Skip to main content

Endothelial Injury and Cell Cycle Re-Entry

  • Chapter
The Cell Cycle in the Central Nervous System

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1492 Accesses

Abstract

Endothelial cells (ECs) affect the homeostasis of the vessel wall in terms of vasomotor tone, platelet and monocyte adhesion, growth of vascular smooth muscle cells, and extracellular matrix production. They, thereby, provide an antithrombotic and anti-inflammatory barrier for the normal vessel wall. Migration and proliferation of ECs is critical in the repair of injured vessels and in angiogenesis and vasculogenesis during development, tumor growth, and tissue repair. Regulation of the cell cycle is achieved through a complex and ordered sequence of events controlled by cyclin-dependent kinases (CDKs), the activation of which depends on regulatory phosphorylation, and their association with protein subunits, cyclins. The activation of CDKs is in turn negatively regulated by several CDK inhibitors. This chapter summarizes the most pertinent findings related to the control of cell growth and migration of vascular ECs, as relevant for maintaining the homeostasis of the vessel wall during angiogenesis and vasculogenesis, as well as for vascular remodeling during wound healing, tumor in-growth, atherogenesis, and restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan DO. Principles of CDK regulation. Nature 1995;374:131–134.

    PubMed  CAS  Google Scholar 

  2. Folkman J, Shing Y, Angiogenesis. J Biol Chem 1992;267:10,931–10,934.

    PubMed  CAS  Google Scholar 

  3. D’Amore PA. Mechanisms of endothelial growth control. Am J Respir Cell Mol Biol 1992;6:1–8.

    PubMed  CAS  Google Scholar 

  4. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–330.

    PubMed  CAS  Google Scholar 

  5. Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J 1992; 11:961–971.

    PubMed  CAS  Google Scholar 

  6. Peter M, Herskowitz I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 1994;79:181–184.

    PubMed  CAS  Google Scholar 

  7. Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A. Identification of human and mouse pl9, a novel CDK4 and CDK6 inhibitor with homology to pl6ink4. Mol Cell Biol 1995;15:2682–2688.

    PubMed  CAS  Google Scholar 

  8. Guan KL, Jenkins CW, Li Y, et al. Growth suppression by pl8, a pl6INK4/. Genes Dev 1994;8:2939–2952.

    PubMed  CAS  Google Scholar 

  9. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 proteins, pl9 and pl8, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995;15:2672–2681.

    PubMed  CAS  Google Scholar 

  10. Chen D, Walsh K, Wang J. Regulation of CDK2 activity in endothelial cells that are inhibited from growth by cell contact. Arterioscler Thromb Vase Biol 2000;20:629–635.

    CAS  Google Scholar 

  11. Zerfass-Thome K, Schulze A, Zwerschke W, et al. p27KIPl blocks cyclin E-dependent transactiva-tion of cyclin A gene expression. Mol Cell Biol 1997;17:407–415.

    PubMed  CAS  Google Scholar 

  12. Yoshizumi M, Hsieh CM, Zhou F, et al. The ATF site mediates downregulation of the cyclin A gene during contact inhibition in vascular endothelial cells. Mol Cell Biol 1995;15:3266–3272.

    PubMed  CAS  Google Scholar 

  13. Guo K, Wang J, Andres V, Smith RC, Walsh K. MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Mol Cell Biol 1995;15:3823–3829.

    PubMed  CAS  Google Scholar 

  14. Jiang H, Lin J, Su ZZ, Collart FR, Huberman E, Fisher PB. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 1994;9:3397–3406.

    PubMed  CAS  Google Scholar 

  15. Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAFl/CIPl expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996;98:426–433.

    PubMed  CAS  Google Scholar 

  16. Yang C, Chang J, Gorospe M, Passaniti A. Protein tyrosine phosphatase regulation of endothelial cell apoptosis and differentiation. Cell Growth Differ 1996;7:161–171.

    PubMed  CAS  Google Scholar 

  17. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21sdll/Cip1/Wafl. Circ Res 2000;86:185–190.

    PubMed  CAS  Google Scholar 

  18. Ingber DE. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Semin Cancer Biol 1992;3:57–63.

    PubMed  CAS  Google Scholar 

  19. Kent KC, Mii S, Harrington EO, Chang JD, Mallette S, Ware JA. Requirement for protein kinase C activation in basic fibroblast growth factor-induced human endothelial cell proliferation. Circ Res 1995;77:231–238.

    PubMed  CAS  Google Scholar 

  20. Sibinga NE, Wang H, Perrella MA, et al. Interferon-gamma-mediated inhibition of cyclin A gene transcription is independent of individual cis-acting elements in the cyclin A promoter. J Biol Chem 1999;274:12,139–12,146.

    PubMed  CAS  Google Scholar 

  21. Yu C, Takeda M, Soliven B. Regulation of cell cycle proteins by TNF-alpha and TGF-beta in cells of oligodendroglial lineage. J Neuroimmunol 2000;108:2–10.

    PubMed  CAS  Google Scholar 

  22. Sato N, Goto T, Haranaka K, et al. Actions of tumor necrosis factor on cultured vascular endothelial cells: morphologic modulation, growth inhibition, and cytotoxicity. J Natl Cancer Inst 1986;76:1113–1121.

    PubMed  CAS  Google Scholar 

  23. Steffen M, Ottmann OG, Moore MA. Simultaneous production of tumor necrosis factor-alpha and lymphotoxin by normal T cells after induction with IL-2 and anti-T3. J Immunol 1988;140:2621–2624.

    PubMed  CAS  Google Scholar 

  24. Tanaka H, Sukhova G, Schwartz D, Libby P. Proliferating arterial smooth muscle cells after balloon injury express TNF-alpha but not interleukin-1 or basic fibroblast growth factor. Arterioscler Thromb Vase Biol 1996;16:12–18.

    CAS  Google Scholar 

  25. Clausell N, de Lima VC, Molossi S, et al. Expression of tumour necrosis factor alpha and accumulation of fibronectin in coronary artery restenotic lesions retrieved by atherectomy. Br Heart J 1995;73:534–539.

    PubMed  CAS  Google Scholar 

  26. Krasinski K, Spyridopoulos I, Kearney M, Losordo DW. In vivo blockade of tumor necrosis factor-alpha accelerates functional endothelial recovery after balloon angioplasty. Circulation 2001;104:1754–1756.

    PubMed  CAS  Google Scholar 

  27. Henglein B, Chenivesse X, Wang J, Eick D, Brechot C. Structure and cell cycle-regulated transcription of the human cyclin A gene. Proc Natl Acad Sci USA 1994;91:5490–5494.

    PubMed  CAS  Google Scholar 

  28. Liu N, Lucibello FC, Korner K, Wolfraim LA, Zwicker J, Muller R. CDF-1, a novel E2F-unrelated factor, interacts with cell cycle-regulated repressor elements in multiple promoters. Nucleic Acids Res 1997;25:4915–4920.

    PubMed  CAS  Google Scholar 

  29. Zwicker J, Lucibello FC, Wolfraim LA, et al. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J 1995;14:4514–4522.

    PubMed  CAS  Google Scholar 

  30. Kishore R, Spyridopoulos I, Luedemann C, Losordo DW. Functionally novel tumor necrosis factor-alpha-modulated CHR-binding protein mediates cyclin A transcriptional repression in vascular endothelial cells. Circ Res 2002;91:307–314.

    PubMed  CAS  Google Scholar 

  31. Warner SJ, Libby P. Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J Immunol 1989;142:100–109.

    PubMed  CAS  Google Scholar 

  32. Field SJ, Tsai FY, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996;85:549–561.

    PubMed  CAS  Google Scholar 

  33. Spyridopoulos I, Principe N, Krasinski KL, et al. Restoration of E2F expression rescues vascular endothelial cells from tumor necrosis factor-alpha-induced apoptosis. Circulation 1998;98:2883–2890.

    PubMed  CAS  Google Scholar 

  34. Tanaka H, Matsumura I, Ezoe S, et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 2002;9:1017–1029.

    PubMed  CAS  Google Scholar 

  35. Goukassian DA, Kishore R, Krasinski K, et al. Engineering the response to vascular injury: divergent effects of deregulated E2F1 expression on vascular smooth muscle cells and endothelial cells result in endothelial recovery and inhibition of neointimal growth. Circ Res 2003;93:162–169.

    PubMed  CAS  Google Scholar 

  36. Roberts AB, Sporn MB. Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-beta. Am Rev Respir Dis 1989;140:1126–1128.

    PubMed  CAS  Google Scholar 

  37. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987;48:549–554.

    PubMed  CAS  Google Scholar 

  38. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2:REVIEWS3005.

    Google Scholar 

  39. Bastaki M, Nelli EE, Dell’Era P, et al. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vase Biol 1997;17:454–464.

    CAS  Google Scholar 

  40. Pintucci G, Moscatelli D, Saponara F, et al. Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 2002;16:598–600.

    PubMed  CAS  Google Scholar 

  41. Scott JE, Orford CR. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J 1981;197:213–216.

    PubMed  CAS  Google Scholar 

  42. Kinsella MG, Tsoi CK, Jarvelainen HT, Wight TN. Selective expression and processing of biglycan during migration of bovine aortic endothelial cells. The role of endogenous basic fibroblast growth factor. J Biol Chem 1997;272:318–325.

    PubMed  CAS  Google Scholar 

  43. Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogene-sis by the small proteoglycan of tendon. Biochem J 1984;223:587–597.

    PubMed  CAS  Google Scholar 

  44. Bidanset DJ, LeBaron R, Rosenberg L, Murphy-Ullrich JE, Hook M. Regulation of cell substrate adhesion: effects of small galactosaminoglycan-containing proteoglycans. J Cell Biol 1992;118:1523–1531.

    PubMed  CAS  Google Scholar 

  45. Couchman JR, Austria MR, Woods A. Fibronectin-cell interactions. J Invest Dermatol 1990;94:7S–14S.

    PubMed  CAS  Google Scholar 

  46. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991;64:867–869.

    PubMed  CAS  Google Scholar 

  47. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 1989;109:309–315.

    PubMed  CAS  Google Scholar 

  48. Jarvelainen HT, Iruela-Arispe ML, Kinsella MG, Sandell LJ, Sage EH, Wight TN. Expression of decorin by sprouting bovine aortic endothelial cells exhibiting angiogenesis in vitro. Exp Cell Res 1992;203:395–401.

    PubMed  CAS  Google Scholar 

  49. Gross JL, Moscatelli D, Jaffe EA, Rifkin DB. Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 1982;95:974–981.

    PubMed  CAS  Google Scholar 

  50. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–447.

    PubMed  CAS  Google Scholar 

  51. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12:240–247.

    PubMed  CAS  Google Scholar 

  52. Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R. Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci USA 2002;99:568–573.

    PubMed  CAS  Google Scholar 

  53. Sharma B, Handler M, Eichstetter I, Whitelock JM, Nugent MA, Iozzo RV. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest 1998;102:1599–1608.

    PubMed  CAS  Google Scholar 

  54. Nugent MA, Nugent HM, Iozzo RV, Sanchack K, Edelman ER. Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc Natl Acad Sci USA 2000;97:6722–6727.

    PubMed  CAS  Google Scholar 

  55. Volk R, Schwartz JJ, Li J, Rosenberg RD, Simons M. The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. J Biol Chem 1999;274:24,417–24,424.

    PubMed  CAS  Google Scholar 

  56. Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A. Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 2003;278:16,045–16,053.

    PubMed  CAS  Google Scholar 

  57. Kumar R, Kuniyasu H, Bucana CD, Wilson MR, Fidler IJ. Spatial and temporal expression of angiogenic molecules during tumor growth and progression. Oncol Res 1998;10:301–311.

    PubMed  CAS  Google Scholar 

  58. Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 1999;274:10,816–10,822.

    PubMed  CAS  Google Scholar 

  59. Karumanchi SA, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001;7:811–822.

    PubMed  CAS  Google Scholar 

  60. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001;293:293–297.

    PubMed  CAS  Google Scholar 

  61. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 2000;19:597–614.

    PubMed  CAS  Google Scholar 

  62. Bornstein P, Kyriakides TR, Yang Z, Armstrong LC, Birk DE. Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. J. Investig. Dermatol Symp Proc 2000;5:61–66.

    PubMed  CAS  Google Scholar 

  63. Hawighorst T, Velasco P, Streit M, et al. Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism. EMBO J 2001;20:2631–2640.

    PubMed  CAS  Google Scholar 

  64. Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 2002;13:1893–1905.

    PubMed  CAS  Google Scholar 

  65. Mesri M, Morales-Ruiz M, Ackermann EJ, et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol 2001;158:1757–1765.

    PubMed  CAS  Google Scholar 

  66. Iruela-Arispe ML, Liska DJ, Sage EH, Bornstein P. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn 1993;197:40–56.

    PubMed  CAS  Google Scholar 

  67. Mosher DF, Doyle MJ, Jaffe EA. Synthesis and secretion of thrombospondin by cultured human endothelial cells. J Cell Biol 1982;93:343–348.

    PubMed  CAS  Google Scholar 

  68. Tolsma SS, Stack MS, Bouck N. Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvasc Res 1997;54:13–26.

    PubMed  CAS  Google Scholar 

  69. Howe A, Aplin AE, Alahari SK, Juliano RL. Integrin signaling and cell growth control. Curr Opin Cell Biol 1998;10:220–231.

    PubMed  CAS  Google Scholar 

  70. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997;9:701–706.

    PubMed  CAS  Google Scholar 

  71. Roskelley CD, Bissell MJ. Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem Cell Biol 1995;73:391–397.

    PubMed  CAS  Google Scholar 

  72. Jockusch BM, Bubeck P, Giehl K, et al. The molecular architecture of focal adhesions. Annu Rev Cell Dev Biol 1995;11:379–416.

    PubMed  CAS  Google Scholar 

  73. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276:1425–1428.

    PubMed  CAS  Google Scholar 

  74. Roman J, LaChance RM, Broekelmann TJ, et al. The fibronectin receptor is organized by extracellular matrix fibronectin: implications for oncogenic transformation and for cell recognition of fibronectin matrices. J Cell Biol 1989;108:2529–2543.

    PubMed  CAS  Google Scholar 

  75. Short SM, Talbott GA, Juliano RL. Integrin-mediated signaling events in human endothelial cells. Mol Biol Cell 1998;9:1969–1980.

    PubMed  CAS  Google Scholar 

  76. Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 1996;271:499–502.

    PubMed  CAS  Google Scholar 

  77. Schulze A, Zerfass-Thome K, Berges J, Middendorp S, Jansen-Durr P, Henglein B. Anchorage-dependent transcription of the cyclin A gene. Mol Cell Biol 1996; 16:4632–4638.

    PubMed  CAS  Google Scholar 

  78. Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK. Adhesion-dependent cell cycle progression linked to the expression of cyclin Dl, activation of cyclin E-CDK2, and phosphorylation of the retinoblastoma protein. J Cell Biol 1996;133:391–403.

    PubMed  CAS  Google Scholar 

  79. Barry ST, Flinn HM, Humphries MJ, Critchley DR, Ridley AJ. Requirement for Rho in integrin signalling. Cell Adhes Commun 1997;4:387–398.

    PubMed  CAS  Google Scholar 

  80. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE. Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 1994;5:967–975.

    PubMed  CAS  Google Scholar 

  81. Grady D, Rubin SM, Petitti DB, et al. Hormone therapy to prevent disease and prolong life in post-menopausal women. Ann Intern Med 1992;117:1016–1037.

    PubMed  CAS  Google Scholar 

  82. Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J 1996;10:615–624.

    PubMed  CAS  Google Scholar 

  83. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.

    PubMed  CAS  Google Scholar 

  84. Yue TL, Vickery-Clark L, Louden CS, et al. Selective estrogen receptor modulator idoxifene inhibits smooth muscle cell proliferation, enhances reendothelialization, and inhibits neointimal formation in vivo after vascular injury. Circulation 2000;102:III281–III288.

    PubMed  CAS  Google Scholar 

  85. Alvarez RJ, Gips SJ, Moldovan N, et al. 17beta-estradiol inhibits apoptosis of endothelial cells. Biochem Biophys Res Commun 1997;237:372–381.

    PubMed  CAS  Google Scholar 

  86. Chander SK, McCague R, Luqmani Y, et al. Pyrrolidino-4-iodotamoxifen and 4-iodotamoxifen, new analogues of the antiestrogen tamoxifen for the treatment of breast cancer. Cancer Res 1991;51:5851–5858.

    PubMed  CAS  Google Scholar 

  87. Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol 2002;13:29–37.

    PubMed  CAS  Google Scholar 

  88. Schwab S, Spranger M, Krempien S, Hacke W, Bettendorf M. Plasma insulin-like growth factor I and IGF binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 1997;28:1744–1748.

    PubMed  CAS  Google Scholar 

  89. Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR. Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect 1993;5:165–176.

    PubMed  CAS  Google Scholar 

  90. Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 2004;101:9833–9838.

    PubMed  CAS  Google Scholar 

  91. Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 1990;87:5568–5572.

    PubMed  CAS  Google Scholar 

  92. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 1997;138:3515–3520.

    PubMed  CAS  Google Scholar 

  93. Chen CH, Jiang W, Via DP, et al. Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 2000;101:171–177.

    PubMed  CAS  Google Scholar 

  94. Collins T, Cybulsky MI. PNF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001;107:255–264.

    PubMed  CAS  Google Scholar 

  95. Ihle JN, Kerr IM. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 1995;11:69–74.

    PubMed  CAS  Google Scholar 

  96. Brizzi MF, Dentelli P, Pavan M, et al. Diabetic LDL inhibits cell cycle progression via STAT5B and p21(waf). J Clin Invest 2002;109:111–119.

    PubMed  CAS  Google Scholar 

  97. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–412.

    PubMed  CAS  Google Scholar 

  98. Wolf G, Schroeder R, Zahner G, Stahl RA, Shankland SJ. High glucose-induced hypertrophy of mesangial cells requires p27(Kipl), an inhibitor of cyclin-dependent kinases. Am J Pathol 2001;158:1091–1100.

    PubMed  CAS  Google Scholar 

  99. Wagener FA, da Silva JL, Farley T, de Witte T, Kappas A, Abraham NG. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression. J Pharmacol Exp Ther 1999;291:416–423.

    PubMed  CAS  Google Scholar 

  100. Deramaudt BM, Braunstein S, Remy P, Abraham NG. Gene transfer of human heme oxygenase into coronary endothelial cells potentially promotes angiogenesis. J Cell Biochem 1998;68:121–127.

    PubMed  CAS  Google Scholar 

  101. Abraham NG, Kushida T, McClung J, et al. Heme oxygenase-1 attenuates glucose-mediated cell growth arrest and apoptosis in human microvessel endothelial cells. Circ Res 2003;93:507–514.

    PubMed  CAS  Google Scholar 

  102. Abraham NG, Lin JH, Schwartzman ML, Levere RD, Shibahara S. The physiological significance of heme oxygenase. Int. J Biochem 1988;20:543–558.

    PubMed  CAS  Google Scholar 

  103. Kitamuro T, Takahashi K, Ogawa K, et al; Bachl functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 2003;278:9125–9133.

    PubMed  CAS  Google Scholar 

  104. Kushida T, Quan S, Yang L, Ikehara S, Kappas A, Abraham NG. A significant role for the heme oxygenase-1 gene in endothelial cell cycle progression. Biochem Biophys Res Commun 2002;291:68–75.

    PubMed  CAS  Google Scholar 

  105. Quan S, Yang L, Shenouda S, et al. Functional expression of human heme oxygenase-1 (HO-1) driven by HO-1 promoter in vitro and in vivo. J Cell Biochem 2002;85:410–421.

    PubMed  CAS  Google Scholar 

  106. Ishizaka N, de Leon H, Laursen JB, et al. Angiotensin II-induced hypertension increases heme oxygenase-1 expression in rat aorta. Circulation 1997;96:1923–1929.

    PubMed  CAS  Google Scholar 

  107. Asahara T, Bauters C, Pastore C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995;91:2793–2801.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Krizanac-Bengez, L. (2006). Endothelial Injury and Cell Cycle Re-Entry. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_16

Download citation

Publish with us

Policies and ethics