Skip to main content

Intraocular Pressure, Perfusion Pressure, and Optic Nerve Energy Metabolism

  • Chapter
Mechanisms of the Glaucomas

Part of the book series: Ophthalmology Research™ ((OPHRES))

  • 1159 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002;21:359–93.

    Article  PubMed  Google Scholar 

  2. Costa VP, Harris A, Stefansson E, et al. The effects of antiglaucoma and systemic medications on ocular blood flow. Prog Retin Eye Res 2003;22:769–805.

    Article  PubMed  CAS  Google Scholar 

  3. Harris A, Kagemann L, Cioffi GA. Assessment of human ocular hemodynamics. Surv Ophthalmol 1998;42:509–33.

    Article  PubMed  CAS  Google Scholar 

  4. Stefansson E, Pedersen DB, Jensen PK, et al. Optic nerve oxygenation. Prog Retin Eye Res 2005;24:307–32.

    Article  PubMed  CAS  Google Scholar 

  5. Alm A, Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 1972;84:306–19.

    PubMed  CAS  Google Scholar 

  6. Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 2000;32:249–56.

    Article  PubMed  CAS  Google Scholar 

  7. Alm A. Optic Nerve and Choroidal Circulation: Physiology. Lippincott-Raven Publishers, Philadelphia; 1998.

    Google Scholar 

  8. Dumskyj MJ, Eriksen JE, Dore CJ, Kohner EM. Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer-assisted image analysis. Microvasc Res 1996;51:378–92.

    Article  PubMed  CAS  Google Scholar 

  9. Grunwald JE, Sinclair SH, Riva CE. Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 1982;23:124–7.

    PubMed  CAS  Google Scholar 

  10. Pournaras CJ. Autoregulation of ocular blood flow. In: Kaiser HJ, Flammer J, Hendrickson P, eds. Ocular Blood Flow. Glaucoma-Meeting: Karger, Basil; 1995:40–50.

    Google Scholar 

  11. Rassam SM, Patel V, Chen HC, Kohner EM. Regional retinal blood flow and vascular autoregulation. Eye 1996;10 (Pt 3):331–7.

    PubMed  Google Scholar 

  12. Riva CE, Sinclair SH, Grunwald JE. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 1981;21(1 Pt 1):34–8.

    PubMed  CAS  Google Scholar 

  13. Schulte K, Wolf S, Arend O, Harris A, Henle C, Reim M. Retinal hemodynamics during increased intraocular pressure. Ger J Ophthalmol 1996;5:1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Stefansson E, Wagner HG, Seida M. Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 1988;47:669–78.

    Article  PubMed  CAS  Google Scholar 

  15. Haefliger IO, Flammer J, Beny JL, Luscher TF. Endothelium-dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 2001;20:209–25.

    Article  PubMed  CAS  Google Scholar 

  16. Haefliger IO, Flammer J, Luscher TF. Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 1992;33:2340–3.

    PubMed  CAS  Google Scholar 

  17. Haefliger IO, Meyer P, Flammer J, Luscher TF. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology? Surv Ophthalmol 1994;39:123–32.

    Article  PubMed  CAS  Google Scholar 

  18. Meyer P, Flammer J, Luscher TF. Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 1993;34:3614–21.

    PubMed  CAS  Google Scholar 

  19. Meyer P, Flammer J, Luscher TF. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists. Invest Ophthalmol Vis Sci 1995;36:555–62.

    PubMed  CAS  Google Scholar 

  20. Orgul S, Gugleta K, Flammer J. Physiology of perfusion as it relates to the optic nerve head. Surv Ophthalmol 1999;43 Suppl 1:S17–26.

    Article  PubMed  Google Scholar 

  21. Flugel C, Tamm ER, Mayer B, Lutjen-Drecoll E. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994;35:592–9.

    PubMed  CAS  Google Scholar 

  22. Flugel-Koch C, May CA, Lutjen-Drecoll E. Presence of a contractile cell network in the human choroid. Ophthalmologica 1996;210:296–302.

    PubMed  CAS  Google Scholar 

  23. Findl O, Strenn K, Wolzt M, et al. Effects of changes in intraocular pressure on human ocular haemodynamics. Curr Eye Res 1997;16:1024–9.

    Article  PubMed  CAS  Google Scholar 

  24. Geiser MH, Riva CE, Dorner GT, Diermann U, Luksch A, Schmetterer L. Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 2000;21:669–76.

    Article  PubMed  CAS  Google Scholar 

  25. Kiel JW. Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 1999;69:413–29.

    Article  PubMed  CAS  Google Scholar 

  26. Riva CE, Titze P, Hero M, Petrig BL. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 1997;38:1752–60.

    PubMed  CAS  Google Scholar 

  27. Chou P, Lu DW, Chen JT. Bilateral superior cervical ganglionectomy increases choroidal blood flow in the rabbit. Ophthalmologica 2000;214:421–5.

    Article  PubMed  CAS  Google Scholar 

  28. May CA, Hayreh SS, Furuyoshi N, Ossoinig K, Kaufman PL, Lutjen-Drecoll E. Choroidal ganglion cell plexus and retinal vasculature in monkeys with laser-induced glaucoma. Ophthalmologica 1997;211:161–71.

    PubMed  CAS  Google Scholar 

  29. Steinle JJ, Krizsan-Agbas D, Smith PG. Regional regulation of choroidal blood flow by autonomic innervation in the rat. Am J Physiol Regul Integr Comp Physiol 2000;279:R202–9.

    PubMed  CAS  Google Scholar 

  30. Koss MC. Functional role of nitric oxide in regulation of ocular blood flow. Eur J Pharmacol 1999;374:161–74.

    Article  PubMed  CAS  Google Scholar 

  31. Schrodl F, Schweigert M, Brehmer A, Neuhuber WL. Intrinsic neurons in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. Exp Eye Res 2001;72:137–46.

    Article  PubMed  CAS  Google Scholar 

  32. Bill A, Nilsson SF. Control of ocular blood flow. J Cardiovasc Pharmacol 1985;7 Suppl 3:S96–102.

    Article  PubMed  CAS  Google Scholar 

  33. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 1998;17:267–89.

    Article  PubMed  CAS  Google Scholar 

  34. Hayreh SS. Blood supply of the optic nerve head. Ophthalmologica 1996;210:285–95.

    PubMed  CAS  Google Scholar 

  35. Buechi ER. The blood supply to the optic nerve head. In: Kaiser HJ, Flammer J, Hendrickson P, eds. Ocular Blood Flow. Glaucoma-Meeting: Karger, Basel; 1995:1–8.

    Google Scholar 

  36. Ernest JT. In vivo measurement of optic-disk oxygen tension. Invest Ophthalmol 1973;12:927–31.

    PubMed  CAS  Google Scholar 

  37. Ernest JT. Autoregulation of optic-disk oxygen tension. Invest Ophthalmol 1974;13:101–6.

    PubMed  CAS  Google Scholar 

  38. Ernest JT. Optic disk oxygen tension. Exp Eye Res 1977;24:271–8.

    Article  PubMed  CAS  Google Scholar 

  39. Ernest JT, Goldstick TK. Retinal oxygen tension and oxygen reactivity in retinopathy of prematurity in kittens. Invest Ophthalmol Vis Sci 1984;25:1129–34.

    PubMed  CAS  Google Scholar 

  40. Armaly MF, Araki M. Optic nerve circulation and ocular pressure. Invest Ophthalmol 1975;14:724–31.

    PubMed  CAS  Google Scholar 

  41. Riva CE. Noninvasive measurement of oxygen tension in the optic nerve head. Curr Opin Ophthalmol 1998;9:56–60.

    Article  PubMed  CAS  Google Scholar 

  42. Shonat RD, Wilson DF, Riva CE, Cranstoun SD. Effect of acute increases in intraocular pressure on intravascular optic nerve head oxygen tension in cats. Invest Ophthalmol Vis Sci 1992;33:3174–80.

    PubMed  CAS  Google Scholar 

  43. Cranstoun SD, Riva CE, Munoz JL, Pournaras CJ. Continuous measurements of intra-vascular pO2 in the pig optic nerve head. Klin Monatsbl Augenheilkd 1997;210:313–5.

    PubMed  CAS  Google Scholar 

  44. Ahmed J, Linsenmeier RA, Dunn R, Jr. The oxygen distribution in the prelaminar optic nerve head of the cat. Exp Eye Res 1994;59:457–65.

    Article  PubMed  CAS  Google Scholar 

  45. Pournaras CJ, Munoz JL, Abdesselem R. [Regulation of PO2 in the area of the optic papilla of the minipig in hyperoxia]. Klin Monatsbl Augenheilkd 1991;198:404–5.

    PubMed  CAS  Google Scholar 

  46. Bouzas EA, Donati G, Pournaras CJ. Distribution and regulation of the optic nerve head tissue PO2. Surv Ophthalmol 1997;42 Suppl 1:S27–34.

    Google Scholar 

  47. Pournaras CJ, Munoz JL, Brazitikos PD, Moret P. [Regulation of papillary pO2]. Klin Monatsbl Augenheilkd 1992;200:517–8.

    PubMed  CAS  Google Scholar 

  48. Stefansson E, Jensen PK, Eysteinsson T, et al. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors. Invest Ophthalmol Vis Sci 1999;40:2756–61.

    PubMed  CAS  Google Scholar 

  49. Blumenroder S, Augustin AJ, Koch FH. The influence of intraocular pressure and systemic oxygen tension on the intravascular pO2 of the pig retina as measured with phosphorescence imaging. Surv Ophthalmol 1997;42 Suppl 1:S118–26.

    PubMed  Google Scholar 

  50. Chamot SR, Cranstoun SD, Petrig BL, Pournaras CJ, Riva CE. Blood pO2 and blood flow at the optic disc. J Biomed Opt 2003;8:63–9.

    Article  PubMed  Google Scholar 

  51. Chamot SR, Petrig BL, Pournaras CJ, Riva CE. Effect of isovolumic hemodilution on oxygen delivery to the optic nerve head. Klin Monatsbl Augenheilkd 2002;219:292–5.

    Article  PubMed  Google Scholar 

  52. la Cour M, Kiilgaard JF, Eysteinsson T, et al. Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide. Br J Ophthalmol 2000;84:1045–9.

    Article  PubMed  Google Scholar 

  53. Michelson G, Scibor M. Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. Acta Ophthalmol Scand 2006;84:289–95.

    Article  PubMed  Google Scholar 

  54. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973;15:15–29.

    Google Scholar 

  55. Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 1979;18:1030–42.

    PubMed  CAS  Google Scholar 

  56. Sossi N, Anderson DR. Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol 1983;101:98–101.

    PubMed  CAS  Google Scholar 

  57. Weinstein JM, Duckrow RB, Beard D, Brennan RW. Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 1983;24:1559–65.

    PubMed  CAS  Google Scholar 

  58. Granse L, Bergstrand I, Thiselton D, et al. Electrophysiology and ocular blood flow in a family with dominant optic nerve atrophy and a mutation in the OPA1 gene. Ophthalmic Genet 2003;24:233–45.

    Article  PubMed  Google Scholar 

  59. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T. Autoregulation of ocular blood flow during changes in intraocular pressure. Preliminary results. Graefes Arch Clin Exp Ophthalmol 1985;223:219–23.

    Article  PubMed  CAS  Google Scholar 

  60. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T. New aspects in pressure tolerance of the optic nerve head (abstr.). Invest Ophthalmol Vis Sci (ARVO suppl) 1985;26:223.

    Google Scholar 

  61. Novack RL, Stefansson E, Hatchell DL. Intraocular pressure effects on optic nerve-head oxidative metabolism measured in vivo. Graefes Arch Clin Exp Ophthalmol 1990;228:128–33.

    Article  PubMed  CAS  Google Scholar 

  62. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 1995;113:216–21.

    PubMed  CAS  Google Scholar 

  63. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 2000;107:1287–93.

    Article  PubMed  CAS  Google Scholar 

  64. Bechetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol 1994;232:675–9.

    Article  PubMed  CAS  Google Scholar 

  65. Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 1998;22:19–25.

    Article  PubMed  CAS  Google Scholar 

  66. Demailly P, Cambien F, Plouin PF, Baron P, Chevallier B. Do patients with low tension glaucoma have particular cardiovascular characteristics? Ophthalmologica 1984;188:65–75.

    PubMed  CAS  Google Scholar 

  67. Detry M, Boschi A, Ellinghaus G, De Plaen JF. Simultaneous 24-hour monitoring of intraocular pressure and arterial blood pressure in patients with progressive and non-progressive primary open-angle glaucoma. Eur J Ophthalmol 1996;6:273–8.

    PubMed  CAS  Google Scholar 

  68. Drance SM, Morgan RW, Sweeney VP. Shock-induced optic neuropathy: a cause of nonprogressive glaucoma. N Engl J Med 1973;288:392–5.

    PubMed  CAS  Google Scholar 

  69. Follmann P, Palotas C, Suveges I, Petrovits A. Nocturnal blood pressure and intraocular pressure measurement in glaucoma patients and healthy controls. Int Ophthalmol 1996;20:83–7.

    PubMed  Google Scholar 

  70. Freyler H, Menapace R. Ist die Erblindung an Glaukom vermeidbar? Spektrum Augenheilkd 1988;2/3:121–7.

    Google Scholar 

  71. Graham SL, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 1999;43 Suppl 1:S10–6.

    Article  PubMed  Google Scholar 

  72. Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology 1995;102:61–9.

    PubMed  CAS  Google Scholar 

  73. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 1994;117:603–24.

    PubMed  CAS  Google Scholar 

  74. Kaiser HJ, Flammer J. Systemic hypotension: A risk factor for glaucomatous damage? Ophthalmologica 1991;203:105–8.

    Article  PubMed  CAS  Google Scholar 

  75. Kashiwagi K, Hosaka O, Kashiwagi F, et al. Systemic circulatory parameters. comparison between patients with normal tension glaucoma and normal subjects using ambulatory monitoring. Jpn J Ophthalmol 2001;45:388–96.

    Article  PubMed  CAS  Google Scholar 

  76. von Worch A, Kaesner R. Das Glaukom ohne Hochdruck. Folia Ophthalmol 1985;10:221–4.

    Google Scholar 

  77. Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 2001;131:699–708.

    Article  PubMed  CAS  Google Scholar 

  78. Tezel G, Wax MB. Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol 2004;122:1348–56.

    Article  PubMed  CAS  Google Scholar 

  79. Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 2006;83:473–83.

    Article  PubMed  CAS  Google Scholar 

  80. Carter CJ, Brooks DE, Doyle DL, Drance SM. Investigations into a vascular etiology for low-tension glaucoma. Ophthalmology 1990;97:49–55.

    PubMed  CAS  Google Scholar 

  81. Michelson G, Langhans MJ, Harazny J, Dichtl A. Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 1998;236:80–5.

    Article  PubMed  CAS  Google Scholar 

  82. Harju M, Vesti E. Blood flow of the optic nerve head and peripapillary retina in exfoliation syndrome with unilateral glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol 2001;239:271–7.

    Article  PubMed  CAS  Google Scholar 

  83. Yin ZQ, Vaegan, Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997;6:23–32.

    Article  PubMed  CAS  Google Scholar 

  84. Flammer J. Psychophysical mechanisms and treatment of vasospastic disorders in normal-tension glaucoma. Bull Soc Belge Ophtalmol 1992;244:129–34.

    PubMed  CAS  Google Scholar 

  85. Flammer J. To what extent are vascular factors involved in the pathogenesis of glaucoma? In: Kaiser HJ, Flammer J, Hendrickson P, eds. Ocular Blood Flow. Glaucoma-Meeting: Kargr, Basel; 1995:13–39.

    Google Scholar 

  86. Stewart WC, Kolker AE, Sharpe ED, et al. Factors associated with long-term progression or stability in primary open-angle glaucoma. Am J Ophthalmol 2000;130:274–9.

    Article  PubMed  CAS  Google Scholar 

  87. Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 1997;124:287–95.

    PubMed  CAS  Google Scholar 

  88. Duijm HF, van den Berg TJ, Greve EL. Choroidal haemodynamics in glaucoma. Br J Ophthalmol 1997;81:735–42.

    PubMed  CAS  Google Scholar 

  89. Ulrich C, Helm W, Ulrich A, Barth T, Ulrich WD. [Disordered peripapillary microcirculation in glaucoma patients]. Ophthalmologe 1993;90:45–50.

    PubMed  CAS  Google Scholar 

  90. Wolf S, Arend O, Sponsel WE, Schulte K, Cantor LB, Reim M. Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 1993;100:1561–6.

    PubMed  CAS  Google Scholar 

  91. Quigley HA, Hohman RM, Addicks EM, Green WR. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci 1984;25:918–31.

    PubMed  CAS  Google Scholar 

  92. Feke GT, Schwartz B, Takamoto T, et al. Optic nerve head circulation in untreated ocular hypertension. Br J Ophthalmol 1995;79:1088–92.

    Article  PubMed  CAS  Google Scholar 

  93. Nicolela MT, Walman BE, Buckley AR, Drance SM. Ocular hypertension and primary open-angle glaucoma: a comparative study of their retrobulbar blood flow velocity. J Glaucoma 1996;5:308–10.

    Article  PubMed  CAS  Google Scholar 

  94. Chauhan BC, LeVatte TL, Jollimore CA, et al. Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 2004;45:144–52.

    Article  PubMed  Google Scholar 

  95. Cioffi GA, Wang L, Fortune B, et al. Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol 2004;122:1517–25.

    Article  PubMed  Google Scholar 

  96. Oku H, Sugiyama T, Kojima S, Watanabe T, Azuma I. Experimental optic cup enlargement caused by endothelin-1-induced chronic optic nerve head ischemia. Surv Ophthalmol 1999;44 Suppl 1:S74–84.

    Article  PubMed  Google Scholar 

  97. Orgul S, Cioffi GA, Bacon DR, Van Buskirk EM. An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys. J Glaucoma 1996;5:135–8.

    PubMed  CAS  Google Scholar 

  98. Ge J. [An analysis of the causes of glaucomatous visual function damage by computed multifactorial stepwise regression]. Zhonghua Yan Ke Za Zhi 1992;28:331–4.

    PubMed  CAS  Google Scholar 

  99. Ge J, Zhou W, Zhu J, et al. The study of relationships between the damage of visual function and hemorrheology, ocular rheography, as well as other related factors in patients with primary open angle glaucoma (POAG). Yan Ke Xue Bao 1993;9:3–11.

    PubMed  CAS  Google Scholar 

  100. Liu X, Zhou W, Ye T, et al. Correlation between retinal fluorescein angiography and blood viscosity and other factors in patients with primary open angle glaucoma. Chin Med J (Engl) 1997;110:667–9.

    CAS  Google Scholar 

  101. Wu ZJ, Li MY. [Blood viscosity and related factors in patients with primary open-angle glaucoma]. Zhonghua Yan Ke Za Zhi 1993;29:353–5.

    PubMed  CAS  Google Scholar 

  102. Flammer J. [Vascular risk factors in glaucoma]. Klin Monatsbl Augenheilkd 1997;211:aA5–aA6.

    PubMed  CAS  Google Scholar 

  103. Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol 1998;82:862–70.

    PubMed  CAS  Google Scholar 

  104. Flammer J, Guthauser U, Mahler F. Do ocular vasospasms help cause low-tension glaucoma? Doc Ophthalmol Proc Ser 1987;49:397–9.

    Google Scholar 

  105. Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol 1991;111:585–8.

    PubMed  CAS  Google Scholar 

  106. O’Brien C. Vasospasm and glaucoma. Br J Ophthalmol 1998;82:855–6.

    PubMed  CAS  Google Scholar 

  107. Rojanapongpun P, Drance SM. The response of blood flow velocity in the ophthalmic artery and blood flow of the finger to warm and cold stimuli in glaucomatous patients. Graefes Arch Clin Exp Ophthalmol 1993;231:375–7.

    Article  PubMed  CAS  Google Scholar 

  108. Dallinger S, Bobr B, Findl O, Eichler HG, Schmetterer L. Effects of acetazolamide on choroidal blood flow. Stroke 1998;29:997–1001.

    PubMed  CAS  Google Scholar 

  109. Kiss S, Dallinger O, Findl G, Rainer HG, Eichler HG, Schmetterer L. Acetazolamide-induced cerebral and ocular vasodilation in humans is independent of nitric oxide. Am J Physiol Regul Integr Comp Physiol 1999;276:R1661–R7, abstract.

    CAS  Google Scholar 

  110. Rassam SM, Patel V, Kohner EM. The effect of acetazolamide on the retinal circulation. Eye 1993;7 ( Pt 5):697–702.

    Google Scholar 

  111. Grunwald JE, Zinn H. The acute effect of oral acetazolamide on macular blood flow. Invest Ophthalmol Vis Sci 1992;33:504–7.

    PubMed  CAS  Google Scholar 

  112. Grossmann WM, Koeberle B. The dose-response relationship of acetazolamide on the cerebral blood flow in normal subjects. Cerebrovasc Dis 2000;10:65–9.

    Article  PubMed  CAS  Google Scholar 

  113. Martinez A, Gonzalez F, Capeans C, Perez R, Sanchez-Salorio M. Dorzolamide effect on ocular blood flow. Invest Ophthalmol Vis Sci 1999;40:1270–5.

    PubMed  CAS  Google Scholar 

  114. Harris A, Arend O, Arend S, Martin B. Effects of topical dorzolamide on retinal and retrobulbar hemodynamics. Acta Ophthalmol Scand 1996;74:569–72.

    PubMed  CAS  Google Scholar 

  115. Harris A, Arend O, Kagemann L, Garrett M, Chung HS, Martin B. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J Ocul Pharmacol Ther 1999;15:189–97.

    Article  PubMed  CAS  Google Scholar 

  116. Harris A, Arend O, Chung HS, Kagemann L, Cantor L, Martin B. A comparative study of betaxolol and dorzolamide effect on ocular circulation in normal-tension glaucoma patients. Ophthalmology 2000;107:430–4.

    Article  PubMed  CAS  Google Scholar 

  117. Grunwald JE, Mathur S, DuPont J. Effects of dorzolamide hydrochloride 2% on the retinal circulation. Acta Ophthalmol Scand 1997;75:236–8.

    PubMed  CAS  Google Scholar 

  118. Bergstrand IC, Heijl A, Harris A. Dorzolamide and ocular blood flow in previously untreated glaucoma patients: a controlled double-masked study. Acta Ophthalmol Scand 2002;80:176–82.

    Article  PubMed  CAS  Google Scholar 

  119. Barnes GE, Li B, Dean T, Chandler ML. Increased optic nerve head blood flow after 1 week of twice daily topical brinzolamide treatment in Dutch-belted rabbits. Surv Ophthalmol 2000;44 Suppl 2:S131–40.

    Article  PubMed  Google Scholar 

  120. Conroy CW. Sulfonamides do not reach the retina in therapeutic amounts after topical application to the cornea. J Ocul Pharmacol Ther 1997;13:465–72.

    PubMed  CAS  Google Scholar 

  121. Tamaki Y, Araie M, Muta K. Effect of topical dorzolamide on tissue circulation in the rabbit optic nerve head. Jpn J Ophthalmol 1999;43:386–91.

    Article  PubMed  CAS  Google Scholar 

  122. Pedersen DB, Koch Jensen P, la Cour M, et al. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels. Graefes Arch Clin Exp Ophthalmol 2005;243:163–8.

    Article  PubMed  CAS  Google Scholar 

  123. Vorstrup S, Henriksen L, Paulson OB. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest 1984;74:1634–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Stefánsson, E. (2008). Intraocular Pressure, Perfusion Pressure, and Optic Nerve Energy Metabolism. In: Tombran-Tink, J., Barnstable, C.J., Shields, M.B. (eds) Mechanisms of the Glaucomas. Ophthalmology Research™. Humana Press. https://doi.org/10.1007/978-1-59745-373-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-373-8_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-956-7

  • Online ISBN: 978-1-59745-373-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics