Skip to main content

Topoisomerase I Poisons and Apoptotic Topoisomerase I-DNA Complexes

  • Chapter
Apoptosis, Senescence, and Cancer

summary

Topoisomerase I (Top1), an abundant nuclear enzyme expressed throughout the cell cycle, relaxes DNA supercoiling by forming transient covalent DNA cleavage complexes. We will review three situations leading to enhanced cellular Top1 cleavage complexes. First, Top1 cleavage complexes can be stabilized by camptothecins, which are referred to as Top1 poisons and among the most efficient inducers of apoptosis. The second mechanism is related to exogenous and endogenous DNA lesions that enhance Top1 cleavage complexes. Lastly, Top1 cleavage complexes form during programmed cell death and are then referred to as “apoptotic Top1 cleavage complexes.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002; 3:430–440.

    PubMed  CAS  Google Scholar 

  • Champoux JJ. DNA TOPOISOMERASES: structure, function, and mechanism. Annu Rev Biochem 2001; 70:369–413.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Redon C, Rao VA, et al. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 2003; 532:173–203.

    PubMed  CAS  Google Scholar 

  • Pommier Y. Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair and cell cycle checkpoints. Curr Med Chem Anticancer Agents 2004; 4:429–434.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Kohlhagen G, Laco GS, Sayer JM, Kroth H, Jerina DM. Position-specific trapping of topoisomerase I-DNA cleavage complexes by the intercalated benzo[a]pyrene diol epoxide adducts at the 6-amino group of adenine. Proc Natl Acad Sci USA 2000; 97:10739–10744.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Kohlhagen G, Pourquier P, Sayer JM, Kroth H, Jerina DM. Benzo[$a$]pyrene epoxide adducts in DNA are potent inhibitors of a normal topoisomerase I cleavage site and powerful inducers of other topoisomerase I cleavages. Proc Natl Acad Sci USA 2000; 97:2040–2045.

    PubMed  CAS  Google Scholar 

  • Antony S, Theruvathu JA, Brooks PJ, Lesher DT, Redinbo M, Pommier Y. Enhancement of camptothecin-induced topoisomerase I cleavage complexes by the acetaldehyde adduct N2-ethyl-$2$-deoxyguanosine. Nucleic Acids Res 2004; 32:5685–5692.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Pommier Y. Topoisomerase I-mediated DNA damage. Adv Cancer Res 2001; 80:189–216.

    Google Scholar 

  • Sordet O, Khan QA, Pommier Y. Apoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunction. Cell Cycle 2004; 3:1095–1097.

    PubMed  CAS  Google Scholar 

  • Wall ME, Wani MC. Camptothecin and taxol: discovery to clinic – thirteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1995; 55:753–760.

    PubMed  CAS  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 1985; 260:14873–14878.

    PubMed  CAS  Google Scholar 

  • Garcia-Carbonero R, Supko JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 2002; 8:641–661.

    PubMed  CAS  Google Scholar 

  • Konstadoulakis MM, Antonakis PT, Tsibloulis BG, et al. A phase II study of 9-nitrocamptothecin in patients with advanced pancreatic adenocarcinoma. Cancer Chemother Pharmacol 2001; 48:417–420.

    PubMed  CAS  Google Scholar 

  • Verschraegen CF, Levenback C, Vincent M, et al. Phase II study of intravenous DX-8951f in patients with advanced ovarian, tubal, or peritoneal cancer refractory to platinum, taxane, and topotecan. Ann N Y Acad Sci 2000; 922:349–351.

    PubMed  CAS  Google Scholar 

  • Urasaki Y, Takebayashi Y, Pommier Y. Activity of a novel camptothecin analogue, homocamptothecin, in camptothecin-resistant cell lines with topoisomerase I alterations. Cancer Res 2000; 60:6577–6580.

    PubMed  CAS  Google Scholar 

  • Lesueur-Ginot L, Demarquay D, Kiss R, et al. Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase I-targeted activity and antitumor properties. Cancer Res 1999; 59:2939–2943.

    PubMed  CAS  Google Scholar 

  • Lavergne O, Lesueur-Ginot L, Pla Rodas F, et al. Homocamptothecins: synthesis and antitumor activity of novel E-ring- modified camptothecin analogues. J Med Chem 1998; 41:5410–5419.

    Google Scholar 

  • Philippart P, Harper L, Chaboteaux C, et al. Homocamptothecin, an E-ring-modified camptothecin, exerts more potent antiproliferative activity than other topoisomerase I inhibitors in human colon cancers obtained from surgery and maintained in vitro under histotypical culture conditions. Clin Cancer Res 2000; 6:1557–1562.

    PubMed  CAS  Google Scholar 

  • Larsen AK, Gilbert C, Chyzak G, et al. Unusual Potency of BN 80915, a novel fluorinated E-ring modified camptothecin, toward human colon carcinoma cells. Cancer Res 2001; 61:2961–2967.

    PubMed  CAS  Google Scholar 

  • Jaxel C, Kohn KW, Wani MC, Wall ME, Pommier Y. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. Cancer Res 1989; 49:1465–1469.

    PubMed  CAS  Google Scholar 

  • Burke TG, Mi Z, M. The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 1994; 37:40–46.

    PubMed  CAS  Google Scholar 

  • Meng L-H, Liao Z-H, Pommier Y. Non-camptothecin DNA topoisomerase I inhibitors in cancer chemotherapy. Curr Top Med Chem 2003; 3:305–320.

    PubMed  CAS  Google Scholar 

  • Long BH, Balasubramanian BN. Non-camptothecin topoisomerase I active compounds as potential anticancer agents. Exp Opin Ther Patents 2000; 10:655–686.

    Google Scholar 

  • Prudhomme M. Recent developments of rebeccamycin analogues as topoisomerase I inhibitors and antitumor agents. Curr Med Chem 2000; 7:1189–1212.

    PubMed  CAS  Google Scholar 

  • Ren J, Bailly C, Chaires JB. NB-506, an indolocarbazole topoisomerase I inhibitor, binds preferentially to triplex DNA. FEBS Lett 2000; 470:355–359.

    PubMed  CAS  Google Scholar 

  • Urasaki Y, Laco G, Takebayashi Y, Bailly C, Kohlhagen G, Pommier Y. Use of camptothecin-resistant mammalian cell lines to evaluate the role of topoisomerase I in the antiproliferative activity of the indolocarbazole, NB-506, and its topoisomerase I binding site. Cancer Res 2001; 61:504–508.

    Google Scholar 

  • Bailly C, Riou J-F, Colson P, Houssier C, Rodriguez-Pereira E, Prudhomme M. DNA cleavage by topoisomerase I in the presence of indolocarbazole derivatives of rebeccamycin. Biochemistry 1997; 36:3917–3929.

    PubMed  CAS  Google Scholar 

  • Fukasawa K, Komatani H, Hara Y, et al. Sequence-selective DNA cleavage by a topoisomerase I poison, NB-506. Int J Cancer 1998; 75:145–150.

    PubMed  CAS  Google Scholar 

  • Cushman M, Cheng L. Total synthesis of nitidine chloride. J Org Chem 1978; 43:286–288.

    CAS  Google Scholar 

  • Cushman M, Mohan P, Smith EC. Synthesis and biological activity of structural analogues of the anticancer benzophenanthridine alkaloid nitidine chloride. J Med Chem 1984; 27:544–547.

    PubMed  CAS  Google Scholar 

  • Cushman M, Mohan P. Synthesis and antitumor activity of structural analogues of the anticancer benzophenanthridine alkaloid fagaronine chloride. J Med Chem 1985; 28:1031–1036.

    PubMed  CAS  Google Scholar 

  • Kohlhagen G, Paull K, Cushman M, Nagafufuji P, Pommier Y. Protein-linked DNA strand breaks induced by NSC 314622, a non-camptothecin topoisomerase I poison. Mol Pharmacol 1998; 54: 50–58.

    PubMed  CAS  Google Scholar 

  • Cushman M, Jayaraman M, Vroman JA, et al. Synthesis of new Indeno[1,2-c]isoquinolines: cytotoxic non-camptothecin topoisomerase I inhibitors. J Med Chem 2000; 43:3688–3698.

    PubMed  CAS  Google Scholar 

  • Strumberg D, Pommier Y, Paull K, Jayaraman M, Nagafuji P, Cushman M. Synthesis of cytotoxic indenoisoquinoline topoisomerase I poisons. J Med Chem 1999; 42:446–457.

    PubMed  CAS  Google Scholar 

  • Jayaraman M, Fox BM, Hollingshead M, Kohlhagen G, Pommier Y, Cushman M. Synthesis of new dihydroindeno[1,2-c]isoquinoline and indenoisoquinolinium chloride topoisomerase I inhibitors having high in vivo anticancer activity in the hollow fiber animal model. J Med Chem 2002; 45:242–249.

    PubMed  CAS  Google Scholar 

  • Staker BL, Feese MD, Cushman M, et al. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 2005; 48:2336–2345.

    PubMed  CAS  Google Scholar 

  • Cagir A, Jones SH, Gao R, Eisenhauer BM, Hecht SM. Luotonin A. A naturally occurring human DNA topoisomerase I poison. J Am Chem Soc 2003; 125:13628–13629.

    PubMed  CAS  Google Scholar 

  • Chen AY, Yu C, Bodley A, Peng LF, Liu LF. A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Res 1993; 53: 1332–1337.

    PubMed  CAS  Google Scholar 

  • Beerman TA, McHugh MM, Sigmund R, Lown JW, Rao KE, Bathini Y. Effects of analogs of the DNA minor groove binder Hoechst 33258 on topoisomerase II and I mediated activities. Biochim Biophys Acta 1992; 1131:53–61.

    PubMed  CAS  Google Scholar 

  • Zhang X, Kiechle F. Hoechst 33342-induced apoptosis is associated with decreased immunoreactive topoisomerase I and topoisomerase I-DNA complex formation. Ann Clin Lab Sci 2001; 31:187–198.

    PubMed  CAS  Google Scholar 

  • Kim JS, Sun Q, Gatto B, et al. Structure-activity relationships of benzimidazoles and related heterocycles as topoisomerase I poisons. Bioorg Med Chem 1996; 4:621–630.

    PubMed  CAS  Google Scholar 

  • Jin S, Kim JS, Sim SP, et al. Heterocyclic bibenzimidazole derivatives as topoisomerase I inhibitors. Bioorg Med Chem Lett 2000; 10:719–723.

    PubMed  CAS  Google Scholar 

  • Rangarajan M, Kim JS, Jin S, et al. $2′′$-Substituted 5-phenylterbenzimidazoles as topoisomerase I poisons. Bioorg Med Chem 2000; 8:1371–1382.

    PubMed  CAS  Google Scholar 

  • Pilch DS, Xu Z, Sun Q, LaVoie EJ, Liu LF, Breslauer KJ. A terbenzimidazole that preferentially binds and conformationally alters structurally distinct DNA duplex domains: a potential mechanism for topoisomerase I poisoning. Proc Natl Acad Sci USA 1997; 94:13565–13570.

    PubMed  CAS  Google Scholar 

  • Verschraegen CF, Glover K. ET-743 (PharmaMar/NCI/Ortho Biotech). Curr Opin Investig Drugs 2001; 2:1631–1638.

    PubMed  CAS  Google Scholar 

  • Aune GJ, Furuta T, Pommier Y. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action. Anticancer Drugs 2002; 13:545–555.

    PubMed  CAS  Google Scholar 

  • Martinez EJ, Owa T, Schreiber SL, Corey EJ. Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. Proc Natl Acad Sci USA 1999; 96:3496–3501.

    PubMed  CAS  Google Scholar 

  • Takebayashi Y, Pourquier P, Yoshida A, Kohlhagen G, Pommier Y. Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove. Proc Natl Acad Sci USA 1999; 96:7196–7201.

    PubMed  CAS  Google Scholar 

  • Damia G, Silvestri S, Carrassa L, et al. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. Int J Cancer 2001; 92:583–588.

    PubMed  CAS  Google Scholar 

  • Takebayashi Y, Goldwasser F, Urasaki Y, Kohlhagen G, Pommier Y. Ecteinascidin 743 induces protein-linked DNA breaks in human colon carcinoma HCT116 cells and is cytotoxic independently of topoisomerase I expression. Clin Cancer Res 2001; 7:185–191.

    PubMed  CAS  Google Scholar 

  • Ryan DP, Supko JG, Eder PP, et al. Phase I and pharmacokinetic study of ecteinascidin 743 administered as a 72-hour continuous intravenous infusion in patients with sold malignancies. Clin Cancer Res 2001; 7:231–242.

    PubMed  CAS  Google Scholar 

  • Taamma A, Misset JL, Riofrio M, et al. Phase I and pharmacokinetic study of ecteinascidin-743, a new marine compound, administered as a 24-hour continuous infusion in patients with solid tumors. J Clin Oncol 2001; 19:1256–1265.

    PubMed  CAS  Google Scholar 

  • Takebayashi Y, Pourquier P, Zimonjic DB, et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 2001; 7:961–966.

    PubMed  CAS  Google Scholar 

  • Liao ZY, Sordet O, Zhang HL, Kohlhagen G, Antony S, Gmeiner WH, Pommier Y. A novel polypyrimidine antitumor agent FdUMP[10] induces thymineless death with topoisomerase I-DNA complexes. Cancer Res 2005; 65:4844–4851.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Gioffre C, Kohlhagen G, et al. Gemcitabine ($2,2$-difluoro-$2$-deoxycytidine), an antimetabolite that poisons topoisomerase I. Clin Cancer Res 2002; 8:2499–2504.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Takebayashi Y, Urasaki Y, Gioffre C, Kohlhagen G, Pommier Y. Induction of topoisomerase I cleavage complexes by 1-$\UPbeta$-D-arabinofuranosylcytosine (Ara-C) in vitro and in ara-C-treated cells. Proc Natl Acad Sci USA 2000; 97:1885–1890.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Waltman JL, Urasaki Y, et al. Topoisomerase I-mediated cytotoxicity of N-methyl-$N$-nitro-N-nitrosoguanidine: trapping of topoisomerase I by the O6-methylguanine. Cancer Res 2001; 61:53–58.

    PubMed  CAS  Google Scholar 

  • Lanza A, Tornatelli S, Rodolfo C, Scanavini MC, Pedrini AM. Human DNA topoisomerase \h{I-mediated} cleavages stimulated by ultraviolet light-induced DNA damage. J Biol Chem 1996; 271:6978–6986.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Ueng L-M, Fertala J, et al. Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing oxidative base damages. J Biol Chem 1999; 274:8516–8523.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y. Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem 1997; 272: 26441–26447.

    PubMed  CAS  Google Scholar 

  • Pourquier P, Bjornsti M-A, Pommier Y. Induction of topoisomerase I cleavage complexes by the vinyl chloride adduct, 1,$N6$-ethenoadenine. J Biol Chem 1998; 273:27245–27249.

    PubMed  CAS  Google Scholar 

  • Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex. Biochemistry 1989; 28:4629–4638.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Marchand C. Interfacial inhibitors of protein-DNA interactions. Curr Med Chem Anticancer Agents 2005; 5:421–429.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Cherfils J. Interfacial protein inhibition: a nature’s paradigm for drug discovery. Trends Pharmacol Sci 2005; 26:138–145.

    PubMed  CAS  Google Scholar 

  • Jaxel C, Capranico G, Kerrigan D, Kohn KW, Pommier Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J Biol Chem 1991; 266: 20418–20423.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Kohlhagen G, Kohn F, Leteurtre F, Wani MC, Wall ME. Interaction of an alkylating camptothecin derivative with a DNA base at topoisomerase I-DNA cleavage sites. Proc Natl Acad Sci USA 1995; 92:8861–8865.

    PubMed  CAS  Google Scholar 

  • Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Jr., Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 2002; 99: 15387–15392.

    PubMed  CAS  Google Scholar 

  • Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WGJ. Crystal structure of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 1998; 279:1504–1513.

    PubMed  CAS  Google Scholar 

  • Kerrigan JE, Pilch DS. A structural model for the ternary cleavable complex formed between human topoisomerase I, DNA, and camptothecin. Biochemistry 2001; 40:9792–9798.

    PubMed  CAS  Google Scholar 

  • Laco G, Collins JR, Luke BT, et al. Human topoisomerase I inhibition: docking camptothecin and derivatives into a structure-based active site model. Biochemistry 2002; 41:1428–1435.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Kohlhagen G, Laco GS, Kroth H, Sayer JM, Jerina DM. Different effects on human topoisomerase I by minor groove and intercalated deoxyguanosine adducts derived from two polycyclic aromatic hydrocarbon diol epoxides at or near a normal cleavage site. J Biol Chem 2002; 277:13666–13672.

    PubMed  CAS  Google Scholar 

  • Sim SP, Pilch DS, Liu LF. Site-specific topoisomerase I-mediated DNA cleavage induced by nogalamycin: a potential role of ligand-induced DNA bending at a distal site. Biochemistry 2000; 39:9928–9934.

    Google Scholar 

  • Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into $5$-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 2000; 20:3977–3987.

    PubMed  CAS  Google Scholar 

  • Wu J, Liu LF. Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 1997; 25:4181–4186.

    PubMed  CAS  Google Scholar 

  • Ljungman M, Lane DP. Transcription - guarding the genome by sensing DNA damage. Nat Rev Cancer 2004; 4:727–737.

    PubMed  CAS  Google Scholar 

  • Goldwasser F, Shimizu T, Jackman J, et al. Correlations between S- and G2-phase arrest and cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res 1996; 56:4430–4437.

    PubMed  CAS  Google Scholar 

  • Stefanis L, Park DS, Friedman WJ, Greene LA. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 1999; 19:6235–6247.

    PubMed  CAS  Google Scholar 

  • Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 2004; 3:889–900.

    CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499–506.

    PubMed  CAS  Google Scholar 

  • Ali A, Zhang J, Bao S, et al. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 2004; 18:249–254.

    PubMed  CAS  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004; 23:4451–4461.

    PubMed  CAS  Google Scholar 

  • Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998; 281:1674–1677.

    PubMed  CAS  Google Scholar 

  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 2004; 18:1423–1438.

    PubMed  CAS  Google Scholar 

  • Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 2002; 16:2327–2332.

    PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542–1548.

    PubMed  CAS  Google Scholar 

  • Burma S, Chen DJ. Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 2004; 3:909–918.

    CAS  Google Scholar 

  • Sordet O, Khan QA, Kohn KW, Pommier Y. Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents 2003; 3:271–290.

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626–629.

    PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/ caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91:479–489.

    PubMed  CAS  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998; 1:949–957.

    PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 274:1 7941–17945.

    Google Scholar 

  • Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3,\ -6,\ -7,\ -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999; 144:281–292.

    PubMed  CAS  Google Scholar 

  • Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003; 304:499–504.

    PubMed  CAS  Google Scholar 

  • Sharpe JC, Arnoult D, Youle RJ. Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 2004; 1644:107–113.

    PubMed  CAS  Google Scholar 

  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2:647–656.

    PubMed  CAS  Google Scholar 

  • Bouillet P, Strasser A. BH3-only proteins – evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002; 115:1567–1574.

    PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81:505–512.

    PubMed  CAS  Google Scholar 

  • Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16:2794–2804.

    PubMed  CAS  Google Scholar 

  • Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 1999; 96:10964–10967.

    PubMed  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17:1675–1687.

    PubMed  CAS  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94:491–501.

    PubMed  CAS  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94:481–490.

    PubMed  CAS  Google Scholar 

  • Shao RG, Cao CX, Nieves-Neira W, Dimanche-Boitrel MT, Solary E, Pommier Y. Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cells. Oncogene 2001; 20:1852–1859.

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Schmitz I, Krueger A, et al. Induction of apoptosis in 9-nitrocamptothecin-treated DU145 human prostate carcinoma cells correlates with de novo synthesis of CD95 and CD95 ligand and down-regulation of c-FLIP(short). Cancer Res 2001; 61:7148–7154.

    PubMed  CAS  Google Scholar 

  • Ciusani E, Perego P, Carenini N, et al. Fas/CD95-mediated apoptosis in human glioblastoma cells: a target for sensitisation to topoisomerase I inhibitors. Biochem Pharmacol 2002; 63:881–887.

    PubMed  CAS  Google Scholar 

  • Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188:2033–2045.

    PubMed  CAS  Google Scholar 

  • Micheau O, Solary E, Hammann A, Martin F, Dimanche-Boitrel MT. Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J Natl Cancer Inst 1997; 89:783–789.

    PubMed  CAS  Google Scholar 

  • Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT. Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999; 274:7987–7992.

    PubMed  CAS  Google Scholar 

  • Lacour S, Hammann A, Grazide S, et al. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 2004; 64:3593–3598.

    Google Scholar 

  • Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279:1954–1958.

    Google Scholar 

  • Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998; 9:267–276.

    Google Scholar 

  • Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol 2004; 5:752–762.

    PubMed  CAS  Google Scholar 

  • Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23:2797–2808.

    PubMed  CAS  Google Scholar 

  • Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22:9030–9040.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ryu H, Minamishima YA, et al. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 2004; 6:121–128.

    PubMed  CAS  Google Scholar 

  • Fernandez-Salas E, Suh KS, Speransky VV, et al. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol 2002; 22:3610–3620.

    PubMed  CAS  Google Scholar 

  • Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP. Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 2002; 158:235–246.

    PubMed  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11:577–590.

    PubMed  CAS  Google Scholar 

  • Bakalkin G, Yakovleva T, Selivanova G, et al. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 1994; 91:413–417.

    PubMed  CAS  Google Scholar 

  • Konishi A, Shimizu S, Hirota J, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 2003; 114:673–688.

    PubMed  CAS  Google Scholar 

  • Yan N, Shi Y. Histone H1.2 as a trigger for apoptosis. Nat Struct Biol 2003; 10:983–985.

    PubMed  CAS  Google Scholar 

  • Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002; 297:1352–1354.

    PubMed  CAS  Google Scholar 

  • Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304:843–846.

    PubMed  CAS  Google Scholar 

  • Baliga BC, Colussi PA, Read SH, Dias MM, Jans DA, Kumar S. Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J Biol Chem 2003; 278:4899–4905.

    PubMed  CAS  Google Scholar 

  • Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S. Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 2004; 5:643–648.

    PubMed  CAS  Google Scholar 

  • Han Z, Wei W, Dunaway S, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 2002; 277:17154–17160.

    PubMed  CAS  Google Scholar 

  • Gupta M, Fan S, Zhan Q, Kohn KW, O’Connor PM, Pommier Y. Inactivation of p53 increases the cytotoxicity of camptothecin in human colon HCT116 and breast MCF-7 cancer cells. Clin Cancer Res 1997; 3:1653–1660.

    PubMed  CAS  Google Scholar 

  • Hsieh JK, Yap D, O’Connor DJ, et al. Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol Cell Biol 2002; 22:78–93.

    PubMed  CAS  Google Scholar 

  • Blattner C, Sparks A, Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 1999; 19:3704–3713.

    PubMed  CAS  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, Fahraeus R. p53 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4:462–467.

    PubMed  CAS  Google Scholar 

  • Kohn KW, Pommier Y. Molecular interaction map of the p53 and Mdm2 logic elements, which control the off-on switch of p53 in response to DNA damage. Biochem Biophys Res Commun 2005; 331:816–827.

    PubMed  CAS  Google Scholar 

  • Hickman ES, Moroni MC, Helin K. The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev 2002; 12:60–66.

    PubMed  CAS  Google Scholar 

  • Gottlieb TM, Oren M. p53 and apoptosis. Semin Cancer Biol 1998; 8:359–368.

    PubMed  CAS  Google Scholar 

  • Sordet O, Bettaieb A, Bruey JM, et al. Selective inhibition of apoptosis by TPA-induced differentiation of U937 leukemic cells. Cell Death Differ 1999; 6:351–361.

    PubMed  CAS  Google Scholar 

  • Sordet O, Rebe C, Leroy I, et al. Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 2001; 97:3931–3940.

    PubMed  CAS  Google Scholar 

  • Shimizu T, Pommier Y. Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia 1997; 11:1238–1244.

    PubMed  CAS  Google Scholar 

  • Nieves-Neira W, Pommier Y. Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI Anticancer Drug Screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. Int J Cancer 1999; 82:396–404.

    PubMed  CAS  Google Scholar 

  • Kolluri SK, Bruey-Sedano N, Cao X, et al. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 2003; 23:8651–8667.

    PubMed  CAS  Google Scholar 

  • Woronicz JD, Calnan B, Ngo V, Winoto A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 1994; 367:277–281.

    PubMed  CAS  Google Scholar 

  • Liu ZG, Smith SW, McLaughlin KA, Schwartz LM, Osborne BA. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 1994; 367:281–284.

    PubMed  CAS  Google Scholar 

  • Xue Y, Chomez P, Castanos-Velez E, Biberfeld P, Perlmann T, Jondal M. Positive and negative thymic selection in T cell receptor-transgenic mice correlate with Nur77 mRNA expression. Eur J Immunol 1997; 27:2048–2056.

    PubMed  CAS  Google Scholar 

  • Li H, Kolluri SK, Gu J, et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 2000; 289:1159–1164.

    PubMed  CAS  Google Scholar 

  • Lin B, Kolluri SK, Lin F, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116:527–540.

    PubMed  CAS  Google Scholar 

  • Roos-Mattjus P, Vroman BT, Burtelow MA, Rauen M, Eapen AK, Karnitz LM. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. J Biol Chem 2002; 277:43809–43812.

    PubMed  CAS  Google Scholar 

  • Komatsu K, Miyashita T, Hang H, et al. Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis. Nat Cell Biol 2000; 2:1–6.

    PubMed  CAS  Google Scholar 

  • Yoshida K, Komatsu K, Wang HG, Kufe D. c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol 2002; 22:3292–3300.

    PubMed  CAS  Google Scholar 

  • Yoshida K, Wang HG, Miki Y, Kufe D. Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 2003; 22:1431–1441.

    PubMed  CAS  Google Scholar 

  • Loegering D, Arlander SJ, Hackbarth J, et al. Rad9 protects cells from topoisomerase poison-induced cell death. J Biol Chem 2004; 279:18641–18647.

    PubMed  CAS  Google Scholar 

  • Nothwehr SF, Martinou JC. A retention factor keeps death at bay. Nat Cell Biol 2003; 5:281–283.

    PubMed  CAS  Google Scholar 

  • Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 2003; 5:320–329.

    PubMed  CAS  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004; 13:627–638.

    PubMed  CAS  Google Scholar 

  • Sordet O, Khan QA, Pommier Y. Apoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunction. Cell Cycle 2004; 3.

    Google Scholar 

  • Sordet O, Liao Z, Liu H, et al. Topoisomerase I-DNA complexes contribute to arsenic trioxide-induced apoptosis. J Biol Chem 2004; 279:33968–33975.

    PubMed  CAS  Google Scholar 

  • Sordet O, Khan QA, Plo I, et al. Apoptotic topoisomerase I-DNA complexes induced by staurosporine-mediated oxygen radicals. J Biol Chem 2004; 279:50499–50504.

    PubMed  CAS  Google Scholar 

  • Daroui P, Desai SD, Li TK, Liu AA, Liu LF. Hydrogen peroxide induces topoisomerase I-mediated DNA damage and cell death. J Biol Chem 2004; 279:14587–14594.

    PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391:43–50.

    PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412:95–99.

    PubMed  CAS  Google Scholar 

  • Yoshida A, Urasaki Y, Waltham M, et al. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem 2003; 278:37768–37776.

    PubMed  CAS  Google Scholar 

  • Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 2003; 160:65–75.

    PubMed  CAS  Google Scholar 

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004; 117:773–786.

    PubMed  CAS  Google Scholar 

  • Aladjem MI, Pasa S, Parodi S, Weinstein JN, Pommier Y, Kohn KW. Molecular interaction maps–a diagrammatic graphical language for bioregulatory networks. Sci STKE 2004; 2004: pe8.

    Google Scholar 

  • Kohn KW. Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 1998; 16:1065–1075.

    PubMed  CAS  Google Scholar 

  • Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10:2703–2734.

    PubMed  CAS  Google Scholar 

  • Kohn KW, Aladjem MI, Pasa S, Parodi S, Pommier Y. Cell cycle control: molecular interaction map. Nature Encyclopedia of the Human Genome 2004; 1:457–474.

    Google Scholar 

  • Kohn KW, Riss J, Aprelikova O, Weinstein JN, Pommier Y, Barrett JC. Properties of switch-like bioregulatory networks studied by simulation of the hypoxia response control system. Mol Biol Cell 2004; 15:3042–3052.

    PubMed  CAS  Google Scholar 

  • Pommier Y, Kohn KW. Cell cycle and checkpoints in oncology: new therapeutic targets. Med Sci (Paris) 2003; 19:173–186.

    Google Scholar 

  • Pommier Y, Yu Q, Kohn KW. Novel targets in the cell cycle and cell cycle checkpoints. In: Kerr DJ, ed. Anticancer Drug Development. San Diego: Academic Press, 2002:13–30.

    Google Scholar 

  • Reinhold WC, Kouros-Mehr H, Kohn KW, et al. Apoptotic susceptibility of cancer cells selected for camptothecin resistance: gene expression profiling, functional analysis, and molecular interaction mapping. Cancer Res 2003; 63:1000–1011.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Sordet, O., Pommier, Y., Solary, E. (2007). Topoisomerase I Poisons and Apoptotic Topoisomerase I-DNA Complexes. In: Gewirtz, D.A., Holt, S.E., Grant, S. (eds) Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-221-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-221-2_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-527-9

  • Online ISBN: 978-1-59745-221-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics