Skip to main content

Encapsulation of Enzymes Using Polymers and Sol-Gel Techniques

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 22))

Abstract

This chapter describes two enzyme immobilization methods based on the biomolecule encapsulation into polymer matrices: the sol-gel technology and the entrapment into the polymer poly(vinyl alcohol) with styrylpyridinium groups (PVA-SbQ). The sol-gel technology is based on the formation of silica matrices of metal or semi-metal oxides through the aqueous processing of hydrolytically labile precursors. The encapsulation into PVA-SbQ involves the photo-cross-linking of the styrylpyridinium groups in order to create the polymer matrix. These networks are chemically stable and do not restrict the enzyme activ-ity. Both bioencapsulation strategies provide simple, easy, and low-cost methods for enzyme immobilization. They are versatile, as matrixes can be tailor-designed and used to entrap a large number of biomolecules. They present numerous applications, including the development of biooptical devices, biosensors and biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmiston P. L., Wambolt C. L., Smith M. K., and Saavedra S. S. (1994) Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses. J. Colloid Interface Sci. 163, 395–406.

    Article  CAS  Google Scholar 

  2. Dave B., Soyez H., Miller J. M., Dunn B., Valentine J. S., and Zink J. I. (1995) Synthesis of protein-doped sol-gel SiO2 thin films: evidence for rotational mobility of encapsulated cytochrome c. Chem. Mater. 7, 1431–1434.

    Article  CAS  Google Scholar 

  3. Gottfried D. S., Kagan A., Hoffman B. M., and Friedman J. M. (1999) Impeded rotation of a protein in a sol-gel matrix. J. Phys. Chem. B 103, 2803–2807.

    Article  CAS  Google Scholar 

  4. Hartnett A. M., Ingersoll C. M., Baker G. A., and Bright F. V. (1999) Kinetics and thermodynamics of free flavin and the flavin-based redox active site within glucose oxidase dissolved in solution or sequestered within a sol-gel-derived glass. Anal. Chem. 71, 1215–1224.

    Article  CAS  Google Scholar 

  5. Hench L. L. and West J. K. (1990) The sol-gel process. Chem. Rev. 90, 33–79.

    Article  CAS  Google Scholar 

  6. Audebert P., Demaille C., and Sanchez C. (1993) Electrochemical probing of the activity of glucose oxidase embedded in sol-gel matrices. Chem. Mater. 5, 91–913.

    Article  Google Scholar 

  7. Pankratov I. and Lev O. (1995) Sol-gel derived renewable-surface biosensors. J. Electroanal. Chem. 393, 35–41.

    Article  Google Scholar 

  8. Gun J. and Lev O. (1996) Sol-gel derived, ferrocenyl-modified silicate-graphite composite electrode: wiring of glucose oxidase. Anal. Chim. Acta 336, 95–106.

    Article  CAS  Google Scholar 

  9. Park T. M., Iwuoha E. I., Smyth M. R., and MacCraith B. D. (1996) Sol-gel based amperometric glucose biosensor incorporating an osmium redox polymer as mediator. Anal. Commun. 33, 271–273.

    Article  CAS  Google Scholar 

  10. Li J., Tan S. N., and Ge H. (1996) Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Anal. Chim. Acta 335, 137–145.

    Article  CAS  Google Scholar 

  11. Park T. M., Iwuhoa E. I., and Smyth M. R. (1997) Development of a sol-gel enzyme inhibition-based amperometric biosensor for cyanide. Electroanalysis 9(14), 1120–1123.

    Article  CAS  Google Scholar 

  12. Wang B., Zhang J., and Dong S. (2000) Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens. Bioelectron. 15, 397–402.

    Article  CAS  Google Scholar 

  13. Noguer T., Balasoiu A.-M., Avramescu A., and Marty J.-L. (2001) Development of a disposable biosensor for the detection of metam-sodium and its metabolite MITC. Anal. Lett. 34(4), 513–528.

    Article  CAS  Google Scholar 

  14. Marty J.-L. and Noguer T. (1993) Bi-enzyme amperometric sensor for the detection of dithiocarbamate fungicides. Analysis 21, 231–233.

    CAS  Google Scholar 

  15. Noguer T. and Marty J.-L. (1997) High sensitive bienzymic sensor for the detection of dithiocarbamate fungicides. Anal. Chim. Acta 347, 63–70.

    Article  CAS  Google Scholar 

  16. Noguer T. and Marty J.-L. (1995) An amperometric bi-enzyme electrode for acetaldehyde detection. Enzyme Microb. Technol. 17(5), 453–456.

    Article  CAS  Google Scholar 

  17. Noguer T. and Marty J.-L. (1997) Reagentless sensors for acetaldehyde. Anal. Lett. 30(6), 1069–1080.

    Google Scholar 

  18. Avramescu A., Noguer T., Avramescu M., and Marty J.-L. (2002) Screen-printed biosensors for the control of wine quality based on lactate and acetaldehyde determination. Anal. Chim. Acta 458, 203–213.

    Article  CAS  Google Scholar 

  19. Andreescu S., Noguer T., Magearu V., and Marty J.-L. (2002) Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta 57, 169–176.

    Article  CAS  Google Scholar 

  20. Carturan G., Campostrini R., Diré S., Scardi V., and De Alteriis E. (1989) Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J. Mol. Catal. 57(1), L13–L16.

    Google Scholar 

  21. Inama L., Diré S., Carturan G., and Cavazza A. (1993) Entrapment of viable microorganisms by SiO2 sol-gel layers on glass surfaces: Trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J. Biotechnol. 30(2), 197–210.

    Article  CAS  Google Scholar 

  22. Avnir D., Braun S., Lev O., and Ottolenghi M. (1994) Enzymes and other pro-teins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614.

    Article  CAS  Google Scholar 

  23. Armon R., Dosoretz C., Starosvetsky J., Orshansky F., and Saadi I. (1996) Sol-gel applications in environmental biotechnology. J. Biotechnol. 51(3), 279–285.

    Article  CAS  Google Scholar 

  24. Roux C., Livage J., Farhati K., and Monjour L. (1997) Antibody-antigen reac-tion in porous sol-gel matrices. J. Sol-gel Sci. Technol. 7, 135–143.

    Google Scholar 

  25. Gill I. S. and Ballesteros A. (2000) Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Trends Biotechnol. 18, 282–296.

    Article  CAS  Google Scholar 

  26. Noguer T., Tencaliec A., Calas-Blanchard C., Avramescu A., and Marty J.-L. (2002) Interference-free biosensor based on screen-printing technology and sol-gel immobilization for determination of acetaldehyde in wine. J. AOAC Int. 85(6), 1383–1389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Campás, M., Marty, JL. (2006). Encapsulation of Enzymes Using Polymers and Sol-Gel Techniques. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics