Skip to main content

Part of the book series: Infectious Disease ((ID))

Abstract

The history of the discovery and development of zidovudine (ZDV; or 3′-azido-3′-deoxythymidine, AZT, or Retrovir™, formerly BW A509U) is fascinating not only because it was the first Food and Drug Administration (FDA)-approved agent for the treatment of HIV, but for the unprecedented speed with which this drug moved through the new-drug approval process (Table 1). In March 1987, ZDV was approved by the FDA for use in HIV-infected individuals with a previous episode of Pneumocystis carinii pneumonia (PCP) and/or a CD4 cell count of less than 200 cells/mm3. The use of ZDV in asymptomatic or symptomatic patients with CD4 cell counts greater than 500 cells/mm3 was approved in March 1990. ZDV was initially approved as a monotherapy. Subsequently, ZDV was approved for use in combination regimens with zalcitabine and lamivudine (3TC, Epivir®). Although early studies demonstrated clinical and survival benefits of ZDV alone or in combination with other nucleoside analogs, these benefits were of limited durability because of incomplete virological suppression and the emergence of resistant HIV strains. ZDV is currently approved for the treatment of HIV infection in combination regimens with potent antiretroviral agents, including HIV protease inhibitors (PIs); nonnucleoside reverse transcriptase inhibitors (NNRTIs); and potent nucleoside reverse transcriptase inhibitors (NRTIs), such as abacavir (ABC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zemlicka, J, Freisler, JV, Gasser, R, Horwitz, JP. Nucleosides XVI. The synthesis of 2′,3′-dideoxy-3′,4′didehydro nucleosides. J org Chem 1973;38:990.

    Article  PubMed  CAS  Google Scholar 

  2. Dube, S, Pragnell, I, Kluge, N, Gaedicke, G, Steinheider, G, ostertag, W. Induction of endogenous and of spleen focus-forming viruses during diethylsulfoxide-induced differentiation of mouse erythroleukemia cells transformed by spleen focus-forming virus. Proc Natl Acad Sci USA 1975;72:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  3. Mitsuya, H, Weinhold, J, Furman, P, et al. 3′-Azido-3′-dexoxythymidine (BW A509U). Proc Natl Acad Sci USA 1985;821:7096–7100.

    Article  Google Scholar 

  4. Birkus G, Hitchcock M, Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2002;46:716–723.

    Article  PubMed  CAS  Google Scholar 

  5. Hayashi S, Fine RL, Chou TC, et al. In vitro inhibition of the infectivity and replication of human immunodeficiency virus type 1 by combination of antiretroviral 2′, 3′-dideoxynucleosides and virus-binding inhibitors. Antimicrob Agents Chemother 1990;34:82.

    PubMed  CAS  Google Scholar 

  6. Dornsife RE, St Clair MH, Huang AT, et al. Anti-human immunodeficiency virus synergism by zidovudine (3′-azidothymidine) and didanosine (dideoxyinosine) contrasts with their additive inhibition or normal human marrow progenitor cells. Antimicrob Agent Chemother 1991;35:322.

    CAS  Google Scholar 

  7. Eron JJ Jr, Johnson VA, Merrill DP, et al. Synergistic inhibition of replication of human immunodeficiency virus type 1, including that of a zidovudine-resistant isolate, by zidovudine and 2′, 3′-dideoxycytidine in vitro. Antimicrob Agent Chemother 1992;36:1559.

    CAS  Google Scholar 

  8. Merrill DP, Moonis M, Chou T-C, et al. Lamivudine (3TC) or stavudine (d4T) in two-and three-drug combinations against HIV-1 replication in vitro. J Infect Dis 1996;173:355.

    PubMed  CAS  Google Scholar 

  9. Merluzzi VJ, Hargrave KD, Labadia M, et al. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 1990;35:305.

    Google Scholar 

  10. Richman D, Rosenthal AS, Skoog M, et al. BI-RG-587 is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine. Antimicrob Agents Chemother 1991;35:305.

    PubMed  CAS  Google Scholar 

  11. Johnson& VA, Merrill DP, Chou T-C, et al. Human immunodeficiency virus type 1 (HIV-1) inhibitory interactions between protease inhibitor Ro 31-8959 and zidovudine, 2′, 3′-dideoxycytidine, or recombinant interferon-a against zidovu-dine-sensitive or-resistant HIV-1 in vitro. J Infect Dis 1992;166:1143.

    PubMed  CAS  Google Scholar 

  12. Havlir D, Tierney C, Friedland G, et al. In vivo antagonism with zidovudine plus stavudine combination therapy. J Infect Dis 2000;182:321–325.

    Article  PubMed  CAS  Google Scholar 

  13. Vogt MW, Hartshorn KL, Furman PA, et al. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987;235:1376.

    Article  PubMed  CAS  Google Scholar 

  14. Klecker RW, Collins HM, Yarchoan R, et al. Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 1987;41:407.

    Article  PubMed  Google Scholar 

  15. Blum MR, Liao SHT, Good SS, et al. Pharmacokinetics and bioavailability of zidovudine in humans. Am J Med 1988;85(Suppl 2A):189.

    PubMed  CAS  Google Scholar 

  16. Gillet JY, Garraffo R, Abrar D, et al. Fetoplacental passage of zidovudine. Lancet 1989;1:269.

    Article  Google Scholar 

  17. Henry K, Chinnock BJ, Quinn RP, et al. Concurrent zidovudine levels in semen and serum determined by radioimmunoassay in patients with AIDS or AIDS-related complex. JAMA 1988;259:3023.

    Article  PubMed  CAS  Google Scholar 

  18. Pachon J, Cisneros JM, Castillo JR, Garcia-Pesquera F, Canas E, Viciana P. Pharmacokinetics of zidovudine in end-stage renal disease: influence of hemodialysis. AIDS 1992;6:827.

    Article  PubMed  CAS  Google Scholar 

  19. Watts DH, Brown ZA, Taraglione T, et al. Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis 1991;163:226.

    PubMed  CAS  Google Scholar 

  20. Yarchoan R, Weinhold K, Lyerly H, et al. Administration of 3′ azido-3′ deoxythymidine, an inhibitor of HTLV-III/LAV replication to patients with AIDS or AIDS-related complex. Lancet 1986;575–580.

    Google Scholar 

  21. Fischl M, Richman D, Greico M, et al. and The AZT Collaborative Working Group. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. N Eng J Med 1987;317:185–197.

    Article  CAS  Google Scholar 

  22. Fischl MA, Richman DD, Hansen NN, et al. and the AIDS Clinical Trials Group. The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection. Ann Int Med 1990;727–737.

    Google Scholar 

  23. Hamilton JD, Hartgan PM, Simberkoff MS, et al. and the Veterans Affairs Cooperative Study Group on AIDS Treatment. A controlled trials of early versus late treatment with zidovudine in symptomatic human immunodeficiency virus infection. N Engl J Med 1992;326:437–486.

    Article  PubMed  CAS  Google Scholar 

  24. Volberding P, Lagakos S, Koch M, et al. and the AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases. Zidovudine in asymptomatic human immunodeficiency virus infection. N Engl J Med 1990;14:941–950.

    Article  Google Scholar 

  25. Volberding PA, Lagakos SW, Grimes JM, et al. for the AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases. The duration of zidovudine benefit in persons with asymptomatic HIV infection. JAMA 1994;272:437–442.

    Article  PubMed  CAS  Google Scholar 

  26. Seligmann M, Warrell DA, Aboulker J-P, et al. Concorde: MRC/ANRS randomized double-blind controlled trial of immediate and deferred zidovudine in symptom-free HIV infection. Lancet 1994;343:871–881.

    Article  Google Scholar 

  27. Volberding PA, Lagakos SW, Grimes JM, et al. for the AIDS Clinical Trials Group. A comparison of immediate with deferred zidovudine therapy for asymptomatic HIV-infected adults with CD4 cell counts of 500 or more per cubic millimeter. N Engl J Med 1995;333:401–407.

    Article  PubMed  CAS  Google Scholar 

  28. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N Engl J Med 1992;327:581.

    Article  Google Scholar 

  29. Darbyshire JH, Aboulker J-P. Delta: a randomised double-blind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals. Lancet 1996;348:2–5.

    Article  Google Scholar 

  30. Hammer SM, Katzenstein DA, Hughes MD, et al. for the AIDS Clinical Trial Group Study 175 Study Team. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N Engl J Med 1996;335:1081–1089.

    Article  PubMed  CAS  Google Scholar 

  31. Montaner JSG, Reiss P, Cooper D, et al. for the INCAS Study Group. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients. JAMA 1998;279:930–937.

    Article  PubMed  CAS  Google Scholar 

  32. Collier A, Coombs R, Schoenfeld D, et al., for the AIDS Clinical Trials Group. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N Engl J Med 1996;334:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  33. Pizzo PA, Eddy J, Falloon J, et al. Effect of continuos intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 1988;319:889–896.

    Article  PubMed  CAS  Google Scholar 

  34. McKinney RE, Maha MA, Conner EM, et al. and the Protocol 043 Study Group. A multicenter trial of oral zidovudine in children with advanced human immunodeficiency virus disease. N Engl J Med 1991;324:1018–1025.

    Article  PubMed  Google Scholar 

  35. Englund JA, Baker CJ, Raskino C, et al. for the AIDS Clinical Trials Group (ACTG) Study 152 Team. Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV-infected children. N Engl J Med 1997;336:1704–1712.

    Article  PubMed  CAS  Google Scholar 

  36. Richman DD, Guatelli JC, Grimes J, et al. Detection of mutations associated with zidovudine resistance in human immunodeficiency virus by use of the polymerase chain reaction. J Infect Dis 1991;164:1075.

    PubMed  CAS  Google Scholar 

  37. Boucher C, O’Sullivan E, Mulder J, et al. ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive patients. J Infect Dis 1992;165:105.

    PubMed  CAS  Google Scholar 

  38. Masquelier B, Descamps D, Carriere I, et al. Zidovudine resensitization and dual HIV-1 resistance to zidovudine and lamivudine in the delta lamivudine roll-over study. Antivir Ther 1999;4:69.

    PubMed  CAS  Google Scholar 

  39. Naeger LK, Margot NA, Miller RD. Increased drug susceptibility of HIV-1 reverse transcriptase mutants containing Ml84V and zidovudine-associated mutations: analysis of enzyme processivity, chain-terminator removal and viral replication. Antivir 2001;6:115.

    CAS  Google Scholar 

  40. Sharver P, Lampkin T, Dukes GE, et al. Effect of zidovudine on the pharmacokinetic disposition of phenytoin in HIV-positive asymptomatic patients. Pharmacotherapy 1991;11:108.

    Google Scholar 

  41. Schwartz EL, Brechbuhl AB, Kahl P, et al. Pharmacokinetic interactions of zidovudine and methadone in intravenous drug-using patients with HlV-infection. J Acquir Immune Defic Syndr 1992;5:619.

    PubMed  CAS  Google Scholar 

  42. DeMiranda P, Good SS, Yarchoan R, et al. Alteration of zidovudine pharmacokinetics by probenicid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 1989;46:494.

    Article  CAS  Google Scholar 

  43. Fischl MA, Parker CB, Pettinelli C, et al. A randomized controlled trial of a reduced daily dose of zidovudine in patients with the acquired immunodeficiency syndrome. N Engl J Med 1990;323:1009.

    Article  PubMed  CAS  Google Scholar 

  44. Shepp DH, Ramirez-Ronda C, Dall L, et al. A comparative trial of zidovudine administered every 4 hours versus every twelve hours for the treatment of advanced HIV disease. J Acquir Immune Defic Syndr Hum Retrovirol 1997;15:283.

    PubMed  CAS  Google Scholar 

  45. Richman DD, Fischl MA, Grieco MH, et al. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. N Engl J Med 1987;317:192.

    Article  PubMed  CAS  Google Scholar 

  46. Don PC, Fusco F, Fried P, et al. Nail dyschromia associated with zidovudine. Ann Intern Med 1990;112:145.

    PubMed  CAS  Google Scholar 

  47. Yarchoan R, Mitsuya H, Myers C, et al. Clinical pharmacology of 3′-azido-2′,3′ dideoxythymidine (zidovudine) and related dideoxynucleosides. N Engl J Med 1989;321:726.

    Article  PubMed  CAS  Google Scholar 

  48. Soudeyns H, Yao XI, Gao Q, et al. Anti-human immunodeficiency virus type 1 activity and in vitro toxicity of 2′-deoxy-3′-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob Agents Chemother 1991;35:1386–1390.

    PubMed  CAS  Google Scholar 

  49. Schinazi RF, Chu CK, Peck A, et al. Activities of the four optical isomers of 2′,3′-dideoxy-3′-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob Agents Chemother 1992;36:672.

    PubMed  CAS  Google Scholar 

  50. Coates JA, Cammack N, Jenkinson HJ, et al. The separated enantiomers of 2′-deoxy-3′-thiacytidine (BCH-189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob Agents Chemother 1992;36:202.

    PubMed  CAS  Google Scholar 

  51. Coates JA, Cammack N, Jenkinson HJ, et al. (-)-2′-Deoxy-3′-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob Agents Chemother. 1992;36:733.

    PubMed  CAS  Google Scholar 

  52. Skalski V, Liu SH, Cheng YC. Removal of anti-human immunodeficiency virus 2′,3′-didoxynucleoside monophosphates from DNA by a novel human cytosolic 3′→ exonuclease. Biochem Pharmacol 1995:50:815.

    Article  PubMed  CAS  Google Scholar 

  53. Merrill DP, Moonis M, Chou TC, et al. Lamivudine or stavudine in two-and three-drug combinations against human immunodeficiency virus type 1 replication in vitro. J Infect Dis 1996;173:355.

    PubMed  CAS  Google Scholar 

  54. Snyder S, D’Argenio DZ, Weislow o, et al. The triple combination indinavir-zidovudine-lamivudine is highly synergistic. Antimicrob Agents Chemother 2000;44:1051.

    Article  PubMed  CAS  Google Scholar 

  55. Veal GJ, Hoggard PG, Barry MG, et al. Interaction between lamivudine (3TC) and other nucleoside analogues for intracellular phosphorylation. AIDS 1996;10:546.

    Article  PubMed  CAS  Google Scholar 

  56. Pluda JM, Cooley TP, Montaner JSG, et al. A phase I/II study of 2′-deoxy-3′-thi-acytidine (lamivudine) in patients with advanced human immunodeficiency virus infection. J Infect Dis 1995;171:1438–1446.

    PubMed  CAS  Google Scholar 

  57. Moodley J, Moodley D, Pillay K, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J Infect Dis 1998;178:1327.

    Article  PubMed  CAS  Google Scholar 

  58. Pereira A, Kashuba A, Fiscus S, et al. Nucleoside analogues achieve high concentrations in seminal plasma: relationship between drug concentrations and viral burden. J Infect Dis 1999;180:2039.

    Article  PubMed  CAS  Google Scholar 

  59. Van Leeuwen R, Lange JM, Hussey EK, et al. The safety and pharmacokinetics of a reverse transcriptase inhibitor, 3TC, in patients with HIV infection: a phase I study. AIDS 1992;6:1471.

    Article  PubMed  Google Scholar 

  60. Johnson MA, Verpooten GA, Daniel MJ, et al. Single dose pharmacokinetics of lamivudine in subjects with impaired renal function and the effect of haemodial-ysis. Br J Clin Pharmacol 1998;46:21.

    Article  PubMed  CAS  Google Scholar 

  61. Van Leeuwen R, Katlama C, Kitchen V, et al. Evaluation of safety and efficacy of 3TC in patients with asymptomatic or mildly symptomatic human immuno-defiency virus infection: a phase I/II study. J Infect Dis 1995;171:1166–1171.

    PubMed  Google Scholar 

  62. Schuurman R, Nijhuis M, Van Leeuwen R, et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis 1995;171:1411–1418.

    PubMed  CAS  Google Scholar 

  63. Eron JJ, Benoit SL, Jemsek J, et al. for the North American HIV Working Party. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4 cells per cubic millimeter. N Engl J Med 1995;333:1662–1669.

    Article  PubMed  CAS  Google Scholar 

  64. Katlama C, Ingrand D, Loveday C, et al. for the Lamivudine European HIV Working Group. Safety and efficacy of lamivudine-zidovudine combination therapy in antiretroviral-naive patients. JAMA 1996;276:118–124.

    Article  PubMed  CAS  Google Scholar 

  65. Bartlett JA, Benoit SL, Johnson VA, et al. Lamivudine plus zidovudine compared with zalcitabine plus zidovudine in patients with HIV infection. A randomized double-blind, placebo-controlled trial. North American HIV Working Party. Ann Int Med 1996;125:161–172.

    PubMed  CAS  Google Scholar 

  66. Staszewski S, Loveday C, Picazo JJ, et al. for the Lamivudine European HIV Working Group. Safety and efficacy of lamivudine-zidovudine combination therapy in zidovudine-experienced patients. JAMA 1996;276:111–116.

    Article  PubMed  CAS  Google Scholar 

  67. The AVANTI study group. AVANTI 2. Randomized, double-blind trial to evaluate the efficacy and safety of zidovudine plus lamivudine versus zidovudine plus lamivudine plus indinavir in HIV-infected antiretroviral patients. AIDS 2000;14:367–373.

    Article  Google Scholar 

  68. Hammer SM, Squires KE, Hughes MD, et al. for the AIDS Clinical Trails Group 320 Study Team. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med 1997;337:725–732.

    Article  PubMed  CAS  Google Scholar 

  69. Gartland M, AVANTI Study Group: AVANTI 3. A randomized, double-blind, comparative trial to evaluate the efficacy, safety and tolerance of AZT/3TC vs. AZT/3TC/NFV in antiretroviral naïve patients. Antivir Ther 2001;6:127–134.

    PubMed  CAS  Google Scholar 

  70. Murphy RL, Brun S, Hicks C, et al. ABT-378/ritonavir plus stavudine and lamivudine for the treatment of antiretroviral-naïve adults with HIV-1 infection: 48 week results. AIDS 2001;15:1–9.

    Article  Google Scholar 

  71. Staszewski S, Morales-Ramirez J, Tashima K, et al. for the Study 006 Team. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. N Engl J Med 1999;341:1865–1873.

    Article  PubMed  CAS  Google Scholar 

  72. Lewis LL, Venzon D, Church J, et al. and the National Cancer Institute Pediatric Branch Human Immunodeficiency Virus Working Group. Lamivudine in children with human immunodeficiency virus infection: a phase I/II study. J Infect Dis 1996;174:16–24.

    PubMed  CAS  Google Scholar 

  73. McKinney RE, Johnson GM, Stanley K, et al. and the Pediatric AIDS Clinical Trials Group Protocol 300 Study Team. A randomized study of combined zidovu-dine-lamivudine versus didanosine monotherapy in children with symptomatictherapy-naflkve HIV-1 infection. J Pediatrics 1998;133:500–505.

    Article  Google Scholar 

  74. Paediatric European Network for Treatment of AIDS. A randomized double-blind trial of the addition of lamivudine or matching placebo to current nucleoside analogue reverse transcriptase inhibitor therapy in HIV-infected children: the PENTA-4 trail. AIDS 1998;12:151–160.

    Google Scholar 

  75. Yogev R, Stanley K, Nachman S, et al. Virologic efficacy of ZDV+3TC vs. d4T+Ritonavir (RTV) vs. ZDV+3TC+RTV in stable antiretroviral experienced HIV-infected children (PACTG Trial 338) [abstract LB-6p]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; Toronto, Canada; Sept. 28–oct. 1, 1997.

    Google Scholar 

  76. Tisdale M, Kemp SD, Parry NR, et al. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3′-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci USA 1993;90: 5653.

    Article  PubMed  CAS  Google Scholar 

  77. Schuurman R, Nijhuis M, Van Leeuwen R, et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis 1995;171: 1411–1418.

    PubMed  CAS  Google Scholar 

  78. Larder BA, Kemp SD, Harrigan PR. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 1995;269:696–699.

    Article  PubMed  CAS  Google Scholar 

  79. Meyer PR, Matsuura SE, Mian AM, et al. A mechanism of AZT resistiance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 1999;4:35.

    Article  PubMed  CAS  Google Scholar 

  80. Arion D, Kauskik N, McCormick S, et al. Phenotypic mechanism of HIV-1 resistance to 3′azido-3′-deoxythymidine (AZT): increased polymerization processiv-ity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 1998;37:15,908.

    Article  PubMed  CAS  Google Scholar 

  81. Moore KH, Yuen GJ, Rasasch RH, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sufamethoxazole. Clin Pharmacol Ther 1996;59:550.

    Article  PubMed  CAS  Google Scholar 

  82. Bruno R, Ciappina V, Villani P, Regazzi MB, Panebianco R, Filice G. Comparison of the plasma pharmacokinetics of lamivudine during twice and once daily dosing in HIV-1 infected individuals [abstract 342]. 1st IAS Conference on HIV Pathogenesis and Treatment; Buenos Aires, Argentina July 8–11, 2001.

    Google Scholar 

  83. Sension M, Bellos N, Johnson J, et al. Efficacy and safety of switch to 3TC 300 mg QD vs. continued 3TC 150 mg BID in subjects with virologic suppression and stable 3TC/d4T/PI therapy (CoLA4005): final 24-week results [abstract 317]. 8th Conference of Retroviruses and opportunistic Infections; Chicago, Il; Febuary 4–8, 2001.

    Google Scholar 

  84. Moore KHP, Shaw S, Laurent AL, et al. Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. Clin Pharmacol 1999;39:593–605.

    Article  CAS  Google Scholar 

  85. Eron JJ, Yetzer ES, Ruane PJ, et al. Efficacy, safety, and adherence with a twice-daily combination lamivudine/zidovudine tablet formulation, plus a protease inhibitor, in HIV infection. AIDS 2000;14:671–681.

    Article  PubMed  CAS  Google Scholar 

  86. FDA. Lamivudine. Antiviral Drugs Advisory Committee Meeting; November1995.

    Google Scholar 

  87. Panel on Clinical Practices for Treatment of HIV Infection. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents: Department of Health and Human Services. November 10, 2003.

    Google Scholar 

  88. Vince R, Hua M, Brownell J, et al. Potent and selective activity of a new carbo-cyclic nucleoside analog (carbovir: NSC 614846) against human immunodeficiency virus in vitro. Biochem Biophys Res Commun 1988;156:1046–1053.

    Article  PubMed  CAS  Google Scholar 

  89. Daluge SM, Good SS, Faletto MB, et al. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 1997;41:1082–1093.

    PubMed  CAS  Google Scholar 

  90. Faletto MB, Miller WH, Garvey EP, St. Clair, Daluge, Good. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89. Am Soc Microbiol 1997;41:1099–1107.

    CAS  Google Scholar 

  91. Tisdale M, Parry NR, Cousens D, et al. Anti-HIV activity of (1S,4R)-4-[2-amino-6(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol (1592U89) [abstract 182]. Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology; Washington, DC; 1994.

    Google Scholar 

  92. Carter SG, Kessler JA, Rankin CD. Activities of (-)-carbovir and 3′-azido-3′-deoxythymidine against human immunodeficiency virus in vitro. Am Soc Microbiol 1990;34:1297–1300.

    CAS  Google Scholar 

  93. Tisdale M, Alnadaf T, Cousens D. Combination of mutations in human immunodeficiency virus type 1 reverse transcriptase required for resistance to the carbocyclic nucleoside 1592U89. Antimicrob Agents Chemother 1997;41:1094–1098.

    PubMed  CAS  Google Scholar 

  94. St. Clair MH, Millard J, Rooney J, et al. In vitro antiviral activity of 141W94 (VX-478) in combination with other antiretroviral agents. Antivir Res 1996;29:53.

    Article  PubMed  CAS  Google Scholar 

  95. Bilello JA, Bilello PA, Symonds W, et al. 1592U89, A novel carbocyclic nucleoside analog with potents anti-HIV activity, is synergistic in combination with 141W94, an HIV protease inhibitor [abstract 154]. Abstracts of the 4th Conference on Retroviruses and opportunistic Infections; Washington, DC; 1997.

    Google Scholar 

  96. McDowell JA, Chittick GE, Ravitch JR, et al. Pharmacokinetics of [14C] Abacavir, a human immunodeficiency virus type-1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1 infected adults: a mass balance study. Antimicrob Agents Chemother 1999;43:2855.

    PubMed  CAS  Google Scholar 

  97. Bilello JA, Bilello PA, Symonds W, et al. Physiologic concentrations of human albumin or a-1-acid glycoprotein do not markedly alter the anti-HIV activity of 1592U89, a novel inhibitor of the HIV-1 reverse transcriptase [abstract 18]. Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology; Washington, DC; 1996.

    Google Scholar 

  98. Raffi F, Benhantou Y, Sereni D, et al. Pharmacokinetics of, and tolerability to, a single, oral 600 mg dose of abacavir in HIV-positive subjects with or without liver disease (CNAB1006 Study) [abstract 1630]. Presented at the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000.

    Google Scholar 

  99. Wang L, Chittick G, McDowell J. Single-dose pharmacokinetics and safety of abacavir (1592U89), zidovudine, and lamivudine administered alone and in combination in adults with human immunodeficiency virus infection. Am Soc Microbiol 1999;43:1708–1715.

    CAS  Google Scholar 

  100. Saag M, Sonnerborg A, Torres RA, et al. and the Abacavir Phase 2 Clinical Team. Antiretroviral effect and safety of abacavir alone and in combination with zidovudine in HIV-infected adults. AIDS 1998;12:203–209.

    Article  Google Scholar 

  101. Torres R, Saag M, Lancaster D, et al. Antiviral effects of abacavir (1592) following 48 weeks of therapy [abstract 659]. Abstracts of the 5th Conference of Retroviruses and opportunistic Infections, Chicago, IL. Alexandia, VA: Westover Management Group; 1997.

    Google Scholar 

  102. Staszewski S, Katlama C, Harrer T, et al. A dose-ranging study to evaluate the safety and efficacy of abacavir alone or in combination with zidovudine and lamivudine in antiretroviral treatment-naïve subjects. AIDS 1998;12:197–202.

    Article  Google Scholar 

  103. Fischl M, Greenberg S, Clumeck N, et al. Ziagen (Abacavir, ABC, 1592) combined with 3TC & ZDV is highly effective and durable through 48 weeks in HIV-1 infected antiretroviral-therapy-naïve subjects (CNAA3003). 1st IAS Conference on HIV Pathogenesis and Treatment, Buenos Aires, Argentina, July 8–11, 2001; Abstract 19.

    Google Scholar 

  104. Vibhagool A, Cahn P, Schechter M, et al. Abacavir/combivir (ABC/CoM) is comparable to indinavir/combivir in HIV-1 infected antiretroviral therapy naïve adults: preliminary results of a 48 week open label study (CNA3014). 1st IAS Conference on HIV Pathogenesis and Treatment, Buenos Aires, Argentina, July 8–11, 2001; Abstract 63.

    Google Scholar 

  105. Matheron S, Descampts D, Boue F, et al. CNA3007 Study Group. Triple nucleoside combination zidovudine/lamivudine/abacavir versus zidovudine/lamivudine/ nelfinavir as first line antiretroviral therapy in HIV-infected adults: a randomized trial. Antivir Ther 2003;8:163.

    PubMed  CAS  Google Scholar 

  106. Gulick RM, Ribaudo HJ, Shikuma CM, et al. ACTG 5095: a comparative study of 3 protease inhibitor-sparing antiretroviral regimens for the initial treatment of HIV infection. Antivir Ther 2003;8(Suppl 1):S194.

    Google Scholar 

  107. Kessler HA, Johnson J, Follansbee S, et al. Abacavir expanded access program for adult patients infected with human immunodeficiency virus type 1. CID 2002; 34:535–542.

    Article  Google Scholar 

  108. Katlama C, Clotet B, Plettenberg A, et al. on behalf of the CNA3002 European Study Team. The role of abacavir (ABC, 1592) in antiretroviral therapy-experienced patients: results from a randomized, double-blind trial. AIDS 2000;14:781–789.

    Article  PubMed  CAS  Google Scholar 

  109. Clumeck N, Goebel F, Rozenbaum W, et al. on behalf of the CBNA30017 Study Team. Simplification with abacavir-based triple nucleoside therapy versus continued protease inhibitor-based highly active antiretroviral therapy in HIV-1 infected patients with undetectable plasma HIV-1 RNA. AIDS 2001;15:1517–1525.

    Article  PubMed  CAS  Google Scholar 

  110. Kline M, Blanchard S, Fletcher C, et al. for the AIDS Clinical Trials Group 330 Team. A phase I study of abacavir (1592U89) alone and in combination with other antiretroviral agents in infants and children with human immunodeficiency virus infection [electronic abstracts]. Pediatrics 1999;103:808.

    Google Scholar 

  111. Saez-Llorens X, Nelson RP, Emmanuel P, et al. and the CNAA3006 Study Team. A randomized, double-blind study of triple nucleoside therapy of abacavir, lamivudine, and zidovudine versus lamivudine and zidovudine in previously treated human immunodeficiency virus type 1-infected children. Pediatrics 2001; 107:1–11.

    Article  Google Scholar 

  112. Gibb DM, PENTA 5 Executive Committee. A randomized trial evaluating three NRTI regimens with and without nelfinavir in HIV-1 infected children: 48 week follow-up from the PENTA 5 trial [abstract PL 68]. 5th International Congress on Drug Therapy in HIV infection; Glasgow, Scotland; 2000.

    Google Scholar 

  113. Tisdale M, Alnadaf T, Cousens D. Combination of mutations in human immunodeficiency virus type 1 reverse transcriptase required for resistance to the carbo-cyclic nucleoside 1592U89. Antimicrob Agents Chemother 1997;41:1094–1098.

    PubMed  CAS  Google Scholar 

  114. McDowell J, Chitteck GE, Steven CP, Edwards KD, Stein DS. Pharmacokinetic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 2000;44:1686.

    Article  PubMed  CAS  Google Scholar 

  115. Gazzard B, DeJesus E, Cahn P, et al. Abacavir once daily plus lamivudine once daily in combination with efavirenz once daily is well tolerated and effective in the treatment of antiretroviral-therapy naïve adults with HIV-1 infection (Zodiac Study CNA30021) [abstract 1722B]. Presented at the 43th Interscience Conference on Antimicrobial Agents and Chemotherapy; Chicago, IL; 2003.

    Google Scholar 

  116. Cremieux AC, Gillotin C, Demarles D, Yuen GJ, Raffi F, AZ110002 Study Group. A comparison of the steady-state pharmacokinetics and safety of abacavir, lamivu-dine, and zidovudine taken as a triple combination tablet and as abacavir plus a lamivudine-zidovudine double combination tablet by HIV-1-infected adults: Pharmacotherapy 2001;21:424–430.

    Article  PubMed  CAS  Google Scholar 

  117. Fischl M, Burnside A, Farthing C, et al. Efficacy of combivir (CoM) (lamivudine 150 mg/zidovudine 300 mg) plus ziagen (abacavir (ABC) 300 mg) BID compared to trizivir (TRV) (3TC 150 mg/ZDV 300 mg/ABC 300 mg) BID in patients receiving previous CoM plus ABC [abstract 315]. 8th Conference on Retroviruses and opportunistic Infection; Chicago, IL;, February 4–8, 2001.

    Google Scholar 

  118. Wit F, Wood R, Horban A, et al. Prednisolone does not prevent hypersensitivity reactions in antiretroviral drug regimens containing abacavir with or without nevi-rapine. AIDS 2001;15:2423–2429.

    Article  PubMed  CAS  Google Scholar 

  119. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359:727–732.

    Article  PubMed  CAS  Google Scholar 

  120. Hetherington S, Hughes A, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002;359:1121–1122.

    Article  PubMed  CAS  Google Scholar 

  121. Gallant JE, Rodriguez A, Weingburg W, et al. Early non-response to tenofovir DF + abacavir and lamivudine in a randomized trial compared to efavirenz + abacavir + lamivudine: ESS 30009 an unplanned interim analysis [abstract H-1722a]. Presented at the 43th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL; September 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Carten, M., Kessler, H. (2006). Zidovudine, Lamivudine, and Abacavir. In: St.Georgiev, V., Skowron, G., Ogden, R., Lange, J.M.A. (eds) Reverse Transcriptase Inhibitors in HIV/AIDS Therapy. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-085-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-085-0_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-649-8

  • Online ISBN: 978-1-59745-085-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics