Skip to main content

Quantum Dot Nanotechnology for Prostate Cancer Research

  • Chapter
Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

Abstract

Quantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probes for cancer cell imaging and molecular profiling. In comparison with organic dyes and fluorescent proteins, QDs have unique optical and electronic properties, such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. These properties are most promising for improving the sensitivity of molecular imaging and quantitative cellular analysis by one to two orders of magnitude. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex biological conditions. A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumortargeting ligands and drug-delivery functionalities. Polymer-encapsulated QDs are essentially nontoxic to cells and animals, but their long-term in vivo toxicity and degradation need more studies that are careful. Nonetheless, bioconjugated QDs have raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells, animal models, and, possibly, in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., and Nie, S. M. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46.

    Article  PubMed  CAS  Google Scholar 

  2. Han, M. Y., Gao, X. H., Su, J. Z., and Nie, S. M. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635.

    Article  PubMed  CAS  Google Scholar 

  3. Gao, X. H. and Nie, S. M. (2003). Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B 107, 11,575–11,578.

    Article  CAS  Google Scholar 

  4. Gao, X. H. and Nie, S. M. (2004). Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal. Chem. 76, 2406–2410.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, X. Y., Liu, H. J., Liu, J. Q.,et al. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46.

    Article  PubMed  CAS  Google Scholar 

  6. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B, and Triller, A. (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445.

    Article  PubMed  CAS  Google Scholar 

  7. Lidke, D. S., Nagy, P., Heintzmann, R., et al. (2004). Quantum dot ligands provide new insights into erbB/HER recep-tormediated signal transduction. Nat. Biotechnol. 22, 198–203.

    Article  PubMed  CAS  Google Scholar 

  8. Xiao, Y. and Barker, P. E. (2004). Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28.

    Article  PubMed  Google Scholar 

  9. Jaiswal, J. K., Mattoussi, H., Mauro, J. M., Simon, S. M. (2003). Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51.

    Article  PubMed  CAS  Google Scholar 

  10. Medintz, L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., Mauro, J. M. (2003). Self-assembled nanoscale biosensors based on quantum dot FRET donors Igor. Nat. Mat. 2, 630–638.

    Article  CAS  Google Scholar 

  11. Medintz, I. L., Konnert, J. H., Clapp, A. R., et al. (2004). A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 29, 9612–9617.

    Article  Google Scholar 

  12. Rosenthal, S. J., Tomlinson, I., Adkins, E. M., et al. (2002). Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 124, 4586–4594.

    Article  PubMed  CAS  Google Scholar 

  13. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937.

    Article  CAS  Google Scholar 

  14. Alivisatos, A. P. (2004). The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52.

    Article  PubMed  CAS  Google Scholar 

  15. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C., and Alivisatos, A. P. (2003). Controlled growth of tetrapod branched inorganic nanocrystals. Nat. Mat. 2, 382–385.

    Article  CAS  Google Scholar 

  16. Milliron, D. J., Hughes, S. M., Cui, Y., et al. (2004). Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195.

    Article  PubMed  CAS  Google Scholar 

  17. Dick, K. A., Deppert, K., Larsson, M. W., et al. (2004). Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mat. 3, 380–384.

    Article  CAS  Google Scholar 

  18. Yu, W. W., Wang, Y. A., and Peng, X. G. (2003). Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mat. 15, 4300–4308.

    Article  CAS  Google Scholar 

  19. Hines, M. A. and Guyot-Sionnest, P. (1996). Synthesis of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. B 100, 468–471.

    Article  CAS  Google Scholar 

  20. Peng, X. G., Schlamp, M. C., Kadavanich, A. V., and Alivisatos, A. P. (1997). Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029.

    Article  CAS  Google Scholar 

  21. Dabbousi B. O., Rodriguez-Viejo J., Mikulec F. V., et al. (1997). (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475.

    Article  CAS  Google Scholar 

  22. Bailey, R. E. and Nie, S. (2003). Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106.

    Article  PubMed  CAS  Google Scholar 

  23. Qu, L. H. and Peng, X. G. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 2049–2055.

    Article  PubMed  CAS  Google Scholar 

  24. Dubertret, B., Skourides, P, Norris, D. J., Noireaux, V., Brivanlou, A. H., Libchaber, A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  25. Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., and Nie, S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976.

    Article  PubMed  CAS  Google Scholar 

  26. Pellegrino, T., Manna, L., and Kudera, S. (2004). Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano. Lett. 4, 703–707.

    Article  CAS  Google Scholar 

  27. Ron, E., Turek, T., and Mathiowitz, E. (1993). Controlled release of polypeptides from polyanhydrides. Proc. Natl. Acad. Sci. USA 90, 4176–4180.

    Article  PubMed  CAS  Google Scholar 

  28. Anseth, K. S., Shastri, V. R., and Langer, R. (1999). Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat. Biotechnol. 17, 156–159.

    Article  PubMed  CAS  Google Scholar 

  29. Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T., and Mauro, J. M. (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847.

    Article  PubMed  CAS  Google Scholar 

  30. Leatherdale, C. A., Woo, W. K., Mikulec, F. V., and Bawendi, M. G. (2002). On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622.

    Article  CAS  Google Scholar 

  31. Bruchez, J. M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluores-cent biological labels. Science 281, 2013–2015.

    Article  PubMed  CAS  Google Scholar 

  32. Chan, W. C. W. and Nie, S. M. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  PubMed  CAS  Google Scholar 

  33. Jakobs, S., Subramaniam, V., Schonle, A., Jovin, T. M., and Hell, S. W. (2000). EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479, 131–135.

    Article  PubMed  CAS  Google Scholar 

  34. Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P. I. H. (1999). Simultaneous detection of multiple green fluores-cent proteins in live cells by fluorescence lifetime imaging microscopy. Curr. Bio. 9 269–272.

    Article  CAS  Google Scholar 

  35. Gao, X. H. and Nie, S. M. (2003). Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21, 371–373.

    Article  PubMed  CAS  Google Scholar 

  36. Ogawara, K., Yoshida, M., Higaki, K., et al. (1999). Hepatic uptake of polystyrene microspheres in rats: Effect of particle size on intrahepatic distribution. J. Control Release 59, 15–22.

    Article  PubMed  CAS  Google Scholar 

  37. Flacke, S., Fischer, S., Scott M. J., et al. (2001). Novel MRI contrast agent for molecular imaging of fibrin implications for detecting vulnerable plaques. Circulation 104, 1280–1285.

    Article  PubMed  CAS  Google Scholar 

  38. Katz, L. C., Burkhalter, A., and Dreyer, W. J. (1984). Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual-cortex. Nature 310, 498–500.

    Article  PubMed  CAS  Google Scholar 

  39. Chien, G. L., Anselone, C. G., Davis, R. F., and Van Winkle, D. M. (1995). Fluorescent vs. radioactive microsphere measurement of regional myocardial blood flow. Cardiovasc Res. 30, 405–412.

    Article  PubMed  CAS  Google Scholar 

  40. Pasqualini, R. and Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366.

    Article  PubMed  CAS  Google Scholar 

  41. Nisman, R., Dellaire, G., Ren, Y., Li, R., and Bazett-Jones, D. P. (2004). Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52, 13–18.

    PubMed  CAS  Google Scholar 

  42. Ballou B., Lagerholm B. C., Ernst L. A., Bruchez M. P., and Waggoner A. S. (2004). Noninvasive imaging of quantum dots in mice. Bioconj. Chem. 15, 79–86.

    Article  CAS  Google Scholar 

  43. Hoshino A., Hanaki K., Suzuki K., and Yamamoto K. (2004). Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophy. Res. Com. 314, 46–53.

    Article  CAS  Google Scholar 

  44. Voura E. B., Jaiswal J. K., Mattoussi H., and Simon S. M. (2004). Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 9, 993–998.

    Article  Google Scholar 

  45. Mattheakis L. C., Dias J. M., Choi Y..J, et al. (2004). Optical coding of mammalian cells using semiconductor quantum dots. Anal. Chem. 327, 200–208.

    CAS  Google Scholar 

  46. Lagerholm, B. C., Wang, M., Ernst, L. A., et al. (2004). Multicolor coding of cells with cationic peptide coated quan-tum dots. Nano Lett. 4(10), 2019–2022.

    Article  CAS  Google Scholar 

  47. Lewin, M., Carlesso, N., Tung, C. H., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo track-ing and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414.

    Article  PubMed  CAS  Google Scholar 

  48. Larson, D. R., Zipfel, W. R., Williams, R. M., et al. (2003). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436.

    Article  PubMed  CAS  Google Scholar 

  49. Stroh, M., Zimmer, J. P., Duda, D. G., et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 11, 678–682.

    Article  PubMed  CAS  Google Scholar 

  50. Kim, S., Lim, Y. T., Soltesz, E. G., et al. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97.

    Article  PubMed  CAS  Google Scholar 

  51. Lim, Y. T., Kim S., Nakayama, A., Stott, N. E., Bawendi, M. G., and Frangioni, J. V. (2003). Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2, 50–64.

    Article  PubMed  CAS  Google Scholar 

  52. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia S. N., and Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12,617–12,621.

    Article  PubMed  CAS  Google Scholar 

  53. Mattoussi, H., Mauro, J. M., Goldman, E. R., et al. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12,142–12,150.

    Article  CAS  Google Scholar 

  54. Gao, X. H., Chan, W. C. W., and Nie, S. M. (2002). Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7, 532–537.

    Article  PubMed  CAS  Google Scholar 

  55. Jain, R. K. (1999). Transport of molecules, particles, and cells in solid tumors. Ann. Rev. Biomed. Eng. 1, 241–263.

    Article  CAS  Google Scholar 

  56. Jainm R. K. (2001). Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control Release 74, 7–25.

    Article  Google Scholar 

  57. Chang, S. S., Reuter, V. E., Heston, W. D. W., and Gaudin, P. B. (2001). Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology 57, 801–805.

    Article  PubMed  CAS  Google Scholar 

  58. Schulke, N., Varlamova, O. A., Donovan, G. P., et al. (2003). The homodimer of prostate-specific membrane antigen is a functional target for cancer therapy. Proc. Natl. Acad. Sci. USA 100, 12,590–12,595.

    Article  PubMed  Google Scholar 

  59. Bander, N. H., Trabulsi, E. J., Kostakoglu, L., et al. (2003). Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170, 1717–1721.

    Article  PubMed  CAS  Google Scholar 

  60. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18.

    Article  CAS  Google Scholar 

  61. Kirchner, C., Liedl, T., Kudera, S., et al. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338.

    Article  PubMed  CAS  Google Scholar 

  62. Wang, D. S., He, J. B., Rosenzweig, N., and Rosenzweig, Z. (2004). Superparamagnetic Fe 2 O 3 Beads-CdSe/ZnS quan-tum dots core-shell nanocomposite particles for cell separation. Nano Lett. 4, 409–413.

    Article  CAS  Google Scholar 

  63. Gu, H. W., Zheng, R. K., Zhang, X. X., and Xu, B. (2004). Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665.

    Article  PubMed  CAS  Google Scholar 

  64. Samia, A. C. S., Chen, X., and Burda, C. (2003). Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15,736–15,737.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gao, X., Xing, Y., Chung, L.W.K., Nie, S. (2007). Quantum Dot Nanotechnology for Prostate Cancer Research. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics