Skip to main content

A Perspective on Drug-Nutrient Interactions

  • Chapter

Part of the book series: Nutrition and Health ((NH))

Abstract

There are so many drugs available for use in the human condition, with continued approval of new agents, and expanded indications for existing ones (1). Likewise spending on pharmaceuticals in the United States continues to increase by 10–15% each year, driven by increased utilization as well as increased cost per prescription (1). According to a recent report, close to $141 billion of the estimated $1.4 trillion spent on health care annually in the United States are accounted for by prescription drugs (2). Beyond prescription medication, the wide availability of over-the-counter (OTC) pharmaceuticals and dietary supplements together with the increasing emphasis on self-care among people further increases consumption patterns of pharmacologically active substances. Recent estimates are that about 80% of Americans use medication, whether prescription, OTC, or dietary supplement products (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shah ND, Hoffman JM, Vermeulen LC, et al. Projecting future drug expenditures—2003. Am J HealthSyst Pharm 2003; 60: 137–149.

    Google Scholar 

  2. Centers for Medicare and Medicaid Services. Report on national healthcare spending. www.cms.hhs.gov, January 8, 2003.

    Google Scholar 

  3. Kaufman DW, Kelly JP, Rosenberg L, et al. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 2002; 287: 337–344.

    Article  Google Scholar 

  4. Nielsen SJ, Popkin BM. Patterns and trends in food portion sizes, 1977–1998. JAMA 2003; 289: 450–453.

    Article  Google Scholar 

  5. Kotsonis FN, Mackey MA. (eds.). Nutritional Toxicology ( 2nd ed. ). Taylor and Francis, London, UK, 2001.

    Google Scholar 

  6. Sikorski ZE. (ed.). Chemical and Functional Properties of Food Components. ( 2nd ed. ). CRC Press, Boca Raton, FL, 2002.

    Google Scholar 

  7. Bonafaccia G, Marocchini M, Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 2003; 80: 9–15.

    Article  CAS  Google Scholar 

  8. Shelnutt SR, Cimino CO, Wiggins PA, Ronis MJJ, Badger TM. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am J Clin Nutr 2002; 76: 588–594.

    CAS  Google Scholar 

  9. Hathcock JN, Coon J. (eds). Nutrition and Drug Interrelations. Academic Press, New York, NY, 1978.

    Google Scholar 

  10. Roe DA, March DC. Interactions of Selected Drugs and Nutrients in Patients: Handbook ( 3rd ed. ). American Dietetic Association, Chicago, IL, 1982.

    Google Scholar 

  11. Lerman F, Weinbert R. Drug Interactions Index. Medical Economics, Montvale, NJ, 1982.

    Google Scholar 

  12. Winick M. (ed.). Nutrition and Drugs. Wiley, New York, NY, 1983.

    Google Scholar 

  13. Roe DA, Campbell TC. Drugs and Nutrients: the Interactive Effects. Marcel Dekker, New York, NY, 1984.

    Google Scholar 

  14. Roe DA. Drug-Induced Nutritional Deficiencies ( 2nd ed. ). AVI Publishing, Westport, CT, 1985.

    Google Scholar 

  15. Schwartz J, Williams R, Savage J. Connections: Nutrition, Contraception, Women, Eating. Sun Rose Associates, 1985.

    Google Scholar 

  16. Morgan BLG. Food and Drug Interaction Guide. Simon and Shuster, New York, NY, 1986.

    Google Scholar 

  17. Roe DA. Diet and Drug Interactions. Wiley, New York, NY, 1988.

    Google Scholar 

  18. Weibert RT, Norcross WA. (eds.). Drug Interactions Index, ( 2nd ed. ). Medical Economics, Montvale, NJ, 1988.

    Google Scholar 

  19. Youdim MBH, DaPrada M, Amrein R. Cheese Effects and Selective MAO-Inhibitors. Springer-Verlag, New York, NY, 1988.

    Google Scholar 

  20. Roe DA. Handbook on Drug and Nutrient Interactions: A Problem-Oriented Reference Guide ( 4th ed. ). American Dietetic Association, Chicago, IL, 1989.

    Google Scholar 

  21. Roe DA. Handbook on Drug and Nutrient Interactions: A Reference and Study Guide ( 5th ed. ). American Dietetic Association, Chicago, IL, 1994.

    Google Scholar 

  22. Ziegler EE, Flier LJ. (eds.). Present Knowledge in Nutrition. ( 7th ed. ). ILSI Press, Washington, DC, 1996.

    Google Scholar 

  23. Holt GA. Food and Drug Interactions: A Guide for Consumers. Precept Press, Chicago, IL, 1998.

    Google Scholar 

  24. Batz F, Austin S, Brown DJ, et al. (eds.). A–Z Guide to Drug–Herb and Vitamin Interaction. Prima Communications, Rocklin, CA, 1999.

    Google Scholar 

  25. Shils ME, Olson JA, Shike M, Ross AC. (eds.). Modern Nutrition in Health and Disease ( 9th ed. ). Lippincott Williams and Wilkins, Philadelphia, PA, 1999.

    Google Scholar 

  26. Meletis CD, Jacobs T. Interactions Between Drugs and Natural Medicines: What the Physician and Pharmacist Must Know about Vitamins, Minerals, Foods and Herbs. Eclectic Medical Publications, Fresno, CA, 1999.

    Google Scholar 

  27. Harkness R, Bratman S. (eds.). The Natural Pharmacist: Drug–Herb-Vitamin Interactions Bible. Prima Communications, Rocklin, CA, 2001.

    Google Scholar 

  28. Pronsky ZM, Crowe JP, et al. (eds.). Food–Medication Interactions (12th ed.). Food Medication Interactions, 2001.

    Google Scholar 

  29. Tatro DS. (ed.). Drug Interaction Facts: Herbal Supplements and Food. Facts and Comparisons, St. Louis, MO, 2002.

    Google Scholar 

  30. Couris RR, Tataronis GR, Dallal GE, et al. Assessment of healthcare professionals’ knowledge about warfarin-vitamin K drug-nutrient interactions. J Am Coll Nutr 2000; 19: 439–445.

    Article  CAS  Google Scholar 

  31. Teresi ME, Morgan DE. Attitudes of healthcare professionals toward patient counseling on drug-nutrient interactions. Ann Pharmacother 1994; 28: 576–580.

    CAS  Google Scholar 

  32. Jolliffe N, Most RM. The appraisal of nutritional status. Vitamins Hormones 1943; 1: 49–107.

    Google Scholar 

  33. Neovonen P, Gothoni G, Hackman R, Bjorksten K. Interference of iron with the absorption of tetracyclines in man. BMJ 1970; 4: 532–534.

    Article  Google Scholar 

  34. Welling PG. Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharmacol 1977; 5: 291–334.

    Article  CAS  Google Scholar 

  35. Richards RK, Kueter K, Klatt TJ. Effects of vitamin C deficiency on action of different types of barbiturates. Proc Soc Exp Biol Med 1941; 48: 403–409.

    Article  CAS  Google Scholar 

  36. Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA 1954; 156: 1549–1552.

    Article  CAS  Google Scholar 

  37. Biehl JP, Vilter RW. Effect of isoniazid on vitamin B6 metabolism; its possible significance in producing isoniazid neuritis. Proc Soc Exp Biol Med 1954; 85: 389–392.

    Article  CAS  Google Scholar 

  38. McLean AEM. Drug nutrient interactions from experiment to epidemiology. In: Nutrition in health and disease and international development, Symp XII Internat Congr. Alan R. Liss, New York, NY, 1981, pp. 729–737.

    Google Scholar 

  39. Krishnaswamy K. Drug metabolism and pharmacokinetics in malnutrition. Clin Pharmacokin 1978; 3: 216–240.

    Article  CAS  Google Scholar 

  40. Abernethy DR, Greenblatt DJ. Pharmacokinetics of drugs in obesity. Clin Pharmacokin 1982; 7: 108–124.

    Article  CAS  Google Scholar 

  41. Hermus RJJ. A discussion of drug effects on nutrient absorption, transport and metabolism. Drug-Nutr Interact 1985; 4: 137–141.

    CAS  Google Scholar 

  42. Roe DA. Prediction of the cause, effects, and prevention of drug-nutrient interactions using attributes and attribute values. Durg-Nutr Interact 1985; 3: 187–189.

    CAS  Google Scholar 

  43. Roe DA. Process guides on drug and nutrient interactions in arthritics. Drug-Nutr Interact 1987; 5: 135–142.

    CAS  Google Scholar 

  44. Roe DA. Process guides on drug-nutrient interactions for health care providers and patients. Drug-Nutr Interact 1987; 5: 131–133.

    CAS  Google Scholar 

  45. Roe DA. Drug interference with the assessment of nutritional status. Clin Lab Med 1981; 1: 647–664.

    Google Scholar 

  46. Roe DA. Drug effects on nutrient absorption, transport, and metabolism. Drug-Nutr Interact 1985; 4: 117–135.

    CAS  Google Scholar 

  47. Chan L-N. Drug-nutrient interaction in clinical nutrition. Curr Opin Clin Nutr Metab Care 2002; 5: 327–332.

    Article  Google Scholar 

  48. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996; 31: 47–64.

    Article  CAS  Google Scholar 

  49. Cheymol G. Effects of obesity on pharmacokinetics: implications for drug therapy. Clin Pharmacokinet 2000; 39: 215–231.

    Article  CAS  Google Scholar 

  50. Conney AH, Burns JJ. Factors influencing drug metabolism. Adv Pharmacol 1962; 1: 31–58.

    Article  CAS  Google Scholar 

  51. Conney AH, Bray GA, Evans C, et al. Metabolic interactions between L-ascorbic acid and drugs. Ann NY Acad Sci 1961; 92: 115–127.

    Article  CAS  Google Scholar 

  52. Becking GC. Vitamin A status and hepatic drug metabolism in the rat. Can J Physiol Pharmacol 1973; 21: 6–11.

    Article  Google Scholar 

  53. Bailey LB, Duhaney RL, Maneval DR, et al. Vitamin B-12 status is inversely associated with plasma homocysteine in young women with C677T and/or A 1298C methylenetetrahydrofolate reductase polymorphisms. J Nutr 2002; 132: 1872–1878.

    CAS  Google Scholar 

  54. McNulty H, McKinley MC, Wilson B, et al. Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr 2002; 76: 436–441.

    CAS  Google Scholar 

  55. Evans WE. Differing effects of methylenetetrahydrofolate reductase single nucleotide polymorphism on methotrexate efficacy and toxicity in rheumatoid arthritis. Pharmacogenetics 2002; 12: 181–182.

    Article  Google Scholar 

  56. Calvo-Romero JM. Severe pancytopenia associated with low-dose methotrexate therapy for rheumatoid arthritis. Ann Pharmacother 2001; 35: 1575–1577.

    Article  CAS  Google Scholar 

  57. Mofredj A, Baraka D, Charoud A. Comment: severe pancytopenia associated with low-dose methotrexate therapy for rheumatoid arthritis. Ann Pharmacother 2002; 36: 1295.

    Article  Google Scholar 

  58. Ohosone Y, Okano Y, Kameda H, et al. Clinical characteristics related to methotrexate-induced pancytopenia. Clin Rheumatol 1997; 16: 321–323.

    Article  CAS  Google Scholar 

  59. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37: 213–255.

    Article  CAS  Google Scholar 

  60. Johansson Ö, Wahlin-Boll E, Lindberg T, Melander A. Opposite effects of carbohydrate and protein on phneytoin absorption in man. Drug-Nutr Interact 1983; 2: 139–144.

    CAS  Google Scholar 

  61. Lasswell WL, Wilkins JM, Weber SS. In vitro interaction of selected drugs with coffee, tea, and gallotannic acid. Drug-Nutr Interact 1984; 2: 235–241.

    CAS  Google Scholar 

  62. Conney AH, Pantuck EJ, Hsiao KC, et al. Regulation of drug metabolism in man by environmental chemicals and diet. Fed Proc 1977; 36: 1647–1652.

    CAS  Google Scholar 

  63. Gurley BJ, Gardner SF, Hubbard MA, et al. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther 2002; 72: 276–287.

    Article  CAS  Google Scholar 

  64. Brigelius-Flohé R, Kelly FJ, Salonen JT, et al. The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr 2002; 76: 703–716.

    Google Scholar 

  65. Levy L, Higgins LJ, Burbridge TN. Isoniazid-induced vitamin B6 deficiency. Am Rev Resp Dis 1967; 96: 910–917.

    CAS  Google Scholar 

  66. DiLorenzo PA. Pellagra-like syndrome associated with isoniazid therapy. Acta Derm Dermato Venereol 1967; 47: 318–322.

    CAS  Google Scholar 

  67. Burrows MT, Farr WK. The action of mineral oil per os on the organism. Proc Soc Exp Biol Med 1927; 24: 719–723.

    Article  Google Scholar 

  68. Curtis AC, Balmer RS. The prevention of carotene absorption by liquid petrolatum. JAMA 1959; 113: 1785–1788.

    Article  Google Scholar 

  69. Faloon WW. Drug production of intestinal malabsorption. NY St J Med 1970; 70: 2189–2192.

    CAS  Google Scholar 

  70. Dubick MA. Interactions of vitamin B6 and xenobiotics. In:Hathcock JN, ed. Nutritional Toxicology, Vol. III. Academic Press, New York, NY, 1989, pp. 97–121.

    Google Scholar 

  71. Bartel PR, Ubbink JB, Delport R, et al. Vitamin B-6 supplementation and theophylline-related effects in humans. Am J Clin Nutr 1994; 60: 93–99.

    CAS  Google Scholar 

  72. Corrigan JJ, Marcus FI. Coagulopathy associated with vitamin E ingestion. JAMA 1974; 230: 1300–1301.

    Article  Google Scholar 

  73. Birringer M, Pfluger P, Kluth D, et al. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG cells. J Nutr 2002; 132: 3113–3118.

    CAS  Google Scholar 

  74. Sontag TJ, Parker RS. Cytochrome P450 w-hydroxylase pathway of tocopherol catabolism: novel mechanisms of regulation of vitamin E status. J Biol Chem 2002; 277: 25290–25296.

    Article  CAS  Google Scholar 

  75. Russell RM. The vitamin A spectrum: from deficiency to toxicity. Am J Clin Nutr 2000; 71: 878–884.

    CAS  Google Scholar 

  76. Luzecky MH, Burman KD, Schultz ER. The syndrome of inappropriate secretion of antidiuretic hormone associated with amitryptyline administration. S Med J 1974; 67: 495–497.

    Article  CAS  Google Scholar 

  77. Movig KLL, Leufkens HGM, Lenderink AW, Egberts ACG. Serotonergic antidepressants associated with an increased risk for hyponatremia in the elderly. Eur J Clin Pharmacol 2002; 58: 143–148.

    Article  CAS  Google Scholar 

  78. Stedman CA, Begg EK, kennedy MA, et al. Cytochrome P450 2D6 genotype does not predict SSRI induced hyponatraemia. Human Psychopharmacol 2002; 17: 187–190.

    Article  CAS  Google Scholar 

  79. Fleming BJ, Genuth SM, Gould AB, et al. Laxative-induced hypokalemia, sodium depletion, and hyperreninemia. Ann Intern Med 1975; 83: 60–62.

    Article  CAS  Google Scholar 

  80. Thorn GW. Clinical considerations in the use of corticosteroids. N Engl J Med 1966; 274: 775–781.

    Article  CAS  Google Scholar 

  81. Race TR, Paes IC, Faloon WW. Intestinal malabsorption induced by oral colchicine: comparison with neomycin and cathartic agents. Am J Med Sci 1970; 259: 32–41.

    Article  CAS  Google Scholar 

  82. Subbiah V, Tayek JA. Tetany secondary to the use of a proton-pump inhibitor. Ann Intern Med 2002; 137: 219–220.

    Article  Google Scholar 

  83. Meyrick Thomas RH, Rowland Payne CME, Black MM. Isoniazid-induced pellagra, BMJ 1981; 283: 287–288.

    Article  CAS  Google Scholar 

  84. Ervin RB, Kennedy-Stephenson J. Mineral intakes of elderly adult supplement and non-supplement users in the third National Health and Nutrition Examination Survey. J Nutr 2002; 132: 3422–3427.

    CAS  Google Scholar 

  85. Helms AE, Brodell RT. Scurvy in a patient with presumptive oral lichen planus. Nutr Clin Pract 2002; 17: 237–239.

    Article  Google Scholar 

  86. Stephen R, Utecht T. Scurvy identified in the emergency department: a case report. J Emerg Med 2001; 21: 235–237.

    Article  CAS  Google Scholar 

  87. Úbeda N, Alonso-Aperte E, Varela-Moreiras G. Acute valproate administration impairs methionine metabolism in rats. J Nutr 2002; 132: 2737–2742.

    Google Scholar 

  88. Venhoff N, Setzer B, Lebrecht D, Walker UA. Dietary supplements in the treatment of nucleoside reverse transcriptase inhibitor-related mitochondrial toxicity. AIDS 2002; 16: 800–802.

    Article  Google Scholar 

  89. Bayliss EM, Crowley JM, Preece JM, et al. Influence of folic acid on blood phenytoin levels. Lancet 1971; 1: 62–65.

    Article  Google Scholar 

  90. Jensen ON, Olesen OV. The influence of folic acid on phenytoin (DPH) metabolism and the 24-hours fluctuation in urinary output of 5-(p-hypoxyphenyl)-5-phenyl-hydantoin (HPPH). Acta Pharmacol Toxicol 1970; 28: 265–269.

    Google Scholar 

  91. Furlant MP, Benetello P, Avogaro A, Dainese R. Effects of folic acid on phenytoin kinetics in healthy subjects. Clin Pharmacol Ther 1978; 24: 294–297.

    Google Scholar 

  92. Billings RE. Interactions between folate metabolism, phenytoin metabolism, and liver microsomal cytochrome P450. Drug-Nutr Interact 1984; 3: 21–32.

    CAS  Google Scholar 

  93. Lewis DP, Van Dyke DC, Stumbo PJ, Berg MJ. Drug and environmental factors associated with adverse pregnancy outcomes. Part I: antiepileptic drugs, contraceptives, smoking and folate. Ann Pharmacother 1998; 32: 802–817.

    Article  CAS  Google Scholar 

  94. Yoo JH, Hong SB. A common mutation in the methylene-tetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants. Metabolism 1999; 48: 1047–1051.

    Article  CAS  Google Scholar 

  95. Said HM, Redha R, Nylander W. Biotin transport in the human intestine: inhibited by anticonvulsant drugs. Am J Clin Nutr 1989; 49: 127–131.

    CAS  Google Scholar 

  96. Rathman SC, Eisenschenk S, McMahon RJ. The abundance and function of biotin-dependent enzymes are reduced in rats chronically administered carbamazepine. J Nutr 2002; 132: 3405–3410.

    CAS  Google Scholar 

  97. Keen CL, Mark-Savage P, Lönnerdal B, Hurley LS. Teratogenic effects of D-penicillamine in rats: relation to copper deficiency. Drug-Nutr Interact 1983; 2: 17–34.

    CAS  Google Scholar 

  98. Foy H, Kondi A, MacDougal L. Pure red cell aplasia in marsmus and kwashiorkor-treated with riboflavin, BMJ 1961; 1: 937–941.

    Article  CAS  Google Scholar 

  99. Foy H, Kondi A, Verjee ZHM. Relation of riboflavin deficiency to corticosteroid metabolism and red cell hypoplasia in baboons. J Nutr 1972; 102: 571–582.

    CAS  Google Scholar 

  100. Smithard DJ, Langman MJS. The effect of vitamin supplementation upon antipyrine metabolism in the elderly. Br J Clin Pharmacol 1978; 5: 181–185.

    Article  Google Scholar 

  101. Axelrod J, Udenfriend S, Brodie BB. Ascorbic acid in aromatic hydroxylation III: effect of ascorbic acid on hydroxylation of acetanilide, aniline, and antipyrine in vivo. J Pharmacol Exp Ther 1954;111:176– 181.

    Google Scholar 

  102. Omaye ST, Green MD, Turnbull JD, et al. Influence of ascorbic acid and erythorbic acid on drug metabolism in the Cynomolgus monkey. J Clin Pharmacol 1980; 20: 172–183.

    Google Scholar 

  103. Blanchard J, Hochman D. Effects of vitamin C on caffeine pharmacokinetics in young and aged guinea pigs. Drug-Nutr Interact 1984; 2: 243–255.

    CAS  Google Scholar 

  104. Kuenzig W, Tkaczevski V, Kamm JJ, et al. The effect of ascorbic acid deficiency on extrahepatic microsomal metabolism of drugs and carcinogens in the guinea pig. J Pharmacol Exp Ther 1977;201:527– 533.

    Google Scholar 

  105. Peterson FJ, Holloway DE, Duquette PH, et al. Dietary ascorbic acid and hepatic mixed function oxidase activity in the guinea pig. Biochem Pharmacol 1983; 32: 91–96.

    Google Scholar 

  106. Zannoni VG, Flynn EJ, Lynch MM. Ascorbic acid and drug metabolism. Biochem Pharmacol 1972; 21: 1377–1392.

    Article  CAS  Google Scholar 

  107. Sato PH, Zannoni VG. Stimulation of drug metabolism by ascorbic acid in weanling guinea pigs. Biochem Pharmacol 1974; 23: 3121–3128.

    Article  Google Scholar 

  108. Beattie AD, Sherlock S. Ascorbic acid deficiency in liver disease. Gut 1976; 17: 571–575.

    Article  Google Scholar 

  109. Ginter E, Vejmolova J. Vitamin C status and pharmacokinetic profile of antipyrine in man. Br J Clin Pharmacol 1981; 12: 256–258.

    Google Scholar 

  110. Holloway DE, Hutton SW, Peterson FJ, et al. Lack of effect of subclinical ascorbic acid deficiency upon antipyrine metabolism in man. Am J Clin Nutr 1982; 35: 917–924.

    Google Scholar 

  111. Trang JM, Blanchard J, Conrad KA, et al. The effect of vitamin C on the pharmacokinetics of caffeine in elderly men. Am J Clin Nutr 1982; 35: 487–494.

    Google Scholar 

  112. Ueta E, Suzuki E, Nanba E, et al. Regulation of cigarette smoke-induced cytochrome P4501A1 gene expression in osteogenic disorder Shionogi rat liver and in lung by large ascorbic acid dose. Biosci Biotech Biochem 2001; 65: 2548–2551.

    Article  CAS  Google Scholar 

  113. Wilson JT, Van Boxtel CJ, Alvan G, et al. Failure of vitamin C to affect the pharmacokinetic profile of antipyrine in man. J Clin Pharmacol 1976; 16: 265–270.

    Google Scholar 

  114. Houston JB. Effect of vitamin C supplement on antipyrine disposition in man. Br J Clin Pharmacol 1977; 4: 236–239.

    Google Scholar 

  115. Blanchard J, Achari R, Harrison GG, Conrad KA. Influence of vitamin C on antipyrine pharmacokinetics in elderly men. Biopharm Drug Disposition 1984; 5: 43–54.

    Article  CAS  Google Scholar 

  116. Wozniak G, Anuszewska EL. Influence of vitamins C and E on cytotoxic activity of adriamycin in chosen cell cultures. Acta Poloniae Pharmaceutica 2002; 59: 31–35.

    CAS  Google Scholar 

  117. Nefic H. Anticlastogenic effect of vitamin C on cisplatin induced chromosome aberrations in human lymphocyte cultures. Mutation Res 2001; 498: 89–98.

    Article  CAS  Google Scholar 

  118. Olas B, Wachowicz B, Buczynski A. Vitamin C suppresses the cisplatin toxicity on blood platelets. Anti-Cancer Drugs 2000; 11: 487–493.

    Article  CAS  Google Scholar 

  119. DeMartinis BS, Bianchi MD. Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharm Res 2001; 44: 317–320.

    Article  CAS  Google Scholar 

  120. Leung YK, Ho JW. Effects of vitamins and common drugs on reduction of 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone in rat microsomes. Arch Physiol Bioch 2001; 109: 175–179.

    Article  CAS  Google Scholar 

  121. Sheweita SA, Abd El-Gabar, Bastawy M. Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants. Toxicol 2001; 165: 217–224.

    Google Scholar 

  122. De K, Roy K, Saha A, Sengupta C. Evaluation of alpha-tocopherol, probucol and ascorbic acid as suppressors of digoxin induced lipid peroxidation. Acta Poloniae Pharmaceutica 2001; 58: 391–400.

    Google Scholar 

  123. Roy K, De AU, Sengupta C. Evaluation of glutathione and ascorbic acid as suppressors of drug-induced lipid peroxidation. Ind J Exp Biol 2000; 38: 580–586.

    CAS  Google Scholar 

  124. Dresser GK, Wacher V, Wong S, et al. Evaluation of peppermint oil and ascorbyl palmitate as inhibitors of cytochrome P4503A4 activity in vitro and in vivo. Clin Pharmacol Ther 2002; 72: 247–255.

    Article  CAS  Google Scholar 

  125. Vyas SP, Koshti J, Singh R, Jain NK. Biopharmaceutical studies of co-trimoxazole in the presence of vitamins. Indian Drugs 1993; 30: 642–645.

    Google Scholar 

  126. Zamah NM, Humpel M, Kuhnz W, et al. Absence of an effect of high vitamin C dosage on the systemic availability of ethinyl estradiol in women using a combination oral contraceptive. Contraception 1993; 48: 377–391.

    Google Scholar 

  127. Morris JC, Beeley L, Ballantine N. Interaction of ethinyl estradiol with ascorbic acid in man. BMJ 1981; 283: 503.

    Article  CAS  Google Scholar 

  128. Susick RL, Zannoni VG. Effect of ascorbic acid on the consequence of acute alcohol consumption in humans. Clin Pharmacol Ther 1987; 41: 502–509.

    Article  Google Scholar 

  129. Suresh MV, Menon B, Indira M. Effects of exogenous vitamin C on ethanol toxicity in rats. Ind J Physiol Pharmacol 2000; 44: 401–410.

    Google Scholar 

  130. Williams K, Begg E, Wade D, O’Shea K. Effects of phenytoin, phenobarbital, and ascorbic acid on misonidazole elimination. Clin Pharmacol Ther 1983; 33: 314–321.

    Article  CAS  Google Scholar 

  131. Hume R, Johnstone JMS, Weyers E. Interaction of ascorbic acid and warfarin. JAMA 1972; 219: 1479.

    Article  CAS  Google Scholar 

  132. Rosenthal G. Interaction of ascorbic acid and warfarin. JAMA 1971; 215: 1671.

    Article  CAS  Google Scholar 

  133. Smith EC, Skalski RJ, Jonson GC, Rossi GV. Interaction of ascorbic acid and warfarin. JAMA 1972; 221: 1166.

    Article  CAS  Google Scholar 

  134. Das N, Nebioglu S. Vitamin C–aspirin interactions in laboratory animals. J Clin Pharm Ther 1992; 17: 343–346.

    Google Scholar 

  135. Coffey G, Wilson CWM. Ascorbic acid deficiency and aspirin induced hematemesis. BMJ 1975; 1: 208.

    Google Scholar 

  136. Harris AB, Hartley J, Moor A. Reduced ascorbic acid excretion and oral contraceptives. Lancet 1973; 2: 201–202.

    Article  CAS  Google Scholar 

  137. McElroy VJ, Schendel HE. Influence of oral contraceptives on ascorbic acid concentrations in healthy, sexually mature women. Am J Clin Nutr 1973; 26: 191–196.

    Google Scholar 

  138. Kallner AB, Hartmann D, Hornig DH. On the requirement of ascorbic acid in man: a steady-state turnover and body pool in smokers. Am J Clin Nutr 1981; 34: 1347–1355.

    CAS  Google Scholar 

  139. Dietrich M, Block G, Norkus EP, et al. Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase y-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr 2003; 77: 160–166.

    CAS  Google Scholar 

  140. Preston AM, Rodriguez C, Rivera CE, Sahai H. Influence of environmental tobacco smoke on vitamin C status in children. Am J Clin Nutr 2003; 77: 167–172.

    Google Scholar 

  141. Miller LB, Raatz S. Development of a drug-food interaction discharge counseling program. Nutr Internat 1987; 3: 47–49.

    Google Scholar 

  142. Jackson R. Food-drug interactions. Unsolved mysteries and savvy solutions. Health Care Food and Nutrition Focus 1998;14(12):1,3–5.

    Google Scholar 

  143. Jackson R. Food-drug interactions. Unsolved mysteries and savvy solutions. Health Care Food and Nutrition Focus 1998;14(12):1,3–5.

    Google Scholar 

  144. Joint Commission Resources. Patient Safety Initiative 2000: Spotlight on Solutions Compendium of Successful Practices, vol. 1. National Patient Safety Foundation (publ.), 2001.

    Google Scholar 

  145. Dahl M. JCAHO update. Patient’s rights and nutrition screening. A five-step program to help you prepare for the surveys. Health Care Food and Nutrition Focus 2001; 17 (5): 7–11.

    CAS  Google Scholar 

  146. Gauthier I, Malone M, et al. Comparison of programs for preventing drug-nutrient interactions in hospitalized patients. Am J Health-Syst Pharm 1997; 54: 405–411.

    CAS  Google Scholar 

  147. Gauthier I, Malone M. Drug-food interactions in hospitalised patients. Drug Saf 1998; 18 (6): 383–393.

    Article  CAS  Google Scholar 

  148. Nowlin DB, Blanche W. Refining a food-drug interaction program. Am J Health-Syst Pharm 1998; 55: 114, 122–123.

    Google Scholar 

  149. Rich DS. Ask the joint commission (QandA column). Hosp Pharm 1998;33(10): 1259, 1274.

    Google Scholar 

  150. Clairmont MA: Are you audit ready? Today’s Dietitian 2001;May:39–40.

    Google Scholar 

  151. Inman-Felton AE, Ward DC. Clarifying problematic JCAHO standards: Solutions for hospital practitioners. J Am Dietet Assoc 1996; 96 (11): 1193–1196.

    Article  CAS  Google Scholar 

  152. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981; 30: 239–245.

    Google Scholar 

  153. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002; 42: 620–643.

    Article  CAS  Google Scholar 

  154. Inciardi JF, Stijnen T, McMahon K. Using correspondence analysis in pharmacy practice. Am J HealthSyst Pharm 2002; 59: 968–972.

    Google Scholar 

  155. Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions. JAMA 2001; 286: 2270–2279.

    Google Scholar 

  156. Altman RB, Klein TE. Challenges for biomedical informatics and pharmacogenomics. Annu Rev Pharmacol Toxicol 2002; 42: 113–133.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boullata, J.I., Barber, J.R. (2004). A Perspective on Drug-Nutrient Interactions. In: Boullata, J.I., Armenti, V.T. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-781-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-781-9_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5359-2

  • Online ISBN: 978-1-59259-781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics