Skip to main content

Hemophilia as a Model Disease for Gene Therapy of Genetic Disorders

  • Chapter
Book cover Principles of Molecular Medicine
  • 277 Accesses

Abstract

Gene therapy offers the potential for cure of hemophilia, a sex-linked genetic bleeding disorder caused by deficiency of either coagulation factor VIII or coagulation factor IX. The features of hemophilia that make it a leading candidate for gene therapy include the fact that the factor VIII and factor IX genes have been identified and cloned, therapeutic benefit would result from achieving expression at plasma levels as low as 1% of normal, and a wide variety of gene transfer vectors and cell target types could be useful. The challenge is to obtain long-term gene expression at levels sufficient to prevent spontaneous bleeding, while avoiding unwanted toxicity or immune responses to the expressed clotting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Andrews JL, Shirley PS, Iverson WO, et al. Evaluation of the duration of human factor VIII expression in nonhuman primates after systemic delivery of an adenoviral vector. Hum Gene Ther 2002;13(11):1331–1336.

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis SE, Rossiter JP, Young M, et al. Factor VIII gene inversions in severe hemophilia A: Results of an international consortium study. Blood 1995;86:2206–2212.

    PubMed  CAS  Google Scholar 

  • Axelrod JH, Read MS, Brinkhous KM, Verma IM. Phenotypic correction of factor IX deficiency in skin fibroblasts of hemophilic dogs. Proc Natl Acad Sci USA 1990;87:5173–5177.

    Article  PubMed  CAS  Google Scholar 

  • Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH Jr. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995;10:119–121.

    Article  PubMed  CAS  Google Scholar 

  • Brauker J, Frost GH, Dwarki V, et al. Sustained expression of high levels of human factor IX from human cells implanted within an immunoisola tion device into athymic rodents. Hum Gene Ther 1998;9(6):879–888.

    PubMed  CAS  Google Scholar 

  • Brinkhous KM, Graham JB. Hemophilia in the female dog. Science 1950;111:723.

    Article  PubMed  CAS  Google Scholar 

  • Bristol JA, Gallo-Penn A, Andrews J, Idamakanti N, Kaleko M, Connelly S. Adenovirus-mediated factor VIII gene expression results in attenuated anti-factor VIII-specific immunity in hemophilia A mice compared with factor VIII protein infusion. Hum Gene Ther 2001;12(13): 1651–1661.

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000;2(6):619–623.

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Mansfield SG, Bartel RC, et al. Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 2003;9(8):1015–1019.

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Mao L, Bruce AT, Walsh CE. Sustained expression of human factor VIII in mice using a parvovirus-based vector. Blood 2000;95(5): 1594–1599.

    PubMed  CAS  Google Scholar 

  • Chao H, Sun L, Bruce A, Xiao X, Walsh CE. Expression of human factor VIII by splicing between dimerized AAV vectors. Mol Ther 2002;5(6): 716–722.

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Walsh CE. Induction of tolerance to human factor VIII in mice. Blood 2001;97(10):3311–3312.

    Article  PubMed  CAS  Google Scholar 

  • Choo KH, Gould KG, Rees DJ, Brownlee GG. Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 1982;299(5879): 178–180.

    Article  PubMed  CAS  Google Scholar 

  • Chuah MK, Brems H, Vanslembrouck V, Collen D, Vandendriessche T. Bone marrow stromal cells as targets for gene therapy of hemophilia A. Hum Gene Ther 1998;9(3):353–365.

    PubMed  CAS  Google Scholar 

  • Chuah MK, Schiedner G, Thorrez L, et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 2003;101(5):1734–1743.

    Article  PubMed  CAS  Google Scholar 

  • Chuah MK, Van Damme A, Zwinnen H, et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000;11(5):729–738.

    Article  PubMed  CAS  Google Scholar 

  • Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagen-esis insights. Science 2004;303:333.

    Article  PubMed  Google Scholar 

  • Ehrhardt A, Kay MA. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood 2002;99(11):3923–3930.

    Article  PubMed  CAS  Google Scholar 

  • Evans GL, Morgan RA. Genetic induction of immune tolerance to human clotting factor VIII in a mouse model for hemophilia A. Proc Natl Acad Sci USA 1998;95(10):5734–5739.

    Article  PubMed  CAS  Google Scholar 

  • Fang B, Eisensmith RC, Wang H, et al. Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression. Hum Gene Ther 1995; 6: 1039–1044.

    PubMed  CAS  Google Scholar 

  • Fewell JG, MacLaughlin F, Mehta V, et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol Ther 2001;3(4):574–583.

    Article  PubMed  CAS  Google Scholar 

  • Gerrard AJ, Austen DE, Brownlee GG. Recombinant factor IX secreted by transduced human keratinocytes is biologically active. Br J Haematol 1996;95(3):561–563.

    Article  PubMed  CAS  Google Scholar 

  • Gerrard AJ, Hudson DL, Brownlee GG, Watt FM. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 1993;3:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Giannelli F, Green PM, Sommer SS, et al. Haemophilia B: database of point mutations and short additions and deletions, 7th edition. Nucleic Acids Res 1997;25:133–135.

    Article  PubMed  CAS  Google Scholar 

  • Giles AR, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII: C deficiency) bleeding. Blood 1982;60:727–730.

    PubMed  CAS  Google Scholar 

  • Gnatenko DV, Saenko EL, Jesty J, Cao LX, Hearing P, Bahou WF. Human factor VIII can be packaged and functionally expressed in an adeno-associated virus background: applicability to haemophilia A gene therapy. Br J Haematol 1999;104(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  • Graham JB, Buckwalter JA, Hartley LJ, Brinkhous KM. Canine hemophilia:observations on the course, the clotting anomaly, and the effects of blood transfusion. J Exp Med 1949;90:97–111.

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 Science 2003;302(5644):415–419.

    Article  PubMed  CAS  Google Scholar 

  • Hao Q-L, Malik P, Salazar R, Tang H, Gordon EM, Kohn DB. Expression of biologically active human factor IX in human hematopoietic cells after retroviral vector-mediated gene transduction. Hum Gene Ther 1995;6:873–880.

    PubMed  CAS  Google Scholar 

  • Herzog RW, Hagstrom JN, Kung S-H, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997;94:5804–5809.

    Article  PubMed  CAS  Google Scholar 

  • Hoeben RC, van der Jagt RCM, van Tilburg NH, et al. Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer. J Biol Chem 1990;265(13):7318–7323.

    PubMed  CAS  Google Scholar 

  • Hortelano G, Wang L, Xu N, Ofosu FA. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: Concurrent tumourigenesis. Haemophilia 2001;7(2):207–214.

    Article  PubMed  CAS  Google Scholar 

  • Hortelano G, Xu N, Vandenberg A, Solera J, Chang PL, Ofosu FA. Persistent delivery of factor IX in mice: gene therapy for hemophilia using implantable microcapsules. Hum Gene Ther 1999;10(8):1281–1288.

    Article  PubMed  CAS  Google Scholar 

  • Hough C, Kamisue S, Cameron C, et al. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe canine hemophilia A: similarities with the intron 22 inversion mutation in human hemophilia. Thromb Haemost 2002;87:659–665.

    PubMed  CAS  Google Scholar 

  • Hurwitz DR, Kirchgesser M, Merrill W, et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 1997;8:137–156.

    PubMed  CAS  Google Scholar 

  • Kemball-Cook G, Barrowcliffe TW. Interaction of factor VIII with phos-pholipids: Role of composition and negative charge. Thromb Haemost 1992;67:57–71.

    CAS  Google Scholar 

  • Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 1997;94:1426–1431.

    Article  PubMed  CAS  Google Scholar 

  • Kootstra NA, Matsumura R, Verma IM. Efficient production of human FVIII in hemophilic mice using lentiviral vectors. Mol Ther 2003;7(5): 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Kundu RK, Sangiorgi F, Wu LY, et al. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood 1998;92(1): 168–174.

    PubMed  CAS  Google Scholar 

  • Lakich D, Kazazian HH, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe hemophilia A. Nat Genet 1993;5:236–241.

    Article  PubMed  CAS  Google Scholar 

  • Lensen R, Bertina RM, Vandenbroucke JP, Rosendaal FR. High factor VIII levels contribute to the thrombotic risk in families with factor V Leiden. Br J Haematol 2001;114(2):380–386.

    Article  PubMed  CAS  Google Scholar 

  • Levinson B, Kenwrick S, Lakich D, Hammonds JG, Gitschier J. A transcribed gene in an intron of the human factor VIII gene. Genomics 1990;7:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 2002;99:457–62.

    Article  PubMed  CAS  Google Scholar 

  • Lin H-F, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 1997;90:3962–3966.

    PubMed  CAS  Google Scholar 

  • Lozier JN, Csako G, Mondoro TH, et al. Toxicity of a first-generation aden-oviral vector in rhesus macaques. Hum Gene Ther 2002;13(1):113–124.

    Article  PubMed  CAS  Google Scholar 

  • Lozier JN, Dutra A, Pak E, et al. The Chapel Hill hemophilia A dog colony exhibits an inversion of the factor VIII gene. Proc Natl Acad Sci USA 2002;99(20): 12,991–12,996.

    Article  PubMed  CAS  Google Scholar 

  • Lozier JN, Metzger ME, Donahue RE, Morgan RA. The rhesus macaque as an animal model for hemophilia B gene therapy. Blood 1999;93(6): 1875–1881.

    PubMed  CAS  Google Scholar 

  • Lozier JN, Metzger ME, Donahue RE, Morgan RA. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood 1999;94(12):3968–3975.

    PubMed  CAS  Google Scholar 

  • Lozier JN, Yankaskas JR, Ramsey WJ, Chen L, Berschneider H, Morgan RA. Gut epithelial cells as targets for gene therapy of hemophilia. Hum Gene Ther 1997;8(12):1481–1490.

    Google Scholar 

  • Mah C, Sarkar R, Zolotukhin I, et al. Dual vectors expressing murine factor VIII result in sustained correction of hemophilia A mice. Hum Gene Ther 2003;14(2):143–152.

    Article  PubMed  CAS  Google Scholar 

  • Manno CS, Chew AJ, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003;101(8):2963–2972.

    Article  PubMed  CAS  Google Scholar 

  • Marshall E. Gene therapy. Panel reviews risks of germ line changes. Science 2001;294(5550):2268–2269.

    Article  Google Scholar 

  • McCormack MP, Rabbitts TH. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2004;350:913–922.

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Storm TA, Kay MA. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two comple mentary vectors. Nat Biotechnol 2000;18(5):527–532.

    Article  PubMed  CAS  Google Scholar 

  • Nathwani AC, Davidoff AM, Hanawa H, et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 2002;100(5):1662–1669.

    Article  PubMed  CAS  Google Scholar 

  • Naylor JA, Brinke A, Hassock S, Green PM, Giannelli F. Characteristic mRNA abnormality found in half the patients with severe hemophilia A is due to large DNA inversions. Hum Mol Genet 1993;2:1773.

    Article  PubMed  CAS  Google Scholar 

  • Naylor JA, Buck D, Green P, Williamson H, Bentley D, Giannelli F. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Hum Mol Genet 1995;4(7): 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Naylor JA, Nicholson P, Goodeve A, Hassock S, Peake I, Giannelli F. A novel DNA inversion causing severe hemophilia A. Blood 1996;87: 3255–3261.

    PubMed  CAS  Google Scholar 

  • Nunes FA, Furth EE, Wilson JM, Raper SE. Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: Safety of readministration. Hum Gene Ther 1999;10(15):2515–2526.

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Rosman GJ, Osborne WRA, Miller AD. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci USA 1991;88:1330–1334.

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Thompson AR, Miller AD. Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood 1989;73(2):438–445.

    PubMed  CAS  Google Scholar 

  • Plantier JL, Rodriguez MH, Enjolras N, Attali O, Negrier C. A factor VIII minigene comprising the truncated intron I of factor IX highly improves the in vitro production of factor VIII. Thromb Haemost 2001;86(2):596–603.

    PubMed  CAS  Google Scholar 

  • Rodriguez MH, Enjolras N, Plantier JL, et al. Expression of coagulation factor IX in a haematopoietic cell line. Thromb Haemost 2002;87(3): 366–373.

    PubMed  CAS  Google Scholar 

  • Roth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001;344(23):1735–1742.

    Article  Google Scholar 

  • Sarkar R, Tetrault R, Gao G, et al. Total correction of hemophiliaA mice with canine FVIII using an AAV 8 serotype. Blood 2004;103(4): 1253–1260.

    Google Scholar 

  • Sarkar R, Xiao W, Kazazian HH Jr. A single adeno-associated virus (AAV)-murine factor VIII vector partially corrects the hemophilia A phenotype. J Thromb Haemost 2003; 1(2):220–226.

    Article  PubMed  CAS  Google Scholar 

  • Schnell MA, Zhang Y, Tazelaar J, et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001;3(5 Pt 1):708–722.

    Article  PubMed  CAS  Google Scholar 

  • Stein CS, Kang Y, Sauter SL, et al. In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol Ther 2001;3(6):850–856.

    Article  PubMed  CAS  Google Scholar 

  • Tonn T, Herder C, Becker S, Seifried E, Grez M. Generation and characterization of human hematopoietic cell lines expressing factor VIII. J Hematother Stem Cell Res 2002;11(4):695–704.

    Article  Google Scholar 

  • van Hylckama Vlieg A, van der Linden IK, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood 2000;95(12):3678–3682.

    PubMed  Google Scholar 

  • Van Raamsdonk JM, Ross CJ, Potter MA, et al. Treatment of hemophilia B in mice with nonautologous somatic gene therapeutics. J Lab Clin Med 2002;139(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther 2000;1(2):154–158.

    Article  CAS  Google Scholar 

  • Wang J-M, Zheng H, Blaivas M, Kurachi K. Persistent systemic production of human factor IX in mice by skeletal myoblast-mediated gene transfer: feasibility of repeat application to obtain therapeutic levels. Blood 1997;90:1075–1082.

    PubMed  CAS  Google Scholar 

  • Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee K-F, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci USA 1997;94:11,563–11,566.

    Article  PubMed  CAS  Google Scholar 

  • White SJ, Page SM, Margaritis P, Brownlee GG. Long-term expression of human clotting factor IX from retrovirally transduced primary human keratinocytes in vivo. Hum Gene Ther 1998;9(8):1187–1195.

    Article  PubMed  CAS  Google Scholar 

  • Wood WI, Capon DJ, Simonsen CC, et al. Expression of active human factor VIII from recombinant DNA clones. Nature 1984;312: 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999;73(5):3994–4003.

    PubMed  CAS  Google Scholar 

  • Yao SN, Farjo A, Roessler BJ, Davidson BL, Kurachi K. Adenovirus-mediated transfer of human factor IX gene in immunodeficient and normal mice: evidence for prolonged stability and activity of the transgene in liver. Viral Immunol 1996;9(3):141–153.

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Kurachi K. Expression of human factor IX in mice after injection of genetically modified myoblasts. Proc Natl Acad Sci USA 1992;89: 3357–3361.

    Article  PubMed  CAS  Google Scholar 

  • Yao S-N, Smith KJ, Kurachi K. Primary myoblast-mediated gene transfer: persistent expression of human factor IX in mice. Gene Ther 1994;1: 99–107.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Lozier, J. (2006). Hemophilia as a Model Disease for Gene Therapy of Genetic Disorders. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics