Skip to main content

Rat Models of Polycystic Ovary Syndrome

  • Chapter
Sourcebook of Models for Biomedical Research

Abstract

Polycystic ovary (PCO) syndrome is a common endocrine disorder of unknown etiology. This condition is a major cause of menstrual irregularity and infertility in women with chronic anovulation. This chapter reviews the literature on methods of producing experimental PCO models in the laboratory rat, and the findings that support their resemblance to the human condition. The principal rat PCO models that have been validated include constant light exposure, hypothalamic lesions, sex steroid-induced models, and the mifepristone (RU486) model. The biological systems involved in developing chronic anovulation and PCO in these models include the hypothalamus, the pituitary gland, the adrenals, and the ovary with its paracrine, autocrine, and intracrine regulators. Animal models are central to making the transition from scientific concepts to understanding the reality of a human disease. Validated animal models can be used for therapeutic screens, in preclinical trials, and for basic research in reproductive biology. However, animal models of chronic anovulation and PCO may not fully reproduce the reproductive events seen in the human syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsilchorozidou T, Overton C, Conway GS. The pathophysiology of polycystic ovary syndrome. Clin Endocrinol (Oxf) 2004;60:1–17.

    Article  CAS  Google Scholar 

  2. Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome—a hypothesis. J Endocrinol 2002; 174:1–5.

    Article  PubMed  CAS  Google Scholar 

  3. Singh KB, Greenwald GS. Effects of continuous light on the reproductive cycle of the female rat: Induction of ovulation and pituitary gonadotrophins during persistent oestrus. J Endocrinol 1967;38:389–394.

    PubMed  CAS  Google Scholar 

  4. Singh KB. Induction of polycystic ovarian disease in rats by continuous light. I. The reproductive cycle, organ weights, and histology of the ovaries. Am J Obstet Gynecol 1969;103:1078–1083.

    PubMed  CAS  Google Scholar 

  5. Singh KB. Persistent estrus: An experimental model of the polycystic ovary syndrome. Obstet Gynecol Surv 1969;24:2–17.

    Article  PubMed  CAS  Google Scholar 

  6. Baldissera SF, Motta LD, Almeida, MC, Antunes-Rodrigues J. Proposal of an experimental model for the study of polycystic ovaries. Braz J Med Biol Res 1991;24:747–751.

    PubMed  CAS  Google Scholar 

  7. Mahajan DK. Polycystic ovarian disease: Animal models. Endocrinol Metab Clin North Am 1988;17:705–732.

    PubMed  CAS  Google Scholar 

  8. Mahesh VB, Costoff A, Mills TM, Bagnell CA. The polycystic ovary syndrome and experimental models for the study of its pathogenesis. Prog Clin Biol Res 1982;112:301–313.

    PubMed  CAS  Google Scholar 

  9. Mahesh VB, Mills TM, Bagnell CA, Conway BA. Animal models for study of polycystic ovary and ovarian atresia. Adv Exp Med Biol 1987;219:237–257.

    PubMed  CAS  Google Scholar 

  10. Szukiewicz D, Uilenbroek JT. Polycystic ovary syndrome—searching for an animal model. J Med 1998;29:259–275.

    PubMed  CAS  Google Scholar 

  11. Singh KB. Persistent estrus rat models of polycystic ovary disease: An update. Fertil Steril 2005;84:1228–1234.

    Article  PubMed  Google Scholar 

  12. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: Some helpful considerations. Braz J Biol 2002;62:609–617.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi M, Ford JJ, Yoshinaga K, Greep RO. Ovulation in light-estrous rats induced by darkness. Endocrinol Jpn 1977;24:89–96.

    PubMed  CAS  Google Scholar 

  14. Weber AL, Adler NT. Delay of constant light-induced persistent vaginal estrus by 24-hour time cues in rats. Science 1979;204:323–325.

    Article  PubMed  CAS  Google Scholar 

  15. Watts AG, Fink G. Effects of short-term constant light on the proestrous luteinizing hormone surge and pituitary responsiveness in the female rat. Neuroendocrinology 1981;33:176–180.

    PubMed  CAS  Google Scholar 

  16. Rowland DL, van der Schoot P. Effect of constant light on parturition and postpartum reproduction in the rat. Physiol Behav 1995;58:567–572.

    Article  PubMed  CAS  Google Scholar 

  17. Singh KB, Mahajan DK. Ultrastructural basis for continued steroidogenesis in the rat polycystic ovary. J Reprod Med 1990;35:222–228.

    PubMed  CAS  Google Scholar 

  18. Singh KB, Mahajan DK, Tewari RP. Hormonal modulation of the vaginal bacterial flora in experimental polycystic ovarian disease. J Clin Lab Anal 1996;10:233–238.

    Article  PubMed  CAS  Google Scholar 

  19. Takeo Y. Influence of continuous illumination on estrous cycle of rats: Time course of changes in levels of gonadotropins and ovarian steroids until occurrence of persistent estrus. Neuroendocrinology 1984;39:97–104.

    PubMed  CAS  Google Scholar 

  20. Takeo Y, Kohno J, Hokano M. Ultrastructural evidence for estradiol synthesis in the ovary of persistent-estrous rats exposed to continuous illumination. Acta Anat 1986;127:161–170.

    PubMed  CAS  Google Scholar 

  21. Singh KB. Induction of polycystic ovarian disease in rats by continuous light. II. Observations on mating, pregnancy, and the postpartum period. Am J Obstet Gynecol 1969;104:1004–1007.

    PubMed  CAS  Google Scholar 

  22. Singh KB. Induction of polycystic ovarian disease in rats by continuous light. III. Mechanism of ovarian compensatory hypertrophy and ovulation after unilateral oophorectomy. Am J Obstet Gynecol 1969;104:1008–1011.

    PubMed  CAS  Google Scholar 

  23. Hulse GK, Coleman GJ, Copolov DL, Lee VW. The role of endogenous opioid peptides in the effects of constant illumination on reproductive function in the rat. Pharmacol Biochem Behav 1985;23:535–539.

    Article  PubMed  CAS  Google Scholar 

  24. Milosevic V, Trifunovic S, Sekulic M, Sosic-Jurjevic B, Filipovic B, Negic N, et al. Chronic exposure to constant light affects morphology and secretion of adrenal zona fasciculata cells in female rats. Gen Physiol Biophys 2005;24:299–309.

    PubMed  CAS  Google Scholar 

  25. Trentini GP, Mess B, De Gaetani CF, Ruzsas C. Effect of melatonin on induction of ovulation in the light-induced constant estrousanovulatory syndrome and possible role of the brain serotoninergic system. J Endocrinol Invest 1978;1:305–310.

    PubMed  CAS  Google Scholar 

  26. Giammanco S, Ernandes M, La Guardia M. Effects of environmental lighting and tryptophan devoid diet on the rat vaginal cycle. Arch Physiol Biochem 1997; 105:445–449.

    Article  PubMed  CAS  Google Scholar 

  27. Petersen SL, Ottem EN, Carpenter CD. Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod 2003;69:1771–1778.

    Article  PubMed  CAS  Google Scholar 

  28. Ma YJ, Kelly MJ, Ronnekleiv OK. Pro-gonadotropin-releasing hormone (ProGnRH) and GnRH content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology 1990;127:2654–2664.

    PubMed  CAS  Google Scholar 

  29. Edwards HE, Burnham WM, Ng MM, Asa S, MacLusky NJ. Limbic seizures alter reproductive function in the female rat. Epilepsia 1999;40:1370–1377.

    Article  PubMed  CAS  Google Scholar 

  30. Edwards HE, MacLusky NJ, Burnham, WM. The effect of seizures and kindling on reproductive hormones in the rat. Neurosci Biobehav Rev 2000;24:753–762.

    Article  PubMed  CAS  Google Scholar 

  31. Prata Lima MF, Baracat EC, Simoes MJ. Effects of melatonin on the ovarian response to pinealectomy or continuous light in female rats: Similarity with polycystic ovary syndrome. Braz J Med Biol Res 2004;37:987–995.

    PubMed  CAS  Google Scholar 

  32. Arai Y, Yamanouchi K, Mizukami S, Yanai R, Shibata K, Nagasawa H. Induction of anovulatory sterility by neonatal treatment with 5 beta-dihydrotestosterone in female rats. Acta Endocrinol (Copenh) 1981;96:439–443.

    CAS  Google Scholar 

  33. Ota H, Fukushima M, Maki M. Endocrinological and histological aspects of the process of polycystic ovary formation in the rat treated with testosterone propionate. Tohoku J Exp Med 1983;140:121–131.

    PubMed  CAS  Google Scholar 

  34. Jones HM, Vernon MW, Rush ME. Systematic studies invalidate the neonatally androgenized rat as a model for polycystic ovary disease. Biol Reprod 1987;36:1253–1265.

    Article  PubMed  CAS  Google Scholar 

  35. Raj SG, Raj MH, Talbert LM, Dy RC. Structural and functional regression of polycystic ovaries by danazol. Fertil Steril 1981;36:392–395.

    PubMed  CAS  Google Scholar 

  36. Reznikov AG, Sinitsyn PV, Tarasenko LV, Polyakova LI. Neuroendocrine mechanisms of development of experimental hyperandrogen-induced anovulation. Neurosci Behav Physiol 2003;33:773–776.

    Article  PubMed  CAS  Google Scholar 

  37. Morikawa S, Sekiya S, Naitoh M, Iwasawa H, Takeda B, Takamizawa H. Spontaneous occurrence of atypical hyperplasia and adenocarcinoma of the uterus in androgen-sterilized SD rats. J Natl Cancer Inst 1982;69:95–101.

    PubMed  CAS  Google Scholar 

  38. Sun F, Yu J. The effect of a special herbal tea on obesity and anovulation in androgen-sterilized rats. Proc Soc Exp Biol Med 2000; 223:295–301.

    Article  PubMed  CAS  Google Scholar 

  39. Borges da Silva B, Rocha Gontijo JA, Crete AR, de Jesus Simoes M. Evaluation of body weight in androgenized female rats. Clin Exp Obstet Gynecol 2002;29:97–99.

    PubMed  Google Scholar 

  40. Gnodde, HP, van Dieten JA, Van Look PF. Effect of androstenedione on the estrous cycle of the rat. J Reprod Fertil 1979;56:675–678.

    Article  PubMed  CAS  Google Scholar 

  41. Knudsen JF, Costoff A, Mahesh VB. Dehydroepiandrosterone-induced polycystic ovaries and acyclicity in the rat. Fertil Steril 1975;26:807–817.

    PubMed  CAS  Google Scholar 

  42. Ward RC, Costoff A, Mahesh VB. The induction of polycystic ovaries in mature cycling rats by the administration of dehydroepi-androsterone (DHA). Biol Reprod 1978;18:614–623.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson E, Lee GY, O’Brien K. Polycystic ovarian condition in the dehydroepiandrosterone-treated rat model: Hyperandrogenism and the resumption of meiosis are major initial events associated with cystogenesis of antral follicles. Anat Rec 1997;249:44–53.

    Article  PubMed  CAS  Google Scholar 

  44. Henmi H, Endo T, Nagasawa K, Hayashi T, Chida M, Akutagawa N, et al. Lysyl oxidase and MMP-2 expression in dehydroepiandrosterone-induced polycystic ovary in rats. Biol Reprod 2001;64:157–162.

    Article  PubMed  CAS  Google Scholar 

  45. Mallampati RS, Johnson DC. Gonadotropins in female rats androgenized by various treatments: Prolactin as an index to hypothalamic damage. Neuroendocrinology 1974;15:255–266.

    PubMed  CAS  Google Scholar 

  46. Handa RJ, Gorski RA. Alterations in the onset of ovulatory failure and gonadotropin secretion following steroid administration to lightly androgenized female rats. Biol Reprod 1985;32:248–256.

    Article  PubMed  CAS  Google Scholar 

  47. Wolf CJ, Hotchkiss A, Ostby JS, LeBlanc GA, Gray LE Jr. Effects of prenatal testosterone propionate on the sexual development of male and female rats: A dose-response study. Toxicol Sci 2002;65:71–86.

    Article  PubMed  CAS  Google Scholar 

  48. Brawer JR, Naftolin F, Martin J, Sonnenschein C. Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 1978;103:501–512.

    Article  PubMed  CAS  Google Scholar 

  49. Brawer J, Schipper H, Naftolin F. Ovary-dependent degeneration in the hypothalamic arcuate nucleus. Endocrinology 1980;107:274–279.

    PubMed  CAS  Google Scholar 

  50. Brawer JR., Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod 1986;35:647–655.

    Article  PubMed  CAS  Google Scholar 

  51. Grosser PM, McCarthy GF, Robaire B, Farookhi R, Brawer JR. Plasma patterns of LH, FSH and prolactin in rats with a polycystic ovarian condition induced by oestradiol valerate. J Endocrinol 1987;114:33–39.

    Article  PubMed  CAS  Google Scholar 

  52. McCarthy GF, Farookhi R, Brawer JR. Plasma gonadotropin patterns characterizing the development of polycystic ovaries in the estradiol valerate treated rat. Can J Physiol Pharmacol 1990;68:28–33.

    PubMed  CAS  Google Scholar 

  53. McCarthy GF, Brawer JR. Induction of Stein-Leventhal-like polycystic ovaries (PCO) in the rat: A new model for cystic ovarian disease. Anat Rec 1990;228:137–144.

    Article  PubMed  CAS  Google Scholar 

  54. Paredes A, Galvez A, Leyton V, Aravena G, Fiedler JL, Bustamante D, et al. Stress promotes development of ovarian cysts in rats: The possible role of sympathetic nerve activation. Endocrine 1998;8:309–315.

    Article  PubMed  CAS  Google Scholar 

  55. Lara HE, Dorfman M, Venegas M, Luza SM, Luna SL, Mayerhofer A, et al. Changes in sympathetic nerve activity of the mammalian ovary during a normal estrous cycle and in polycystic ovary syndrome: Studies on norepinephrine release. Microsc Res Tech 2002;59:495–502.

    Article  PubMed  CAS  Google Scholar 

  56. Stener-Victorin E, Lindholm C. Immunity and beta-endorphin concentrations in hypothalamus and plasma in rats with steroid-induced polycystic ovaries: Effect of low-frequency electroacupuncture. Biol Reprod 2004;70:329–333.

    Article  PubMed  CAS  Google Scholar 

  57. Aihara M, Hayashi S. Induction of persistent diestrus followed by persistent estrus is indicative of delayed maturation of tonic gonadotropin-releasing systems in rats. Biol Reprod 1989;40:96–101.

    Article  PubMed  CAS  Google Scholar 

  58. Aihara M, Kobayashi H, Kimura T, Hayashi S, Kato J. Changes in uterine estrogen receptor concentrations in persistent estrous and persistent diestrous rats. Endocrinol Jpn 1988;35:57–70.

    PubMed  CAS  Google Scholar 

  59. Sanchez-Criado JE, Sanchez A, Ruiz A, Gaytan F. Endocrine and morphological features of cystic ovarian condition in antiprogesterone RU486-treated rats. Acta Endocrinol (Copenh) 1993;129:237–245.

    CAS  Google Scholar 

  60. Tebar M, Ruiz A, Gonzalez D, Hernandez G, Alonso R, Sanchez-Criado JE. Effect of RU486 injected on proestrous morning on LHRH, LH and 17beta-estradiol secretion during the estrous cycle in rat. J Physiol Biochem 1998;54:91–97.

    PubMed  CAS  Google Scholar 

  61. Ruiz A, Aguilar R, Tebar M, Gaytan F, Sanchez-Criado JE. RU486-treated rats show endocrine and morphological responses to therapies analogous to responses of women with polycystic ovary syndrome treated with similar therapies. Biol Reprod 1996;55:1284–1291.

    Article  PubMed  CAS  Google Scholar 

  62. Kafali H, Iriadam M, Ozardali I, Demir N. Letrozole-induced polycystic ovaries in the rat: A new model for cystic ovarian disease. Arch Med Res 2004;35:103–108.

    Article  PubMed  CAS  Google Scholar 

  63. Dye RB, Rabinovici J, Jaffe RB. Inhibin and activin in reproductive biology. Obstet Gynecol Surv 1992;47:173–185.

    Article  PubMed  CAS  Google Scholar 

  64. Mann RJ, Keri RA, Nilson JH. Consequences of elevated luteinizing hormone on diverse physiological systems: Use of the LHbetaCTP transgenic mouse as a model of ovarian hyperstimulation-induced pathophysiology. Recent Prog Horm Res 2003;58:343–375.

    Article  PubMed  CAS  Google Scholar 

  65. Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci USA 1995;92:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  66. Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: Implications for a common fertility disorder. Proc Natl Acad Sci USA 2004;101:7129–7134.

    Article  PubMed  CAS  Google Scholar 

  67. Couse JF, Yates MM, Sanford R, Nyska A, Nilson JH, Korach KS. Formation of cystic ovarian follicles associated with elevated luteinizing hormone requires estrogen receptor-beta. Endocrinology 2004;145:4693–4702.

    Article  PubMed  CAS  Google Scholar 

  68. Rosenfeld CS, Roberts RM, Lubahn DB. Estrogen receptor-and aromatase-deficient mice provide insight into the roles of estrogen within the ovary and uterus. Mol Reprod Dev 2001;59:336–346.

    Article  PubMed  CAS  Google Scholar 

  69. Britt KL, Drummond AE, Dyson M, Wreford NG, Jones ME, Simpson ER, Findlay JK. The ovarian phenotype of the aromatase knockout (ArKO) mouse. J Steroid Biochem Mol Biol 2001;79:181–185.

    Article  PubMed  CAS  Google Scholar 

  70. Greiner M, Paredes A, Araya V, Lara HE. Role of stress and sympathetic innervation in the development of polycystic ovary syndrome. Endocrine 2005;28:319–324.

    Article  PubMed  CAS  Google Scholar 

  71. Singh KB. Menstrual disorders in college students. Am J Obstet Gynecol 1981;140:299–302.

    PubMed  CAS  Google Scholar 

  72. Singh KB: Effects of sound on the female reproductive system. Am J Obstet Gynecol 1972;112:981–991.

    PubMed  CAS  Google Scholar 

  73. Singh KB, Rao PS. Studies on the polycystic ovaries of rats under continuous auditory stress. Am J Obstet Gynecol 1970;108:557–564.

    PubMed  CAS  Google Scholar 

  74. Xita N, Tsatsoulis A. Review: Fetal programming of polycystic ovary syndrome by androgen excess: Evidence from experimental, clinical, and genetic association studies. J Clin Endocrinol Metab 2006;91:1660–1666.

    Article  PubMed  CAS  Google Scholar 

  75. Washington TM, Blum JJ, Reed MC, Conn PM. A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH. Theor Biol Med Model 2004; 1:9. Available at http://www.tbiomed.com/content/1/1/9. Accessed May 30, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Singh, K.B. (2008). Rat Models of Polycystic Ovary Syndrome. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics