Skip to main content

Lipoprotein-Associated Phospholipase A2 and Other Lipid-Related Biomarkers in Cardiovascular Disease

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1386 Accesses

Abstract

Although an atherogenic lipoprotein phenotype has been well recognized as an important predictor of cardiovascular disease, recent studies have demonstrated a number of additional markers as emerging biomarkers to identify patients at risk for future coronary heart disease. Among them, lipoprotein-associated phopholipase A2 (Lp-PLA2), which is directly involved in the oxidation of low-density lipoprotein (LDL) and further atherosclerotic plaque development, seems to be the most promising and may be added to the clinical armamentarium for improved prediction of cardiovascular disease in the future. This brief overview aims to summarize our current knowledge based on observations from recent experimental and clinical studies, with emphasis on potential pathophysiological mechanisms of action, and on the clinical relevance of L-PLA2, as well as other lipid-related biomarkers such as oxidize LDL, type II secretory phospholipase A2, lipoxygenases, lipoprotein lipase, and adiponectin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stafforini DM, McIntyre TM, Zimmerman GA, et al. Platelet-activating factor acetylhydrolases. J Biol Chem 1997;272:17,895–17,898.

    Article  PubMed  CAS  Google Scholar 

  2. Arai H, Koizumi H, Aoki J, et al. Platelet-activating factor acetylhydrolase (PAF-AH). J Biochem (Tokyo) 2002;131:635–640.

    CAS  Google Scholar 

  3. Stafforini DM, Elstad MR, McIntyre TM, et al. Human macrophages secret platelet-activating factor acetylhydrolase. J Biol Chem 1990;265:9682–9687.

    PubMed  CAS  Google Scholar 

  4. Asano K, Okamoto S, Fukunaga K, et al. Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 1999;261:511–514.

    Article  PubMed  CAS  Google Scholar 

  5. Tarbet BE, Stafforini DM, Elstad MR, et al. Liver cells secrete the plasma form of platelet-activating factor acetylhydrolase. J Biol Chem 1991;266:16,667–16,673.

    PubMed  CAS  Google Scholar 

  6. Hakkinen T, Luoma JS, Hiltunen MO, et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscl Thromb Vasc Biol 1999;19:2909–2917.

    PubMed  CAS  Google Scholar 

  7. Kolodgie FD, Burke AP, Taye A, et al. Lipoprotein-associated phospholipase A2 is highly expressed in macrophages of coronary lesions prone to rupture. Circulation 2004;110(Suppl III):III–246. (Abstract).

    Google Scholar 

  8. Caslake MJ, Packard CJ, Suckling KE, et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis 2000;150:413–419.

    Article  PubMed  CAS  Google Scholar 

  9. Tsimihodimos V, Karabina SA, Tambaki AP, et al. Altered distribution of platelet-activating factoracetylhydrolase activity between LDL and HDL as a function of the severity of hypercholesterolemia. J Lipid Res 2002;43:56–263.

    Google Scholar 

  10. Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol 2003;14:347–352.

    Article  PubMed  CAS  Google Scholar 

  11. Tjoelker LW, Wilder C, Eberhardt C, et al. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 1995;374:549–553.

    Article  PubMed  CAS  Google Scholar 

  12. Tjoelker LW, Stafforini DM. Platelet-activating factor acetylhydrolases in health and disease. Biochim Biophys Acta 2000;1488:102–123.

    PubMed  CAS  Google Scholar 

  13. Quarck R, Des Geest B, Stengel D, et al. Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001;103:2495–2500.

    PubMed  CAS  Google Scholar 

  14. Tselepis AD, Chapman JM. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler Suppl 2002; 3:57–68.

    Article  PubMed  CAS  Google Scholar 

  15. Dada N, Kim NW, Wolfert RL. Lp-PLA2: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn 2002;2:17–22.

    Article  PubMed  CAS  Google Scholar 

  16. Macphee CH, Moores KE, Boyd HF, et al. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 1999;338:479–487.

    Article  PubMed  CAS  Google Scholar 

  17. Macphee CH. Lipoprotein-associated phospholipase A2: a potential new risk factor for coronary artery disease and a therapeutic target. Curr Opin Pharmacol 2001;121–125.

    Google Scholar 

  18. Leach CA, Hickey DM, Ife RJ, et al. Lipoprotein-associated PLA2 inhibition-a novel, non-lipid lowering strategy for atherosclerosis therapy. Farmaco 2001;56:45–50.

    Article  PubMed  CAS  Google Scholar 

  19. Stafforini DM, Tjoelker LW, McCormick SP, et al. Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. J Biol Chem 1999;274:7018–7024.

    Article  PubMed  CAS  Google Scholar 

  20. Kume N, Cybulsky MI, Gimbrone MA Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992;90:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  21. Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA 1988;85:2805–2809.

    Article  PubMed  CAS  Google Scholar 

  22. Carpenter KL, Dennis IF, Challis IR, et al. Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Lett 2001; 505:357–363.

    Article  PubMed  CAS  Google Scholar 

  23. Blackie JA, Bloomer JC, Brown MJ, et al. The discovery of SB-435495: a potent, orally active inhibitor of lipoprotein-associated phospholipase A(2) for evaluation in man. Bioorg Med Chem Lett 2002;12: 2603–2606.

    Article  PubMed  CAS  Google Scholar 

  24. Blackie JA, Bloomer JC, Brown MJ, et al. The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 2003;13:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson A, Zalewski A, Janmohamed S, et al. Lipoprotein-associated phospholipase A2 activity, an emerging CV risk marker, can be inhibited in atherosclerotic lesions and plasma by novel pharmacologic intervention: the results of a multicenter clinical study. Circulation 2004;110(Suppl III);III–590. (Abstract).

    Google Scholar 

  26. Packard CJ, O’Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease: West of Scotland Coronary Prevention Study Group. N Engl J Med 2000;343:1148–1155.

    Article  PubMed  CAS  Google Scholar 

  27. Blake GJ, Dada N, Fox JC, et al. A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 2001;38:1302–1306.

    Article  PubMed  CAS  Google Scholar 

  28. Satoh K, Imaizumi T, Yoshida H, et al. Platelet-activating factor acetylhydrolase in plasma lipoproteins of healthy men and women. Clin Chim Acta 1991;202:95–103.

    Article  PubMed  CAS  Google Scholar 

  29. Imaizumi T, Stafforini DM, Yamada Y, et al. The fate of platelet-activating factor: PAF acetylhydrolase from plasma and tissues. In: Gross R, ed. Advances in Lipobiology (1) JAI, Greenwich, CT, 1996; pp. 141–162.

    Google Scholar 

  30. Kosaka T, Yamaguchi M, Miyanaga K, et al. Serum platelet-activating factor acetylhydrolase (PAF-AH) activity in more than 3000 healthy Japanese. Clin Chim Acta 2001;312:179–183.

    Article  PubMed  CAS  Google Scholar 

  31. Miyaura S, Maki N, Byrd W, et al. The hormonal regulation of platelet-activating factor acetylhydrolase activity in plasma. Lipids 1991;26:1015–1020.

    Article  PubMed  CAS  Google Scholar 

  32. Satoh K, Imaizumi T, Yoshida H, et al. Effect of 17 beta-estradiol on secretion of platelet-activating factor acetylhydrolase by HepG2 cells. Metabolism 1993;42:672–677.

    Article  PubMed  CAS  Google Scholar 

  33. Yoshimura T, Ohshige A, Maeda T, et al. Estrogen replacement therapy decreases platelet-activating factor-acetylhydrolase activity in post-menopausal women. Maturitas 1999;31:249–253.

    Article  PubMed  CAS  Google Scholar 

  34. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2004;109:837–842.

    Article  PubMed  CAS  Google Scholar 

  35. Koenig W, Khuseyinova N, Lowel H, et al. Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation 2004;110:1903–1908.

    Article  PubMed  CAS  Google Scholar 

  36. Brilakis ES, McConnell JP, Lennon RJ, et al. Higher levels of lipoprotein-associated phospholipase A2 are associated with higher incidence of cardiovascular events at follow-up independent of C-reactive protein. Eur Heart J 2005;26:137–144.

    Article  PubMed  CAS  Google Scholar 

  37. Iribarren C, Gross MD, Darbinian JA, et al. Association of lipoprotein-associated phospholipase A2 mass and activity with calcified coronary plaque in young adults: the CARDIA study. Arterioscl Thromb Vasc Biol 2005;25:216–221.

    PubMed  CAS  Google Scholar 

  38. Oei HHS, Van der Meer IM, Hofman A, et al. Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Eur Heart J 2004; 25(Abstract Suppl):234.

    Google Scholar 

  39. Ballantyne CM, Hoogeveen RC, Bang H, et al. The relation of lipoprotein-associated phospholipase A2 (Lp-PLA2) and C-reactive protein to incident stroke in middle-aged men and women: the atherosclerosis risk in communities study. Arterioscl Thromb Vasc Biol 2004;24:e51–e136.

    Google Scholar 

  40. Shohet RV, Anwar A, Johnston JM, et al. Plasma platelet-activating factor acetylhydrolase activity is not associated with premature coronary atherosclerosis. Am J Cardiol 1999;83:109–111.

    Article  PubMed  CAS  Google Scholar 

  41. Blankenberg S, Stengel D, Rupprecht HJ, et al. Plasma PAF-acetylhydrolase in patients with coronary artery disease: results of a cross-sectional analysis. J Lipid Res 2003;44:1381–1386.

    Article  PubMed  CAS  Google Scholar 

  42. Winkler K, Abletshauser C, Friedrich I, et al. Fluvastatin slow-release lowers platelet-activating factor acetyl hydrolase activity: a placebo-controlled trial in patients with type 2 diabetes. J Clin Endocrinol Metab 2004;89:1153–1159.

    CAS  Google Scholar 

  43. Khuseyinova N, Imhof A, Rothenbacher D, et al. Association between lipoprotein-associated phospholipase A2 and coronary artery disease: focus on its relationship with lipoproteins and markers of inflammation and hemostasis. Atherosclerosis 2005;182:181–188.

    Article  PubMed  CAS  Google Scholar 

  44. Wolfert RL, Kim NW, Selby RG, et al. Biological variability and specificity of lipoprotein-associated phospholipase A2, a novel marker of cardiovascular risk. Circulation 2004;110(Suppl III):III–309. (Abstract).

    Google Scholar 

  45. Tsimihodimos V, Karabina SA, Tambaki AP, et al. Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB. Arterioscl Thromb Vasc Biol 2002;22:306–311.

    Article  PubMed  CAS  Google Scholar 

  46. Albert MA, Glynn RJ, Wolfert RL, et al. The effect of statin therapy on lipoprotein-associated phospholipase A2 levels. Atherosclerosis 2005;182:193–198.

    Article  PubMed  CAS  Google Scholar 

  47. Tsimihodimos V, Kakafika A, Tambaki AP, et al. Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 2003;44:927–934.

    Article  PubMed  CAS  Google Scholar 

  48. Murakami M, Nakatani Y, Atsumi G, et al. Regulatory functions of phospholipase A2. Crit Rev Immunol 1997;17:225–283.

    PubMed  CAS  Google Scholar 

  49. Niessen HW, Krijnen PA, Visser CA, et al. Type II secretory phospholipase A2 in cardiovascular disease: a mediator in atherosclerosis and ischemic damage to cardiomyocytes? Cardiovasc Res 2003; 60:68–77.

    Article  PubMed  CAS  Google Scholar 

  50. Jaross W, Eckey R, Menschikowski M. Biological effects of secretory phospholipase A(2) group IIA on lipoproteins and in atherogenesis. Eur J Clin Invest 2002;32:383–393.

    Article  PubMed  CAS  Google Scholar 

  51. Peilot H, Rosengren B, Bondjers G, et al. Interferon-gamma induces secretory group IIA phospholipase A2 in human arterial smooth muscle cells: involvement of cell differentiation, STAT-3 activation, and modulation by other cytokines. J Biol Chem 2000;275:22,895–22,904.

    Article  PubMed  CAS  Google Scholar 

  52. Hurt-Camejo E, Camejo G, Peilot H, et al. Phospholipase A(2) in vascular disease. Circ Res 2001;89: 298–304.

    Article  PubMed  CAS  Google Scholar 

  53. Anthonsen MW, Stengel D, Hourton D, et al. Mildly oxidized LDL induces expression of group IIa secretory phospholipase A(2) in human monocyte-derived macrophages. Arterioscl Thromb Vasc Biol 2000;20:1276–1282.

    PubMed  CAS  Google Scholar 

  54. Fourcade O, Le Balle F, Fauvel J, et al. Regulation of secretory type-II phospholipase A2 and of lysophosphatidic acid synthesis. Adv Enzyme Regul 1998;38:99–107.

    Article  PubMed  CAS  Google Scholar 

  55. Schiering A, Menschikowski M, Mueller E, et al. Analysis of secretory group II phospholipase A2 expression in human aortic tissue in dependence on the degree of atherosclerosis. Atherosclerosis 1999; 144:73–78.

    Article  PubMed  CAS  Google Scholar 

  56. Laine VJ, Grass DS, Nevalainen TJ. Protection by group II phospholipase A2 against Staphylococcus aureus. J Immunol 1999;162:7402–7408.

    PubMed  CAS  Google Scholar 

  57. Weinrauch Y, Abad C, Liang NS, et al. Mobilization of potent plasma bactericidal activity during systemic bacterial challenge: role of group II phospholipase A2. J Clin Invest 1998;102:633–638.

    Article  PubMed  CAS  Google Scholar 

  58. Sartipy P, Bondjers G, Hurt-Camejo E. Phospholipase A2 type II binds to extracellular matrix biglycan: modulation of its activity on LDL by colocalization in glycosaminoglycan matrixes. Arterioscl Thromb Vasc Biol 1998;18:1934–1941.

    PubMed  CAS  Google Scholar 

  59. Sartipy P, Camejo G, Svensson L, et al. Phospholipase A(2) modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. J Biol Chem 1999;274:25,913–25,920.

    Article  PubMed  CAS  Google Scholar 

  60. Pratico D. F(2)-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo. Atherosclerosis 1999;147:1–10.

    Article  PubMed  CAS  Google Scholar 

  61. Leitinger N, Watson AD, Hama SY, et al. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. Arterioscl Thromb Vasc Biol 1999;19:1291–1298.

    PubMed  CAS  Google Scholar 

  62. Ivandic B, Castellani LW, Wang XP, et al. Role of group II secretory phospholipase A2 in atherosclerosis: 1. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2. Arterioscl Thromb Vasc Biol 1999;19:1284–1290.

    PubMed  CAS  Google Scholar 

  63. Kugiyama K, Ota Y, Takazoe K, et al. Circulating levels of secretory type II phospholipase A(2) predict coronary events in patients with coronary artery disease. Circulation 1999;100:1280–1284.

    PubMed  CAS  Google Scholar 

  64. Liu PY, Li YH, Tsai WC, et al. Prognostic value and the changes of plasma levels of secretory type II phospholipase A2 in patients with coronary artery disease undergoing percutaneous coronary intervention. Eur Heart J 2003;24:1824–1832.

    Article  PubMed  CAS  Google Scholar 

  65. Kugiyama K, Ota Y, Sugiyama S, et al. Prognostic value of plasma levels of secretory type II phospholipase A2 in patients with unstable angina pectoris. Am J Cardiol 2000;86:718–722.

    Article  PubMed  CAS  Google Scholar 

  66. Fichtlscherer S, Kaszkin M, Breuer S, et al. Elevated secretory non-pancreatic type II phospholipase A2 serum activity is associated with impaired endothelial vasodilator function in patients with coronary artery disease. Clin Sci (Lond) 2004;106:511–517.

    Article  CAS  Google Scholar 

  67. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med 2001;11:93–102.

    Article  PubMed  CAS  Google Scholar 

  68. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997; 272:20,963–20,966.

    Article  PubMed  CAS  Google Scholar 

  69. Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990;87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  70. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990;344: 254–257.

    Article  PubMed  CAS  Google Scholar 

  71. Jessup W, Kritharides L, Stocker R. Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans 2004;32:134–138.

    Article  PubMed  CAS  Google Scholar 

  72. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–1494.

    PubMed  CAS  Google Scholar 

  73. Toshima S, Hasegawa A, Kurabayashi M, et al. (2000) Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arterioscl Thromb Vasc Biol 2000;20: 2243–2247.

    PubMed  CAS  Google Scholar 

  74. Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001;103:1955–1960.

    PubMed  CAS  Google Scholar 

  75. Holvoet P, Mertens A, Verhamme P, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscl Thromb Vasc Biol 2001;21:844–848.

    Article  PubMed  CAS  Google Scholar 

  76. Holvoet P, Stassen JM, Van Cleemput J, et al. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscl Thromb Vasc Biol 1998;18:100–107.

    PubMed  CAS  Google Scholar 

  77. Liu ML, Ylitalo K, Salonen R, et al. Circulating oxidized low-density lipoprotein and its association with carotid intima-media thickness in asymptomatic members of familial combined hyperlipidemia families. Arterioscl Thromb Vasc Biol 2004;24:1492–1497.

    Article  PubMed  CAS  Google Scholar 

  78. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscl Thromb Vasc Biol 2002;22:1162–1167.

    Article  PubMed  CAS  Google Scholar 

  79. Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.

    Article  PubMed  CAS  Google Scholar 

  80. Fredrikson NG, Hedblad B, Berglund G, et al. Plasma oxidized LDL: a predictor for acute myocardial infarction? J Intern Med 2003;253:425–429.

    Article  Google Scholar 

  81. Meisinger C, Baumert J, Khuseyinova N, et al. Plasma oxidized low density lipoprotein: a strong predictor for acute coronary heart disease events in apparently healthy middle aged men from the general population. Circulation 2005;112:651–657.

    Article  PubMed  CAS  Google Scholar 

  82. Violi F, Micheletta F, Iuliano L. Vitamin E, atherosclerosis and thrombosis. Thromb Haemost 2001;85: 766–770.

    PubMed  CAS  Google Scholar 

  83. Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and betacarotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994;330: 1029–1035.

    Article  Google Scholar 

  84. De Gaetano G; Collaborative Group of the Primary Prevention Project. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice: Collaborative Group of the Primary Prevention Project. Lancet 2001;357:89–95.

    Article  PubMed  Google Scholar 

  85. Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–785.

    Article  PubMed  CAS  Google Scholar 

  86. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999;354:447–455.

    Article  Google Scholar 

  87. Yusuf S, Dagenais G, Pogue J, et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:154–160.

    Article  PubMed  CAS  Google Scholar 

  88. Vivekananthan DP, Penn MS, Sapp SK, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease: metaanalysis of randomised trials. Lancet 2003;361:2017–2023.

    Article  PubMed  CAS  Google Scholar 

  89. Boaz M, Smetana S, Weinstein T, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 2000;356:1213–1218.

    Article  PubMed  CAS  Google Scholar 

  90. Blankenberg S, Rupprecht HJ, Bickel C, et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 2003;349:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  91. Zhao L, Funk CD. Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med 2004;14:191–195.

    Article  PubMed  CAS  Google Scholar 

  92. Funk CD, Cyrus T. 12/15-lipoxygenase, oxidative modification of LDL and atherogenesis. Trends Cardiovasc Med 2001;11:116–124.

    Article  PubMed  CAS  Google Scholar 

  93. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, et al. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1990;87:6959–6963.

    Article  PubMed  CAS  Google Scholar 

  94. Huo Y, Zhao L, Hyman MC, et al. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004;110:2024–2031.

    Article  PubMed  CAS  Google Scholar 

  95. George J, Afek A, Shaish A, et al. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 2001;104:1646–1650.

    Article  PubMed  CAS  Google Scholar 

  96. Cyrus T, Pratico D, Zhao L, et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation 2001;103:2277–2282.

    PubMed  CAS  Google Scholar 

  97. Cyrus T, Witztum JL, Rader DJ, et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 1999;103:1597–1604.

    Article  PubMed  CAS  Google Scholar 

  98. Harats D, Shaish A, George J, et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscl Thromb Vasc Biol 2000;20:2100–2105.

    PubMed  CAS  Google Scholar 

  99. Reilly KB, Srinivasan S, Hatley ME, et al. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J Biol Chem 2004;279:9440–9450.

    Article  PubMed  CAS  Google Scholar 

  100. Shen J, Herderick E, Cornhill JF, et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest 1996;98:2201–2208.

    Article  PubMed  CAS  Google Scholar 

  101. Bocan TM, Rosebury WS, Mueller SB, et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis 1998;136:203–216.

    Article  PubMed  CAS  Google Scholar 

  102. Sendobry SM, Cornicelli JA, Welch K, et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol 1997;120:1199–1206.

    Article  PubMed  CAS  Google Scholar 

  103. Mehrabian M, Allayee H. 5-Lipoxygenase and atherosclerosis. Curr Opin Lipidol 2003;14:447–457.

    Article  PubMed  CAS  Google Scholar 

  104. Dixon RA, Diehl RE, Opas E, et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 1990;343:282–284.

    Article  PubMed  CAS  Google Scholar 

  105. Reid GK, Kargman S, Vickers PJ, et al. Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem 1990;265:19,818–19,823.

    PubMed  CAS  Google Scholar 

  106. Abramovitz M, Wong E, Cox ME, et al. 5-Lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur J Biochem 1993;215:105–111.

    Article  PubMed  CAS  Google Scholar 

  107. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001;294: 1871–1975.

    Article  PubMed  CAS  Google Scholar 

  108. Coffey M, Peters-Golden M. Extending the understanding of leukotrienes in asthma. Curr Opin Allergy Clin Immunol 2003;3:57–63.

    Article  PubMed  CAS  Google Scholar 

  109. Hoover RL, Karnovsky MJ, Austen KF, et al. Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc Natl Acad Sci USA 1984;81:2191–2193.

    Article  PubMed  CAS  Google Scholar 

  110. Lee S, Felts KA, Parry GC, et al. Inhibition of 5-lipoxygenase blocks IL-1 beta-induced vascular adhesion molecule-1 gene expression in human endothelial cells. J Immunol 1997;158:3401–3407.

    PubMed  CAS  Google Scholar 

  111. Vila L. Cyclooxygenase and 5-lipoxygenase pathways in the vessel wall: role in atherosclerosis. Med Res Rev 2004;24:399–424.

    Article  PubMed  CAS  Google Scholar 

  112. Spanbroek R, Grabner R, Lotzer K, et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci USA 2003;100:1238–1243.

    Article  PubMed  CAS  Google Scholar 

  113. Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 2004;350:29–37.

    Article  PubMed  CAS  Google Scholar 

  114. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004;36:233–239.

    Article  PubMed  CAS  Google Scholar 

  115. Hide WA, Chan L, Li WH. Structure and evolution of the lipase superfamily. J Lipid Res 1992;33: 167–178.

    PubMed  CAS  Google Scholar 

  116. Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 2002;80:753–769.

    Article  PubMed  CAS  Google Scholar 

  117. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992;287:337–347.

    PubMed  CAS  Google Scholar 

  118. Otarod JK, Goldberg IJ. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscl Rep 2004;6:335–342.

    Article  Google Scholar 

  119. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996;37:693–707.

    PubMed  CAS  Google Scholar 

  120. Yla-Herttuala S, Lipton BA, Rosenfeld ME, et al. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991;88:10,143–10,147.

    Article  PubMed  CAS  Google Scholar 

  121. O’Brien KD, Gordon D, Deeb S, et al. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest 1992;89:1544–1550.

    Article  PubMed  Google Scholar 

  122. Lindqvist P, Ostlund-Lindqvist AM, Witztum JL, et al. The role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by macrophages. J Biol Chem 1983;258:9086–9092.

    PubMed  CAS  Google Scholar 

  123. Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res 2002;55: 261–269.

    Article  PubMed  CAS  Google Scholar 

  124. Kastelein JJ, Jukema JW, Zwinderman AH, et al. Lipoprotein lipase activity is associated with severity of angina pectoris. REGRESS Study Group. Circulation 2000;102:1629–1633.

    PubMed  CAS  Google Scholar 

  125. Hitsumoto T, Ohsawa H, Uchi T, et al. Preheparin serum lipoprotein lipase mass is negatively related to coronary atherosclerosis. Atherosclerosis 2000;153:391–396.

    Article  PubMed  CAS  Google Scholar 

  126. Dugi KA, Schmidt N, Brandauer K, et al. Activity and concentration of lipoprotein lipase in post-heparin plasma and the extent of coronary artery disease. Atherosclerosis 2002;163:127–134.

    Article  PubMed  CAS  Google Scholar 

  127. Chandran M, Phillips SA, Ciaraldi T, et al. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003;26:2442–2450.

    Article  PubMed  CAS  Google Scholar 

  128. Shimada K, Miyazaki T, Daida H. Adiponectin and atherosclerotic disease. Clin Chim Acta 2004;344: 1–12.

    Article  PubMed  CAS  Google Scholar 

  129. Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004;89:2563–2568.

    Article  PubMed  CAS  Google Scholar 

  130. Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 2000;32:548–554.

    Article  PubMed  CAS  Google Scholar 

  131. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000;96:1723–1732.

    PubMed  CAS  Google Scholar 

  132. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocytederived plasma protein adiponectin. Circulation 1999;100:2473–2476.

    PubMed  CAS  Google Scholar 

  133. Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation 2000;102:1296–1301.

    PubMed  CAS  Google Scholar 

  134. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–1063.

    PubMed  CAS  Google Scholar 

  135. Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem 2002;277:37,487–37,491.

    Article  PubMed  CAS  Google Scholar 

  136. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002;277:25,863–25,866.

    Article  PubMed  CAS  Google Scholar 

  137. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002;8:731–737.

    Article  PubMed  CAS  Google Scholar 

  138. Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscl Thromb Vasc Biol 2003;23:85–89.

    Article  PubMed  CAS  Google Scholar 

  139. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscl Thromb Vasc Biol 2000;20:1595–1599.

    PubMed  CAS  Google Scholar 

  140. Rothenbacher D, Brenner H, Marz W, Koenig W. Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur Heart J 2005;26:1640–1646.

    Article  PubMed  CAS  Google Scholar 

  141. Nakamura Y, Shimada K, Fukuda D, et al. Implications of plasma concentrations of adiponectin in patients with coronary artery disease. Heart 2004;90:528–533.

    Article  PubMed  CAS  Google Scholar 

  142. Kojima S, Funahashi T, Sakamoto T, et al. The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 2003;89:667.

    Article  PubMed  CAS  Google Scholar 

  143. Pischon T, Girman CJ, Hotamisligil GS, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004;291:1730–1737.

    Article  PubMed  CAS  Google Scholar 

  144. Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360:57, 58.

    Article  PubMed  CAS  Google Scholar 

  145. Spranger J, Kroke A, Mohlig M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003;361:226–228.

    Article  PubMed  CAS  Google Scholar 

  146. Daimon M, Oizumi T, Saitoh T, et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese Population: the Funagata study. Diabetes Care 2003;26: 2015–2020.

    Article  PubMed  CAS  Google Scholar 

  147. Snehalatha C, Mukesh B, Simon M, et al. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian indians. Diabetes Care 2003;26:3226–3229.

    Article  PubMed  Google Scholar 

  148. Duncan BB, Schmidt MI, Pankow JS, et al. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2004;53:2473–2478.

    Article  PubMed  CAS  Google Scholar 

  149. Manolio T. Novel risk markers and clinical practice. N Engl J Med 2003;349:1587–1589.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Khuseyinova, N., Koenig, W. (2006). Lipoprotein-Associated Phospholipase A2 and Other Lipid-Related Biomarkers in Cardiovascular Disease. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics