Skip to main content

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

This chapter gives an overview of the relevant literature concerning functional imaging and deep brain stimulation (DBS). Although there is no doubt about the clinical effects of DBS, knowledge concerning its mechanism of function is limited. Methods of functional imaging such as functional MRI (fMRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET) to measure cerebral blood flow or fluorodeoxyclucose metabolism may help us understand the mechanisms of neurostimulation at the site of stimulation and also provide a global view of what is happening in the rest of the brain. Under review are typical patterns of activation/deactivation in the ipsiand contralateral hemispheres at subcortical and cortical levels while stimulating the subthalamic nucleus (STN), ventral intermediate nucleus of thalamus (VIM) and globus pallidus interna (GPi), while working on different types of tasks. The site of stimulation usually becomes overactivated, which indirectly supports a mechanism of locally increased neuronal activity which than spreads by orthodromic and/or antidromic fashion into areas not being directly stimulated by the DBS electrode. As follows from comparisons with neurostimulation in on and off modes, DBS usually leads to a normalization of pathological patterns of brain activations. Despite similar clinical effects, the mechanisms of DBS are different from those of stereotactic lesions. However, the majority of available studies have produced many contradictory results due to significant methodological differences between studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezai AR, Finelli D, Nyenhuis JA, et al (2002) Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla. J Magn Reson Imaging 15(3):241–250.

    Article  PubMed  Google Scholar 

  2. Rezai AR, Phillips M, Baker KB, et al (2004) Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 39(5):300–303.

    Article  PubMed  Google Scholar 

  3. Georgi JC, Stippich C, Tronnier VM, Heiland S (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388.

    Article  PubMed  Google Scholar 

  4. Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156.

    Article  PubMed  CAS  Google Scholar 

  5. Chen W, Ogawa S (2000) Principles of BOLD Functional MRI. In: Moonen CTW, Bandettini PA, eds. Functional MRI. Berlin: Springer-Verlag, pp. 103–114.

    Google Scholar 

  6. Asanuma K, Tang C, Ma Y, et al (2006) Network modulation in the treatment of Parkinson's disease. Brain.

    Google Scholar 

  7. Sestini S, Ramat S, Formiconi AR, Ammannati F, Sorbi S, Pupi A (2005) Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson's disease: a 4-year follow-up study with rCBF SPECT. J Nucl Med 46(9):1444–1454.

    PubMed  Google Scholar 

  8. Hershey T, Revilla FJ, Wernle AR, et al (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821.

    PubMed  CAS  Google Scholar 

  9. Hilker R, Voges J, Weisenbach S, et al (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson's disease. J Cereb Blood Flow Metab 24(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  10. Haegelen C, Verin M, Broche BA, et al (2005) Does subthalamic nucleus stimulation affect the frontal limbic areas? A single-photon emission computed tomography study using a manual anatomical segmentation method. Surg Radiol Anat 27(5):389–394.

    Article  PubMed  CAS  Google Scholar 

  11. Trost M, Su S, Su P, et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease. Neuroimage 31(1):301–307.

    Article  PubMed  Google Scholar 

  12. Ceballos-Baumann AO, Boecker H, Bartenstein P, et al (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56(8):997–1003.

    Article  PubMed  CAS  Google Scholar 

  13. Payoux P, Remy P, Damier P, et al (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 61(8):1307–1313.

    Article  PubMed  Google Scholar 

  14. Thobois S, Dominey P, Fraix V, et al (2002) Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson's disease: a PET study. J Neurol 249(12):1689–1698.

    Article  PubMed  Google Scholar 

  15. Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 42(3):283–291.

    Article  PubMed  CAS  Google Scholar 

  16. Grafton ST, Turner RS, Desmurget M, et al (2006) Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology 66(8):1192–1199.

    Article  PubMed  CAS  Google Scholar 

  17. Strafella AP, Dagher A, Sadikot AF (2003) Cerebral blood flow changes induced by subthalamic stimulation in Parkinson's disease. Neurology 60(6): 1039–1042.

    PubMed  Google Scholar 

  18. Schroeder U, Kuehler A, Haslinger B, et al (2002) Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125(Pt 9):1995–2004.

    Article  PubMed  CAS  Google Scholar 

  19. Schroeder U, Kuehler A, Lange KW, et al (2003) Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 54(4):445–450.

    Article  PubMed  Google Scholar 

  20. Rezai AR, Lozano AM, Crawley AP, et al (1999) Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J Neurosurg 90(3):583–590.

    Article  PubMed  CAS  Google Scholar 

  21. Jech R, Ruzicka E, Tintera J, Urgosik D (2003) Reply: fMRI during deep brain stimulation. Mov Disord 18(4):461–462.

    Article  Google Scholar 

  22. Phillips MD, Baker KB, Lowe MJ, et al (2006) Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience. Radiology 239(1):209–216.

    Article  PubMed  Google Scholar 

  23. Baker KB, Nyenhuis JA, Hrdlicka G, Rezai AR, Tkach JA, Shellock FG (2005) Neurostimulation systems: assessment of magnetic field interactions associated with 1.5- and 3-Tesla MR systems. J Magn Reson Imaging 21(1):72–77.

    Article  PubMed  Google Scholar 

  24. Finelli DA, Rezai AR, Ruggieri PM, et al (2002) MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 23(10):1795–1802.

    PubMed  Google Scholar 

  25. Baker KB, Tkach J, Phillips MD (2006) In vitro studies of MRI-related heating of neurostimulation systems. Magn Reson Imaging 24(5):677–679; author reply 9–80.

    Article  PubMed  Google Scholar 

  26. Dormont D, Cornu P, Pidoux B, et al (1997) Chronic thalamic stimulation with three-dimensional MR stereotactic guidance. AJNR Am J Neuroradiol 18(6):1093–1107.

    PubMed  CAS  Google Scholar 

  27. Yelnik J, Damier P, Demeret S, et al (2003) Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method. J Neurosurg 99(1):89–99.

    Article  PubMed  Google Scholar 

  28. Tronnier VM, Staubert A, Hahnel S, Sarem-Aslani A (1999) Magnetic resonance imaging with implanted neurostimulators: an in vitro and in vivo study. Neurosurgery 44(1):118–125; discussion 25–26.

    Article  PubMed  CAS  Google Scholar 

  29. Jech R, Urgosik D, Tintera J, et al (2001) Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson's disease. Mov Disord 16(6):1126–1132.

    Article  PubMed  CAS  Google Scholar 

  30. Arantes PR, Cardoso EF, Barreiros MA, et al (2006) Performing functional magnetic resonance imaging in patients with Parkinson's disease treated with deep brain stimulation. Mov Disord 21(8):1154–1162.

    Article  PubMed  Google Scholar 

  31. Jech R, Urgosik D, Tintera J, Sieger T, Roth J, Ruzicka E (2002) Effects of deep brain stimulation of the STN and Vim nuclei under resting state and during simple movement tasks: A functional MRI study at 1.5 Tesla. Mov Disord 17:S173—S.

    Google Scholar 

  32. Stefurak T, Mikulis D, Mayberg H, et al (2003) Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord 18(12):1508–1516.

    Article  PubMed  Google Scholar 

  33. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17(9):3178–3184.

    PubMed  CAS  Google Scholar 

  34. Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 79(2):1102–1107.

    PubMed  CAS  Google Scholar 

  35. Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74(2):113–122.

    Article  PubMed  CAS  Google Scholar 

  36. Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn Reson Med 47(6):1052–1058.

    Article  PubMed  Google Scholar 

  37. Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. Faseb J 17(13):1820–1830.

    Article  PubMed  CAS  Google Scholar 

  38. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3):274–281.

    Article  PubMed  Google Scholar 

  39. Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, Pollak P (1998) Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord 13(Suppl 3):119–25.

    PubMed  Google Scholar 

  40. Shen KZ, Zhu ZT, Munhall A, Johnson SW (2003) Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 50(4):314–319.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923.

    PubMed  CAS  Google Scholar 

  42. Bruet N, Windels F, Carcenac C, et al (2003) Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 62(12):1228–1240.

    PubMed  CAS  Google Scholar 

  43. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248.

    Article  PubMed  Google Scholar 

  44. Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17(Suppl 3):S69–S72.

    Article  PubMed  Google Scholar 

  45. Trost M, Su PC, Barnes A, et al (2003) Evolving metabolic changes during the first postoperative year after subthalamotomy. J Neurosurg 99(5):872–878.

    Article  PubMed  Google Scholar 

  46. Hesselmann V, Maarouf M, Hunsche S, et al (2006) Functional MRI for immediate monitoring stereotactic thalamotomy in a patient with essential tremor. Eur Radiol 16(10):2229–2233.

    Article  PubMed  Google Scholar 

  47. Eidelberg D, Moeller JR, Ishikawa T, et al (1996) Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson's disease. Ann Neurol 39(4):450–459.

    Article  PubMed  CAS  Google Scholar 

  48. Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gammaaminobutyric acid in substantia nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72(2):259–267.

    Article  PubMed  CAS  Google Scholar 

  49. Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60(1):78–81.

    PubMed  CAS  Google Scholar 

  50. Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM (2004) Executive processes in Parkinson's disease: FDG-PET and network analysis. Hum Brain Mapp 22(3):236–245.

    Article  PubMed  Google Scholar 

  51. Eidelberg D, Edwards C (2000) Functional brain imaging of movement disorders. Neurol Res 22(3):305–312.

    PubMed  CAS  Google Scholar 

  52. Eidelberg D, Moeller JR, Dhawan V, et aal (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14(5):783–801.

    PubMed  CAS  Google Scholar 

  53. Moeller JR, Nakamura T, Mentis MJ, et al (1999) Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 40(8):1264–1269.

    PubMed  CAS  Google Scholar 

  54. Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D (2006) Abnormal metabolic network activity in Parkinson's disease: test-retest reproducibility. J Cereb Blood Flow Metab.

    Google Scholar 

  55. Haslinger B, Kalteis K, Boecker H, Alesch F, Ceballos-Baumann AO (2005) Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease. Neuroimage 28(3):598–606.

    Article  PubMed  Google Scholar 

  56. Sestini S, Scotto di Luzio A, Ammannati F, et al (2002) Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson's disease. J Nucl Med 43(6):725–732.

    PubMed  Google Scholar 

  57. Hilker R, Voges J, Thiel A, et al (2002) Deep brain stimulation of the subthalamic nucleus versus levodopa challenge in Parkinson's disease: measuring the on- and off-conditions with FDG-PET. J Neural Transm 109(10):1257–1264.

    Article  PubMed  CAS  Google Scholar 

  58. Hilker R, Portman AT, Voges J, et al (2005) Disease progression continues in patients with advanced Parkinson's disease and effective subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 76(9):1217–1221.

    Article  PubMed  CAS  Google Scholar 

  59. Antonini A, Marotta G, Benti R, et al (2003) Brain flow changes before and after deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Neurol Sci 24(3):151–152.

    Article  PubMed  CAS  Google Scholar 

  60. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12(5):265–272.

    Article  PubMed  Google Scholar 

  61. Goldberg JA, Boraud T, Maraton S, Haber SN, Vaadia E, Bergman H (2002) Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl -1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J Neurosci 22(11):4639–4653.

    PubMed  CAS  Google Scholar 

  62. Sabatini U, Boulanouar K, Fabre N, et al (2000) Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123 (Pt 2):394–403.

    Article  PubMed  Google Scholar 

  63. Haslinger B, Erhard P, Kampfe N, et al (2001) Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124 (Pt 3):558–570.

    Article  PubMed  CAS  Google Scholar 

  64. Buhmann C, Binkofski F, Klein C, et al (2005) Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain 128(Pt 10):2281–2290.

    Article  PubMed  CAS  Google Scholar 

  65. Catalan MJ, Ishii K, Honda M, Samii A, Hallett M (1999) A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain 122(Pt 3):483–495.

    Article  PubMed  Google Scholar 

  66. Hesselmann V, Sorger B, Girnus R, et al (2004) Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease. Eur Radiol 14(4):686–690.

    Article  PubMed  Google Scholar 

  67. Germano IM, Gracies JM, Weisz DJ, Tse W, Koller WC, Olanow CW (2004) Unilateral stimulation of the subthalamic nucleus in Parkinson disease: a doubleblind 12-month evaluation study. J Neurosurg 101(1):36–42.

    Article  PubMed  Google Scholar 

  68. Alberts JL, Elder CM, Okun MS, Vitek JL (2004) Comparison of pallidal and subthalamic stimulation on force control in patient's with Parkinson's disease. Motor Control 8(4):484–499.

    PubMed  Google Scholar 

  69. Samuel M, Ceballos-Baumann AO, Blin J, et al (1997) Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain 120(Pt 6):963–976.

    Article  PubMed  Google Scholar 

  70. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 118 (Pt 4):913–933.

    Article  PubMed  Google Scholar 

  71. Rascol O, Sabatini U, Fabre N, et al (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120 (Pt 1):103–110.

    Article  PubMed  Google Scholar 

  72. Jenkins IH, Fernandez W, Playford ED, et al (1992) Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32(6):749–757.

    Article  PubMed  CAS  Google Scholar 

  73. Piccini P, Lindvall O, Bjorklund A, et al (2000) Delayed recovery of movementrelated cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol 48(5):689–695.

    Article  PubMed  CAS  Google Scholar 

  74. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann Neurol 32(2):151–161.

    Article  PubMed  CAS  Google Scholar 

  75. Rascol O, Sabatini U, Chollet F, et al (1992) Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 49(2):144–148.

    PubMed  CAS  Google Scholar 

  76. Ceballos-Baumann AO (2003) Functional imaging in Parkinson's disease: activation studies with PET, fMRI and SPECT. J Neurol 250(Suppl 1):I15–I23.

    PubMed  Google Scholar 

  77. Hershey T, Mink JW (2006) Using functional neuroimaging to study the brain's response to deep brain stimulation. Neurology 66(8):1142–1143.

    Article  PubMed  Google Scholar 

  78. Ramig LO, Countryman S, Thompson LL, Horii Y (1995) Comparison of two forms of intensive speech treatment for Parkinson disease. J Speech Hearing Res 38(6):1232–1251.

    PubMed  CAS  Google Scholar 

  79. Limousin P, Krack P, Pollak P, et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 339(16):1105–1111.

    Article  PubMed  CAS  Google Scholar 

  80. Pinto S, Ozsancak C, Tripoliti E, Thobois S, Limousin-Dowsey P, Auzou P (2004) Treatments for dysarthria in Parkinson's disease. Lancet Neurol 3(9):547–556.

    Article  PubMed  Google Scholar 

  81. Rousseaux M, Krystkowiak P, Kozlowski O, Ozsancak C, Blond S, Destee A (2004) Effects of subthalamic nucleus stimulation on parkinsonian dysarthria and speech intelligibility. J Neurol 251(3):327–334.

    Article  PubMed  Google Scholar 

  82. Pinto S, Thobois S, Costes N, et al (2004) Subthalamic nucleus stimulation and dysarthria in Parkinson's disease: a PET study. Brain 127(Pt 3):602–615.

    PubMed  Google Scholar 

  83. Jahanshahi M, Ardouin CM, Brown RG, et al (2000) The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 123(Pt 6):1142–1154.

    Article  PubMed  Google Scholar 

  84. Dujardin K, Defebvre L, Krystkowiak P, Blond S, Destee A (2001) Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson's disease. J Neurol 248(7):603–611.

    Article  PubMed  CAS  Google Scholar 

  85. Pillon B, Ardouin C, Damier P, et al (2000) Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson's disease. Neurology 55(3):411–418.

    PubMed  CAS  Google Scholar 

  86. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 123(Pt 10):2091–2108.

    Article  PubMed  Google Scholar 

  87. Hilker R, Voges J, Ghaemi M, et al (2003) Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord 18(1):41–48.

    Article  PubMed  Google Scholar 

  88. Strafella AP, Sadikot AF, Dagher A (2003) Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson's disease. Neuroreport 14(9):1287–1289.

    Article  PubMed  Google Scholar 

  89. Goerendt IK, Lawrence AD, Mehta MA, Stern JS, Odin P, Brooks DJ (2006) Distributed neural actions of anti-parkinsonian therapies as revealed by PET. J Neural Transm 113(1):75–86.

    Article  PubMed  CAS  Google Scholar 

  90. Feigin A, Fukuda M, Dhawan V, et al (2001) Metabolic correlates of levodopa response in Parkinson's disease. Neurology 57(11):2083–2088.

    PubMed  CAS  Google Scholar 

  91. Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C (2003) Pharmacologically modulated fMRI—cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126(Pt 2):451–461.

    Article  PubMed  CAS  Google Scholar 

  92. Mattay VS, Tessitore A, Callicott JH, et al (2002) Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol 51(2):156–164.

    Article  PubMed  CAS  Google Scholar 

  93. Hershey T, Black KJ, Carl JL, McGee-Minnich L, Snyder AZ, Perlmutter JS (2003) Long term treatment and disease severity change brain responses to levodopa in Parkinson's disease. J Neurol Neurosurg Psychiatry 74(7):844–851.

    Article  PubMed  CAS  Google Scholar 

  94. Bucher SF, Seelos KC, Dodel RC, Reiser M, Oertel WH (1997) Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 41(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  95. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ (1995) A positron emission tomography study of cerebral activation associated with essential and writing tremor. Arch Neurol 52(3):299–305.

    PubMed  CAS  Google Scholar 

  96. Antonini A, Moeller JR, Nakamura T, Spetsieris P, Dhawan V, Eidelberg D (1998) The metabolic anatomy of tremor in Parkinson's disease. Neurology 51(3): 803–810.

    PubMed  CAS  Google Scholar 

  97. Kassubek J, Juengling FD, Hellwig B, Knauff M, Spreer J, Lucking CH (2001) Hypermetabolism in the ventrolateral thalamus in unilateral Parkinsonian resting tremor: a positron emission tomography study. Neurosci Lett 304(1–2):17–20.

    Article  PubMed  CAS  Google Scholar 

  98. Ruzicka E, Jech R, Zarubova K, Roth J, Urgosik D (2003) VIM thalamic stimulation for tremor in a patient with IgM paraproteinaemic demyelinating neuropathy. Mov Disord 18(10):1192–1195.

    Article  PubMed  Google Scholar 

  99. Perlmutter JS, Mink JW, Bastian AJ, et al (2002) Blood flow responses to deep brain stimulation of thalamus. Neurology 58(9):1388–1394.

    PubMed  CAS  Google Scholar 

  100. Ceballos-Baumann AO, Boecker H, Fogel W, et al (2001) Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex. Neurology 56(10):1347–1354.

    PubMed  CAS  Google Scholar 

  101. Haslinger B, Boecker H, Buchel C, et al (2003) Differential modulation of subcortical target and cortex during deep brain stimulation. Neuroimage 18(2):517–524.

    Article  PubMed  CAS  Google Scholar 

  102. Kopell BH, Rezai AR, Chang JW, Vitek JL (2006) Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson's disease. Mov Disord 21(Suppl 14):S238–S246.

    Article  PubMed  Google Scholar 

  103. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res 20(1):91–127.

    Article  CAS  Google Scholar 

  104. Fukuda M, Barnes A, Simon ES, et al (2004) Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. Neuroimage 21(2):608–615.

    Article  PubMed  Google Scholar 

  105. Boecker H, Wills AJ, Ceballos-Baumann A, et al (1997) Stereotactic thalamotomy in tremor-dominant Parkinson's disease: an H2(15)O PET motor activation study. Ann Neurol 41(1):108–111.

    Article  PubMed  CAS  Google Scholar 

  106. Parker F, Tzourio N, Blond S, Petit H, Mazoyer B (1992) Evidence for a common network of brain structures involved in parkinsonian tremor and voluntary repetitive movement. Brain Res 584(1–2):11–17.

    Article  PubMed  CAS  Google Scholar 

  107. Deiber MP, Pollak P, Passingham R, et al (1993) Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain 116(Pt 1):267–279.

    Article  PubMed  Google Scholar 

  108. Wielepp JP, Burgunder JM, Pohle T, Ritter EP, Kinser JA, Krauss JK (2001) Deactivation of thalamocortical activity is responsible for suppression of parkinsonian tremor by thalamic stimulation: a 99mTc-ECD SPECT study. Clin Neurol Neurosurg 103(4):228–231.

    Article  PubMed  CAS  Google Scholar 

  109. Fukuda M, Mentis MJ, Ma Y, et al (2001) Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: a PET study of resting-state glucose metabolism. Brain 124(Pt 8):1601–1609.

    Article  PubMed  CAS  Google Scholar 

  110. Davis KD, Taub E, Houle S, et al (1997) Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med 3(6):671–674.

    Article  PubMed  CAS  Google Scholar 

  111. Fukuda M, Mentis M, Ghilardi MF, et al (2001) Functional correlates of pallidal stimulation for Parkinson's disease. Ann Neurol 49(2):155–164.

    Article  PubMed  CAS  Google Scholar 

  112. Samuel M, Ceballos-Baumann AO, Turjanski N, et al (1997) Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Brain 120(Pt 8):1301–1313.

    Article  PubMed  Google Scholar 

  113. Grafton ST, Waters C, Sutton J, Lew MF, Couldwell W (1995) Pallidotomy increases activity of motor association cortex in Parkinson's disease: a positron emission tomographic study. Ann Neurol 37(6):776–783.

    Article  PubMed  CAS  Google Scholar 

  114. Ceballos-Baumann AO, Obeso JA, Vitek JL, et al (1994) Restoration of thalamocortical activity after posteroventral pallidotomy in Parkinson's disease. Lancet 344(8925):814.

    Article  PubMed  CAS  Google Scholar 

  115. Eidelberg D, Moeller JR, Antonini A, et al (1998) Functional brain networks in DYT1 dystonia. Ann Neurol 44(3):303–312.

    Article  PubMed  CAS  Google Scholar 

  116. Trost M, Carbon M, Edwards C, et al (2002) Primary dystonia: is abnormal functional brain architecture linked to genotype? Ann Neurol 52(6):853–856.

    Article  PubMed  Google Scholar 

  117. Ceballos-Baumann AO, Passingham RE, Warner T, Playford ED, Marsden CD, Brooks DJ (1995) Overactive prefrontal and underactive motor cortical areas in idiopathic dystonia. Ann Neurol 37(3):363–372.

    Article  PubMed  CAS  Google Scholar 

  118. Playford ED, Passingham RE, Marsden CD, Brooks DJ (1998) Increased activation of frontal areas during arm movement in idiopathic torsion dystonia. Mov Disord 13(2):309–318.

    Article  PubMed  CAS  Google Scholar 

  119. Detante O, Vercueil L, Thobois S, et al (2004) Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study. Brain 127(Pt 8):1899–1908.

    Article  PubMed  Google Scholar 

  120. Kumar R, Dagher A, Hutchison WD, Lang AE, Lozano AM (1999) Globus pallidus deep brain stimulation for generalized dystonia: clinical and PET investigation. Neurology 53(4):871–874.

    PubMed  CAS  Google Scholar 

  121. Yianni J, Bradley K, Soper N, et al (2005) Effect of GPi DBS on functional imaging of the brain in dystonia. J Clin Neurosci 12(2):137–141.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grant from the Czech Ministry of Health (IGA MZ CR 1A/8629-5) and from the Czech Ministry of Education (research program MSM 0021620849)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jech, R. (2008). Functional Imaging of Deep Brain Stimulation: fMRI, SPECT, and PET . In: Tarsy, D., Vitek, J.L., Starr, P.A., Okun, M.S. (eds) Deep Brain Stimulation in Neurological and Psychiatric Disorders. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-59745-360-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-360-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-952-9

  • Online ISBN: 978-1-59745-360-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics