., Abe H., Suda K., Kaiya T., and Iwata K. (1999) Collagen fibrillar network in the optic nerve head of normal monkey eyes and monkey eyes with laser-induced glaucoma–a scanning electron microscopic study. Curr. Eye Res. 18, 143–149.

    Article  PubMed  CAS  Google Scholar 

  92. Burgoyne C.F., Quigley H.A., Thompson H.W., Vitale S., and Varma R. (1995) Early changes in optic disc compliance and surface position in experimental glaucoma. Ophthalmology 102, 1800–1809.

    PubMed  CAS  Google Scholar 

  93. Burgoyne C.F., Downs J.C., Bellezza A.J., and Hart R.T. (2004) Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest. Ophthalmol. Vis. Sci. 45, 4388–4399.

    Article  PubMed  Google Scholar 

  94. Downs J.C., Blidner R.A., Bellezza A.J., Thompson H.W., Hart R.T., and Burgoyne C.F. (2002) Peripapillary scleral thickness in perfusion-fixed normal monkey eyes. Invest. Ophthalmol. Vis. Sci. 43, 2229–2235.

    PubMed  Google Scholar 

  95. Downs J.C., Suh J.K., Thomas K.A., Bellezza A.J., Hart R.T., and Burgoyne C.F. (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest. Ophthalmol. Vis. Sci. 46, 540–546.

    Article  PubMed  Google Scholar 

  96. Bellezza A.J., Hart R.T., and Burgoyne C.F. (2000) The optic nerve head as a biomechanical structure: initial finite element modeling. Invest. Ophthalmol. Vis. Sci. 41,2991–3000.

    PubMed  CAS  Google Scholar 

  97. Bellezza A.J., Rintalan C.J., Thompson H.W., Downs J.C., Hart R.T., and Burgoyne C.F. (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 44, 623–637.

    Article  PubMed  Google Scholar 

  98. Hernandez M.R., Pena J.D.O., Selvidge J.A., Salvador-Silva M., and Yang P. (2000) Hydrostatic pressure stimulates synthesis of elastin in cultured optic nerve head astrocytes. Glia 32, 122–136.

    Article  PubMed  CAS  Google Scholar 

  99. Neufeld A.H., Hernandez M.R., and Gonzalez M. (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch. Ophthalmol. 115, 497–503.

    PubMed  CAS  Google Scholar 

  100. Yuan L. and Neufeld A.H. (2000) Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produces by glia in the human glaucomatous optic nerve head. Glia 32, 42–50.

    Article  PubMed  CAS  Google Scholar 

  101. Tezel G., Wax M.B. (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in co-cultured retinal ganglion cells. J. Neurosci. 20, 8693–8700.

    PubMed  CAS  Google Scholar 

  102. Yan X., Tezel G., Wax M.B., and Edward D.P. (2000) Matrix metalloproteinases and tumor necrosis factor α in glaucomatous optic nerve head. Arch. Ophthalmol. 118,666–673.

    PubMed  CAS  Google Scholar 

  103. Agapova O.A., Kaufman P.L., Lucarelli M.J., Gabelt B.T., and Hernandez M.R. (2003) Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transaction. Brain Res. 967, 132–143.

    Article  PubMed  CAS  Google Scholar 

  104. Pena J.D., Taylor A.W., Ricard C.S., Vidal I., and Hernandez M.R. (1999) Transforming growth factor beta isoforms in human optic nerve heads. Br. J. Ophthalmol. 83, 209–218.

    PubMed  CAS  Google Scholar 

  105. Fuchshofer R., Birke M., Welge-Lussen U., Kook D., and Lutjen-Drecoll E. (2005) Transforming growth factor-beta 2 modulated extracellular matrix component expression in cultured human optic nerve head astrocytes. Invest. Ophthalmol. Vis. Sci. 46, 568–578.

    Article  PubMed  Google Scholar 

  106. Kirwan R.P., Crean J.K., Fenerty C.H., Clark A.F., O’Brien C.J. (2004) Effect of cyclical mechanical stretch and exogenous transforming growth factor beta-1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J. Glaucoma 13, 327–334.

    Article  PubMed  Google Scholar 

  107. Kirwan R.P., Leonard M.O., Murphy M., Clark A.F., and O’Brien C.J. (2005) Transforming growth factor-beta-regulated gene transcription and protein expression in human GFAP-negative lamina cribrosa cells. Glia 52, 309–324.

    Article  PubMed  Google Scholar 

  108. Lambert P.W., Vogel M.H., and Zimmerman L.E. (1968) Pathology of the optic nerve in experimental acute glaucoma. Invest. Ophthalmol. 7, 199–213.

    Google Scholar 

  109. Anderson D.R. and Hendrickson A. (1974) Effects of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest. Ophthalmol. 13, 771–783.

    PubMed  CAS  Google Scholar 

  110. Quigley H.A. and Anderson D.R. (1976) the dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest. Ophthalmol. 15, 606–616.

    PubMed  CAS  Google Scholar 

  111. Minckler D.S., Bunt A.H., and Johanson G.W. (1977) Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest. Ophthalmol. 16, 426–441.

    CAS  Google Scholar 

  112. Gaasterland D., Tanishima T., and Kuwabara, T. (1978) Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest. Ophthalmol. Vis. Sci. 17, 838–846.

    PubMed  CAS  Google Scholar 

  113. Quigley H.A., Flower R.W., Addicks E.M., and McLeod D.S. (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest. Ophthalmol. Vis. Sci. 19, 505–517.

    PubMed  CAS  Google Scholar 

  114. Radius R.L. (1983) Pressure-induced fast axonal transport abnormalities and the anatomy at the lamina cribrosa in primate eyes. Invest. Ophthalmol. Vis. Sci. 24, 343–346.

    PubMed  CAS  Google Scholar 

  115. Radius R.L. and Pederson J.E. (1984) Laser-induced primate glaucoma. Arch. Ophthalmol. 102, 1693–1698.

    PubMed  CAS  Google Scholar 

  116. Quigley H.A. and Addicks E.M. (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 99, 137–143.

    PubMed  CAS  Google Scholar 

  117. Dandona L., Quigley H.A., Brown A.E., and Enger C. (1990) Quantitative regional structure of the normal human lamina cribrosa. A racial comparison. Arch. Ophthalmol. 108, 393–398.

    PubMed  CAS  Google Scholar 

  118. Flammer J., Orgul S., Costa V.P., Orzalesi N., Krieglstein G.K., Serra L.M., Renard J.P., and Stefansson E. (2002) The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393.

    Article  PubMed  Google Scholar 

  119. Broadway D.C. and Drance S.M. (1998) Glaucoma and vasospasm. Br. J. Ophthalmol. 82, 862–870.

    PubMed  CAS  Google Scholar 

  120. Harris A., Zarfati D., Zalish M., Biller J., Sheets C.W., Rechtman E., Migliardi R., and Garzozi H.J. (2003) Reduced cerebrovascular blood flow velocities and vasoreactivity in open-angle glaucoma. Am. J. Ophthalmol. 135, 144–147.

    Article  PubMed  Google Scholar 

  121. Alm A. and Bill A. (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labeled microspheres including flow determinations in brain and some other tissues. Exp. eye Res. 15, 15–29.

    Article  PubMed  CAS  Google Scholar 

  122. Geiger C. and Bill A. (1979) Effects of raised intraocular pressure on retinal, prelaminar, laminar and retrolaminar optic nerve blood flow in monkeys. Invest. Ophthalmol. Vis. Sci. 18, 1030–1042.

    Google Scholar 

  123. Quigley H.A., Hohman R.M., Sancher R., and Addicks E.M.(1985) Optic nerve head blood flow in chronic experimental glaucoma. Arch. Ophthalmol. 103, 956–962.

    Google Scholar 

  124. Kaiser H.J., Flammer J., Wenk M., and Luscher T. (1995) Endothelin-1 plasma levels in normal tension glaucoma: abnormal response to postural changes. Graefes Arch. Clin. Exp. Ophthalmol. 233, 484–488.

    Article  PubMed  CAS  Google Scholar 

  125. Cellini M., Possati G.L., Profazio V., Sbrocca, Caramazza N., and Caramazza R. (1997) Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol. Scand. Suppl. 244, 11–13.

    Google Scholar 

  126. Sugiyama T., Moriya S., Oku H., and Azuma I. (1995) Association of endothelin-1 with normal tension glaucoma. Surv. Ophthalmol. 39, S49–S56.

    Google Scholar 

  127. Orgul S., Cioffi G.A., Bacon D.R., and Van Buskirk E.M. (1996) An endothelin-1 induced model of chronic optic nerve ischemia in rhesus monkeys. J. Glaucoma 5, 135–138.

    PubMed  CAS  Google Scholar 

  128. Cioffi G.A., Wang L., Fortune B., Cull G., Dong J., Bui B., and Buskirk E.M.V. (2004) Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol. 122, 1517–1525.

    Article  PubMed  Google Scholar 

  129. Brooks D.E., Kallberg M.E., Cannon R.L., Komaromy A.M., Ollivier F.J., Malakhova O.E., Dawson W.W., Sherwood M.B., Kuekuerichkina E.E., and Lambrou G.N. (2004) Functional and structural analysis of the visual system in the Rhesus monkey model of optic nerve head ischemia. Invest. Ophthalmol. Vis. Sci . 45,1830–1840.

    Article  PubMed  Google Scholar 

  130. Yan X., Tezel G., Wax M.B., and Edward D.P. (2000) Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch. Ophthalmol. 118, 666–673.

    PubMed  CAS  Google Scholar 

  131. Tezel G., Li L.Y., Patil R., and Wax M.B. (2001) Tumor necrosis factor-α and its receptor-1 in the retina of normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 42, 1787–1794.

    PubMed  CAS  Google Scholar 

  132. Yuan L. and Neufeld A.H. (2001) Activated microglia in the human glaucomatous optic nerve head. J. Neurosci. Res. 64, 523–532.

    Article  PubMed  CAS  Google Scholar 

  133. Nork T.M., Ver Hoeve J.N., Poulsen G.L., Nickells R.W., Davis M.D., Weber A.J., Vaegan, Sarks S.H., Lemley H.L., and Millecchia L.L. (2000) Swelling and Loss of photoreceptors in chronic human and experimental glaucomas. Arch. Ophthalmol. 118, 235–245.

    PubMed  CAS  Google Scholar 

  134. Kendell K.R., Quigley H.A., Kerrigan L.A., Pease M.E., and Quigley E.N. (1995) Primary open-angle glaucoma is not associated with photoreceptor loss. Invest. Ophthalmol. Vis. Sci. 30, 200–205.

    Google Scholar 

  135. Pease M.E., McKinnon S.J., Quigley H.A., Kerrigan-Baumrind L.A., Zack D.J. (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 764–774.

    PubMed  CAS  Google Scholar 

  136. Chaum E. (2003) Retinal neuroprotection by growth factors: a mechanistic perspective. J. Cell. Biochem. 88, 57–75.

    Article  PubMed  CAS  Google Scholar 

  137. Osborne N., Wood J.P.M., Childlow G., Bae J., Melena J., and Nash M.S. (1999) Ganglion cell death in glaucoma: what do we really know? Br. J. Ophthalmol. 83, 980–986.

    Google Scholar 

  138. Wittmann M., Bengtson C.P., and Bading H. (2004) Extrasynaptic NMDA receptors: mediators of excitotoxic cell death, in Pharmacology of Cerebral Ischemia (Krieglstein J. and Klumpp S., eds), Mepharm Scientific, Stuttgard, Germany, pp. 253–266.

    Google Scholar 

  139. Dreyer E.B., Zurakowski D., Schumer R.A., Podos S.M., and Lipton S.A. (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol. 114, 299–305.

    PubMed  CAS  Google Scholar 

  140. Carter-Dawson L., Shen F.F., Harwerth R.S., Smith E.L. III, Crawford M.L., and Chuang A. (1998) Glutamine immunoreactivity in Muller cells of monkey eyes with experimental glaucoma. Exp. Eye Res. 66, 537–545.

    Article  PubMed  CAS  Google Scholar 

  141. Carter-Dawson L., Shen F.F., Harwerth R.S., Crawford M.L., Smith E.L. III, and Whitetree A. (2004) Glutathione content is altered in Muller cells of monkey eyes with experimental glaucoma. Neurosci. Lett. 364, 7–10.

    Article  PubMed  CAS  Google Scholar 

  142. Carter-Dawson L., Crawford M.L., Harwerth R.S., Smith E.L. III, Feldman R., Shen F.F., Mitchell C.K. and Whitetree A. (2002) Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 43, 2633–2637.

    PubMed  Google Scholar 

  143. Wamsley S., Gabelt B.T., Dahl D.B., Case G.L., Sherwood R.W., May C.A., Hernandez M.R., and Kaufman P.L. (2005) Vitreous glutamate concentration and axon loss in monkeys with experimental glaucoma. Arch. Ophthalmol. 123, 64–70.

    Google Scholar 

  144. Naskar R., Vorweck C.K., and Dreyer E.B. (2000) Concurrent downregulation of glutamate transporter and receptor in glaucoma. Invest. Ophthalmol. Vis. Sci. 41,1940–1944.

    PubMed  CAS  Google Scholar 

  145. Sullivan R.K., Woldemussie E., Macnab L., Ruiz G., and Pow D.V. (2006) Evoked expression of the glutamate transporter GLT-1c in retinal ganglion cells in human glaucoma and in a rat model. Invest. Ophthalmol. Vis. Sci. 47, 3853–3859.

    Article  PubMed  Google Scholar 

  146. Quigley H.A., Nickells R.W., Kerrigan L.A., Pease M.E., Thibault D.J., and Zack D.J. (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest. Ophthalmol. Vis. Sci. 36, 774–786.

    PubMed  CAS  Google Scholar 

  147. Quigley H.A., Sanchez R.M., Dunkelberger G.R., L’Hernault N.L., and Baginski T.A. (1987) Chronic glaucoma selectively damages large optic nerve fibers. Invest. Ophthalmol. Vis. Sci. 28, 913–920.

    PubMed  CAS  Google Scholar 

  148. Quigley H.A., Dunkelberger G.R., and Green W.R. (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 95,357–363.

    PubMed  CAS  Google Scholar 

  149. Glovinsky Y., Quigley H.A., and Dunkelberger G.R. (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 32, 484–491.

    PubMed  CAS  Google Scholar 

  150. Glovinsky Y., Quigley H.A., and Pease M.E. (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 34, 395–400.

    PubMed  CAS  Google Scholar 

  151. Vickers J.C., Schumer R.A., Podos S.M., Wang R.F., Riederer B.M., and Morrison J.H. (1995) Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Brain Res. 680, 23–35.

    Article  PubMed  CAS  Google Scholar 

  152. Dandona L., Hendrickson A., and Quigley H.A. (1991) Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. Invest. Ophthalmol. Vis. Sci. 32, 1593–1599.

    PubMed  CAS  Google Scholar 

  153. Weber A.J., Chen H., Hubbard W.C., and Kaufman P.L. (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest. Ophthalmol. Vis. Sci. 41, 1370–1379.

    PubMed  CAS  Google Scholar 

  154. Morgan J.E. (1994) Selective cell death in glaucoma: does it really occur? Br. J. Ophthalmol. 78, 875–879.

    Article  PubMed  CAS  Google Scholar 

  155. Johnson C.A. (1994) Selective versus non-selective losses in glaucoma. J. Glaucoma 3, S32–S34.

    Google Scholar 

  156. Yucel Y.H., Zhang Q., Gupta N., Kaufman P.L., and Weinreb R.N. (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch. Ophthalmol. 118, 378–384.

    PubMed  CAS  Google Scholar 

  157. Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., and Gupta N. (2001) Atrophy of relay neurons in mango- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 42, 3216–3222.

    PubMed  CAS  Google Scholar 

  158. Burgoyne C.F., Quigley H.A., Thompson H.W., Vitale S., and Varma R. (1995) Measurement of optic disc compliance by digitized image analysis in the normal monkey eye. Ophthalmology 102, 1790–1799.

    PubMed  CAS  Google Scholar 

  159. Yucel Y.H., Gupta N., Kalichman M.W., Mizisin A.P., Hare W., de Souza Lima M., Zangwill L., and Weinreb R.N. (1998) Relationship of optic disc topography to optic nerve fiber number in glaucoma. Arch. Ophthalmol. 116, 493–497.

    PubMed  CAS  Google Scholar 

  160. Weinreb R.N., Bowd C., and Zangwill L.M. (2002) Scanning laser polarimetry in monkey eyes using variable corneal polarization compensation. J. Glaucoma 11, 378–384.

    Article  PubMed  Google Scholar 

  161. Shimazawa M., Tomita G., Taniguchi T., Sasaoka M., Hara H., Kitazawa Y., and Araie M. (2006) Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys. Exp. Eye Res. 82, 427–440.

    Article  PubMed  CAS  Google Scholar 

  162. Vilupuru A.S., Rangaswamy N.V., Smith E.L. III, and Harwerth R.S. (2006) Optic nerve head and nerve fiber layer in normal and glaucomatous eyes of monkeys. Invest. Ophthalmol. Vis. Sci. 47, E-Abstract 3375.

    Google Scholar 

  163. Harwerth R.S., Vilupuru A.S., Rangaswamy N.V., and Smith E.L. III. (2006) The relationship between nerve fiber layer and perimetry measurements. Invest. Ophthalmol. Vis. Sci. 47, E-Abstract 1235.

    Google Scholar 

  164. Blough D.S. and Schrier A.M. (1963) Scotopic spectral sensitivity in the monkey. Science 8,139:493–494.

    Article  Google Scholar 

  165. De Valois R.L., Morgan H., and Snodderly D.M. (1974) Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res. 14, 75–81.

    Article  PubMed  Google Scholar 

  166. Harwerth R.S. and Smith E.L. III. (1985) Rhesus monkey as a model for normal vision of humans. Am. J. Optom. Physiol. Opt. 62, 633–641.

    PubMed  CAS  Google Scholar 

  167. Harwerth R.S., Smith E.L. III, and DeSantis L. (1993). Mechanisms mediating visual detection in static perimetry. Invest. Ophthalmol. Vis. Sci. 34, 3011–3023.

    PubMed  CAS  Google Scholar 

  168. Harwerth R.S., Carter-Dawson L., Smith E.L. III, Barnes G., Holt W.F., and Crawford M.L. (2004) Neural losses correlated with visual losses in clinical perimetry. Invest. Ophthalmol. Vis. Sci. 45, 3152–3160.

    Article  PubMed  Google Scholar 

  169. Quigley H.A., Dunkelberger G.R., and Green W.R. (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am. J. Ophthalmol. 107, 453–464.

    PubMed  CAS  Google Scholar 

  170. Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., and Mitchell R.S. (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41, 741–748.

    PubMed  CAS  Google Scholar 

  171. Harwerth R.S. and Quigley H.A. (2006) Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch. Ophthalmol. 124, 853–859.

    Article  PubMed  Google Scholar 

  172. Maffei L., Fiorentini A., Bisti S., and Hollander H. (1985) Pattern ERG in the monkey after section of the optic nerve. Exp. Brain Res. 59, 423–425.

    Article  PubMed  CAS  Google Scholar 

  173. Marx M.S., Podos S.M., Bodis-Wollner I., Howard-Williams J.R., Siegel M.J., Teitelbaum C.S., Maclin E.L., and Severin C. (1986) Flash and pattern electroretinograms in normal and laser-induced glaucomatous primate eyes. Invest. Ophthalmol. Vis. Sci. 27, 378–386.

    PubMed  CAS  Google Scholar 

  174. Marx M.S., Podos S.M., Bodis-Wollner I., Lee P.Y., Wang R.F., and Severin C. (1988) Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP. Exp. Eye Res. 46, 173–184.

    Article  PubMed  CAS  Google Scholar 

  175. Johnson M.A., Drum B.A., Quigley H.A., Sanchez R.M., and Dunkelberger G.R. (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest. Ophthalmol. Vis. Sci. 30, 897–907.

    PubMed  CAS  Google Scholar 

  176. Viswanathan S., Frishman L.J., and Robson J.G. (2000)The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest. Ophthalmol. Vis. Sci. 41, 2797–2810.

    PubMed  CAS  Google Scholar 

  177. Frishman L.J., Shen F.F., Du L., Robson J.G., Harwerth R.S., Smith E.L. III, Carter-Dawson L., and Crawford M.L. (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 37, 125–141.

    PubMed  CAS  Google Scholar 

  178. Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., and Smith E.L. III. (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 40, 1124–1136.

    PubMed  CAS  Google Scholar 

  179. Hare W., Ton H., Woldemussie E., Ruiz G., Feldmann B., and Wijono M. (1999) Electrophysiological and histological measures of retinal injury in chronic ocular hypertensive monkeys. Eur. J. Ophthalmol. 9 , S30–S33.

    PubMed  Google Scholar 

  180. Frishman L.J., Saszik S., Harwerth R.S., Viswanathan S., Li Y., Smith E.L. III, Robson J.G., and Barnes G. (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc. Ophthalmol. 100, 231–251.

    Article  CAS  Google Scholar 

  181. Raz D., Perlman I., Percicot C.L., Lambrou G.N., and Ofri R. (2003) Functional damage to inner and outer retinal cells in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 44, 3675–3684.

    Article  PubMed  Google Scholar 

  182. Allan B.D., van Saarloos P.P., and Cooper R.L., Keogh E.J., and Constable I.J. (1993) 193-nm excimer laser sclerostomy using a modified open mask delivery system in rhesus monkeys with experimental glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 231,662–666.

    Article  PubMed  CAS  Google Scholar 

  183. Bair J.S., and Chen C.W. (1997) Trabeculectomy with multiple applications of mitomycin-C in monkeys with experimental glaucoma. J. Ocul. Pharmacol. Ther. 13, 115–128.

    Article  PubMed  CAS  Google Scholar 

  184. Lee P.Y., Podos S.M., Howard-Williams J.R., Severin C.H., Rose A.D., and Siegel M.J. (1985) Pharmacological testing in the laser-induced monkey glaucoma model. Curr. Eye Res. 4, 775–781.

    Article  PubMed  CAS  Google Scholar 

  185. Wang R.F., Camras C.B., Lee P.Y., Podos S.M., and Bito L.Z. (1990) Effects of prostaglandins F2 alpha, A2, and their esters in glaucomatous monkey eyes. Invest. Ophthalmol. Vis. Sci. 31, 2466–2470.

    PubMed  CAS  Google Scholar 

  186. Serle I.B., Podos S.M., Kitazawa Y., and Wang R.F. (1998) A comparative study of latanoprost (Xalatan) and isopropyl unoprostone (Rescula) in normal and glaucomatous monkey eyes. Jpn. J. Ophthalmol. 42, 95–100.

    Article  PubMed  CAS  Google Scholar 

  187. Wang R.F., Serle I.B., Gagliuso D.J., and Podos S.M. (2000) comparison of the ocular hypotensive effect of brimonidine, dorzolamide, latanoprost, or artificial tears added to timolol in glaucomatous monkey eyes. J. Glauc. 9, 458–462.

    CAS  Google Scholar 

  188. May J.A., McLaughlin M.A., Sharif N.A., Hellberg M.R., and Dean T.R. (2003) Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J. Pharmacol. Exp. Ther. 306, 301–309.

    Article  PubMed  CAS  Google Scholar 

  189. Serle J.B., Wang R.F., Peterson W.M., Plourde R., and Yerxa B.R. (2004) Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J. Glaucoma 13, 385–388.

    Article  PubMed  Google Scholar 

  190. Hare W.A., WoldeMussie E., Lai R.K., Ton H., Ruiz G., Chun T., and Wheeler L. (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Invest. Ophthalmol. Vis. Sci. 45, 2625–2639.

    Article  PubMed  Google Scholar 

  191. Hare W.A., WoldeMussie E., Weinreb R.N., Ton H., Ruiz G., Wijono M., Feldmann B., Zangwill L., and Wheeler L. (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: Structural measures. Invest. Ophthalmol. Vis. Sci. 45, 2640–2651.

    Article  PubMed  Google Scholar 

  192. Heatley G., Kiland J., Faha B., Seeman J., Schlamp C.L., Dawson D.G., Gleiser J., Maneval D., Kaufman P.L., and Nickells R.W. (2004) Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension. Gene Ther. 11, 949–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Weber, A.J., Viswanathan, S. (2008). The Primate Model of Experimental Glaucoma. In: Tombran-Tink, J., Barnstable, C.J., Shields, M.B. (eds) Mechanisms of the Glaucomas. Ophthalmology Researchâ„¢. Humana Press. https://doi.org/10.1007/978-1-59745-373-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-373-8_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-956-7

  • Online ISBN: 978-1-59745-373-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics