Skip to main content

Use of Hematopoietic Growth Factors in AIDS-Related Malignancies

  • Chapter
Hematopoietic Growth Factors in Oncology

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Malignancies develop in approx 30–40% of patients with human immunodeficiency virus (HIV) infections (1). In 1993, The Centers for Disease Control listed three malignancies as acquired immunodeficiency syndrome (AIDS)-defining conditions, Kaposi’s sarcoma; intermediate or high-grade, B-cell non-Hodgkin’s lymphoma (NHL); and invasive cervical cancer (2). Other malignancies with an increased incidence in people with HIV infection include angiosarcoma, Hodgkin’s disease (HD), multiple myeloma, brain cancer, and seminoma (3). Survival has increased in patients with HIV infection and malignancy owing to better prevention, diagnosis, and treatment of opportunistic infections as well as more effective antiretroviral therapies. Unfortunately, improved survival may result in an increased incidence of malignancies, particularly those not considered AIDS-defining conditions, i.e., Kaposi’s sarcoma (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spina M, Vaccher E, Carbone A, Tirelli U. Neoplastic complications of HIV infection. Ann Oncol 1999; 10: 1271–1286.

    Article  PubMed  CAS  Google Scholar 

  2. revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 1992; 41: 1–19.

    Google Scholar 

  3. Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders. Lancet 1998; 351: 1833–1839.

    Article  PubMed  CAS  Google Scholar 

  4. Lee FC, Mitsuyasu RT. Chemotherapy of AIDS-related Kaposi’s sarcoma. Hematol Oncol Clin North Am 1996; 10: 1051–1068.

    Article  PubMed  CAS  Google Scholar 

  5. Kuritzkes DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis 2000; 30: 256–260.

    Article  PubMed  CAS  Google Scholar 

  6. Mitsuyasu R. Oncological complications of human immunodeficiency virus disease and hematologic consequences of their treatment. Clin Infect Dis 1999; 29: 35–43.

    Article  PubMed  CAS  Google Scholar 

  7. Kitano K, Abboud CN, Ryan DH, Quan SG, Baldwin GC, Golde DW. Macrophage-active colony-stimulating factors enhance human immunodeficiency virus type 1 infection in bone marrow stem cells. Blood 1991; 77: 1699–1705.

    PubMed  CAS  Google Scholar 

  8. Koyanagi Y, O’Brien WA, Zhao JQ, Golde DW, Gasson JC, Chen IS. Cytokines alter production of HIV-1 from primary mononuclear phagocytes. Science 1988; 241: 1673–1675.

    Article  PubMed  CAS  Google Scholar 

  9. Perno CF, Cooney DA, Gao WY, et al. Effects of bone marrow stimulatory cytokines on human immunodeficiency virus replication and the antiviral activity of dideoxynucleosides in cultures of monocyte/macrophages. Blood 1992; 80: 995–1003.

    PubMed  CAS  Google Scholar 

  10. Denis M, Ghadirian E. Interleukin 13 and interleukin 4 protect bronchoalveolar macrophages from productive infection with human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1994; 10: 795–802.

    Article  PubMed  CAS  Google Scholar 

  11. Kandanearatchi A, Zuckerman M, Smith M, Vyakarnam A, Everall IP. Granulocyte-macrophage colony-stimulating factor enhances viral load in human brain tissue: amelioration with stavudine. AIDS 2002; 16: 413–420.

    Article  PubMed  CAS  Google Scholar 

  12. Novak RM, Holzer TJ, Kennedy MM, Heynen CA, Dawson G. The effect of interleukin 4 (BSF-1) on infection of peripheral blood monocyte-derived macrophages with HIV-1. AIDS Res Hum Retroviruses 1990; 6: 973–976.

    PubMed  CAS  Google Scholar 

  13. Perno CF, Yarchoan R, Cooney DA, et al. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3’-azido-2’3’-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine. J Exp Med 1989; 169: 933–951.

    Article  PubMed  CAS  Google Scholar 

  14. Schuitemaker H, Kootstra NA, van Oers MH, van Lambalgen R, Tersmette M, Miedema F. Induction of monocyte proliferation and HIV expression by IL-3 does not interfere with anti-viral activity of zidovudine. Blood 1990; 76: 1490–1493.

    PubMed  CAS  Google Scholar 

  15. Hammer SM, Gillis JM. Synergistic activity of granulocyte-macrophage colony-stimulating factor and 3’-azido-3’-deoxythymidine against human immunodeficiency virus in vitro. Antimicrob Agents Chemother 1987; 31: 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  16. Hammer SM, Gillis JM, Pinkston P, Rose RM. Effect of zidovudine and granulocyte-macrophage colony-stimulating factor on human immunodeficiency virus replication in alveolar macrophages. Blood 1990; 75: 1215–1219.

    PubMed  CAS  Google Scholar 

  17. Kedzierska K, Maerz A, Warby T, et al. Granulocyte-macrophage colony-stimulating factor inhibits HIV-1 replication in monocyte-derived macrophages. AIDS 2000; 14: 1739–1748.

    Article  PubMed  CAS  Google Scholar 

  18. Kornbluth RS, Oh PS, Munis JR, Cleveland PH, Richman DD. Interferons and bacterial lipopolysaccharide protect macrophages from productive infection by human immunodeficiency virus in vitro. J Exp Med 1989; 169: 1137–1151.

    Article  PubMed  CAS  Google Scholar 

  19. Matsuda S, Akagawa K, Honda M, Yokota Y, Takebe Y, Takemori T. Suppression of HIV replication in human monocyte-derived macrophages induced by granulocyte/macrophage colony-stimulating factor. AIDS Res Hum Retroviruses 1995; 11: 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  20. Miles SA, Mitsuyasu RT, Moreno J, et al. Combined therapy with recombinant granulocyte colony-stimulating factor and erythropoietin decreases hematologic toxicity from zidovudine. Blood 1991; 77: 2109–2117.

    PubMed  CAS  Google Scholar 

  21. Ross SD, DiGeorge A, Connelly JE, Whiting GW, McDonnell N. Safety of GM-CSF in patients with AIDS: a review of the literature. Pharmacotherapy 1998; 18: 1290–1297.

    PubMed  CAS  Google Scholar 

  22. Armstrong WS, Kazanjian P. Use of cytokines in human immunodeficiency virus-infected patients: colony-stimulating factors, erythropoietin, and interleukin-2. Clin Infect Dis 2001; 32: 766–773.

    Article  PubMed  CAS  Google Scholar 

  23. Frumkin LR. Role of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the treatment of patients with HIV infection. Curr Opin Hematol 1997; 4: 200–206.

    Article  PubMed  CAS  Google Scholar 

  24. Hermans P. Kaposi’s sarcoma in HIV-infected patients: treatment options. HIV Med 2000; 1: 137–142.

    Article  PubMed  CAS  Google Scholar 

  25. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst 2000; 92: 1823–1830.

    Article  Google Scholar 

  26. Fischl MA, Finkelstein DM, He W, Powderly WG, Triozzi PL, Steigbigel RT. A phase II study of recombinant human interferon-alpha 2a and zidovudine in patients with AIDS-related Kaposi’s sarcoma. AIDS Clinical Trials Group. JAcquir Immune Defic Syndr Hum Retrovirol 1996; 11: 379–384.

    Article  CAS  Google Scholar 

  27. Kovacs JA, Deyton L, Davey R, et al. Combined zidovudine and interferon-alpha therapy in patients with Kaposi sarcoma and the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1989; 111: 280–287.

    PubMed  CAS  Google Scholar 

  28. Krown SE, Paredes J, Bundow D, Polsky B, Gold JW, Flomenberg N. Interferon-alpha, zidovudine, and granulocyte-macrophage colony-stimulating factor: a phase I AIDS Clinical Trials Group study in patients with Kaposi’s sarcoma associated with AIDS. J Clin Oncol 1992; 10: 1344–1351.

    PubMed  CAS  Google Scholar 

  29. Scadden DT, Bering HA, Levine JD, et al. GM-CSF as an alternative to dose modification of the combination zidovudine and interferon-alpha in the treatment of AIDS-associated Kaposi’s sarcoma. Am J Clin Oncol 1991; 14: S40–44.

    Article  PubMed  Google Scholar 

  30. Davey RT Jr, Davey VJ, Metcalf JA, et al. A phase I/II trial of zidovudine, interferon-alpha, and granulocyte-macrophage colony-stimulating factor in the treatment of human immunodeficiency virus type 1 infection. J Infect Dis 1991; 164: 43–52.

    Article  PubMed  Google Scholar 

  31. Lee FC, Mitsuyasu R. Use of myeloid hematopoietic growth factors in AIDS-related malignancies. In: Morstyn G, Dexter TM, Foote M, eds., Filgrastim (r-metHuG-CSF) in Clinical Practice, 2nd ed. New York. Marcel Dekker. 1998: pp. 323–340.

    Google Scholar 

  32. Levine AM, Tulpule A. Clinical aspects and management of AIDS-related Kaposi’s sarcoma. Eur J Cancer 2001; 37: 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  33. Gill PS, Bernstein-Singer M, Espina BM, et al. Adriamycin, bleomycin and vincristine chemotherapy with recombinant granulocyte-macrophage colony-stimulating factor in the treatment of AIDS-related Kaposi’s sarcoma. AIDS 1992; 6: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  34. Gill PS, Mitsuyasu RT, Montgomery T, et al. AIDS Clinical Trials Group Study 094: a phase I/II trial of ABV chemotherapy with zidovudine and recombinant human GM-CSF in AIDS-related Kaposi’s sarcoma. Cancer J Sci Am 1997; 3: 278–283.

    PubMed  CAS  Google Scholar 

  35. Mastroianni A, Coronado O, Cancellieri C, Manfredi R, Pignatari S, Chiodo F. Pulmonary Kaposi’s sarcoma in AIDS patients treated with combined chemotherapy and recombinant human granulocyte colony-stimulating factor. J Chemother 1998; 10: 405–410.

    PubMed  CAS  Google Scholar 

  36. Bakker PJ, Danner SA, ten Napel CH, et al. Treatment of poor prognosis epidemic Kaposi’s sarcoma with doxorubicin, bleomycin, vindesine and recombinant human granulocyte-monocyte colony stimulating factor (rhGM-CSF). Eur J Cancer 1995; 2: 188–192.

    Article  Google Scholar 

  37. Gill PS, Wernz J, Scadden DT, et al. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 1996; 14: 2353–2364.

    Google Scholar 

  38. Gill PS, Tulpule A, Espina BM, et al. Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi’s sarcoma. J Clin Oncol 1999; 17: 1876–1883.

    PubMed  CAS  Google Scholar 

  39. Sloand E, Kumar PN, Pierce PF. Chemotherapy for patients with pulmonary Kaposi’s sarcoma: benefit of filgrastim (G-CSF) in supporting dose administration. South Med J 1993; 86: 1219–1224.

    Article  PubMed  CAS  Google Scholar 

  40. Tulpule A, Groopman J, Saville MW, et al. Multicenter trial of low-dose paclitaxel in patients with advanced AIDS-related Kaposi sarcoma. Cancer 2002; 95: 147–154.

    Article  PubMed  CAS  Google Scholar 

  41. Welles L, Saville MW, Lietzau J, et al. Phase II trial with dose titration of paclitaxel for the therapy of human immunodeficiency virus-associated Kaposi’s sarcoma. J Clin Oncol 1998; 16: 1112–1121.

    PubMed  CAS  Google Scholar 

  42. Straus DJ, Huang J, Testa MA, Levine AM, Kaplan LD. Prognostic factors in the treatment of human immunodeficiency virus-associated non-Hodgkin’s lymphoma: analysis of AIDS Clinical Trials Group protocol 142-low-dose versus standard-dose m-BACOD plus granulocyte-macrophage colony-stimulating factor. National Institute of Allergy and Infectious Diseases. J Clin Oncol 1998; 16: 3601–3606.

    PubMed  CAS  Google Scholar 

  43. Errante D, Vaccher E, Tirelli U. Are hematopoietic colony-stimulating factors useful in association with chemotherapy in the treatment of HIV-related non-Hodgkin’s lymphomas? Ann Oncol 1996; 7: 233–237.

    Article  PubMed  CAS  Google Scholar 

  44. Gerhartz HH, Engelhard M, Brittinger G, et al. Recombinant human granulocyte-macrophage colony-stimulating factor as adjunct to chemotherapy in aggressive non-Hodgkin’s lymphomas. Semin Oncol 1994; 21: 25–28.

    PubMed  CAS  Google Scholar 

  45. Kaplan LD, Kahn JO, Crowe S, et al. Clinical and virologie effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma: results of a randomized trial. J Clin Oncol 1991; 9: 929–940.

    PubMed  CAS  Google Scholar 

  46. Kaplan LD, Straus DJ, Testa MA, et al. Low-dose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin’s lymphoma associated with human immunodeficiency virus infection. N Engl J Med 1997; 336: 1641–1648.

    Article  PubMed  CAS  Google Scholar 

  47. Ratner L, Lee J, Tang S, et al. Chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma in combination with highly active antiretroviral therapy. J Clin Oncol 2001; 19: 2171–2178.

    PubMed  CAS  Google Scholar 

  48. Rossi G, Donisi A, Casari S, et al. Effects of recombinant granulocyte colony-stimulating factor (GCSF) in patients treated with ProMACE-CytaBOM for HIV-related non-Hodgkin’s lymphoma (NHL). Haematologica 1998; 83: 317–322.

    PubMed  CAS  Google Scholar 

  49. Tirelli U, Vaccher E. Economic and clinical evaluation of therapy of HIV-related non-Hodgkin’s lymphoma with chemotherapy and granulocyte colony-stimulating factor (G-CSF). Eur J Cancer 1994; 30A: 1589–1590.

    Article  Google Scholar 

  50. Aviles A, Nambo MJ, Halabe J. Treatment of acquired immunodeficiency syndrome-related lymphoma with a standard chemotherapy regimen. Ann Hematol 1999; 78: 9–12.

    Article  PubMed  CAS  Google Scholar 

  51. Bi J, Espina BM, Tulpule A, Boswell W, Levine AM. High-dose cytosine-arabinoside and cisplatin regimens as salvage therapy for refractory or relapsed AIDS-related non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr 2001; 28: 416–421.

    PubMed  CAS  Google Scholar 

  52. Gabarre J, Lepage E, Thyss A, et al. Chemotherapy combined with zidovudine and GM-CSF in human immunodeficiency virus-related non-Hodgkin’s lymphoma. Ann Oncol 1995; 6: 1025–1032.

    PubMed  CAS  Google Scholar 

  53. Kersten MJ, Verduyn TJ, Reiss P, Evers LM, de Wolf F, van Oers MH. Treatment of AIDS-related non-Hodgkin’s lymphoma with chemotherapy (CNOP) and r-hu-G-CSF: clinical outcome and effect on HIV-1 viral load. Ann Oncol 1998; 9: 1135–1138.

    Article  PubMed  CAS  Google Scholar 

  54. Newell M, Goldstein D, Milliken S, et al. Phase I/II trial of filgrastim (r-metHuG-CSF), CEOP chemotherapy and antiretroviral therapy in HIV-related non-Hodgkin’s lymphoma. Ann Oncol 1996; 7: 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  55. Niitsu N, Okamoto M, Kuraishi Y, Nakamura S, Kodama F, Hirano M. Cyc1OBEAP (cyclophosphamide, vincristine, bleomycin, etoposide, doxorubicin, prednisolone) regimen with granulocyte colony-stimulating factor (G-CSF) for patients with aggressive non-Hodgkin’s lymphoma: a pilot study. The Adult Lymphoma Treatment Study Group (ALTSG). Eur J Haematol 2000; 65: 188–194.

    Article  PubMed  CAS  Google Scholar 

  56. Oksenhendler E, Gerard L, Dubreuil ML, et al. Intensive chemotherapy (LNHIV-91 regimen) and GCSF for HIV associated non-Hodgkin’s lymphoma. Leuk Lymphoma 2000; 39: 87–95.

    Article  PubMed  CAS  Google Scholar 

  57. Remick SC, Sedransk N, Haase RF, et al. Oral combination chemotherapy in conjunction with filgrastim (G-CSF) in the treatment of AIDS-related non-Hodgkin’s lymphoma: evaluation of the role of GCSF; quality-of-life analysis and long-term follow-up. Am J Hematol 2001; 66: 178–188.

    Article  PubMed  CAS  Google Scholar 

  58. Sparano JA, Wiernik PH, Hu X, et al. Pilot trial of infusional cyclophosphamide, doxorubicin, and etoposide plus didanosine and filgrastim in patients with human immunodeficiency virus-associated non-Hodgkin’s lymphoma. J Clin Oncol 1996; 14: 3026–3035.

    PubMed  CAS  Google Scholar 

  59. Spina M, Vaccher E, Juzbasic S, et al. Human immunodeficiency virus-related non-Hodgkin lymphoma: activity of infusional cyclophosphamide, doxorubicin, and etoposide as second-line chemotherapy in 40 patients. Cancer 2001; 92: 200–206.

    Article  PubMed  CAS  Google Scholar 

  60. Tirelli U, Spina M, Jaeger U, et al. Infusional CDE with rituximab for the treatment of human immunodeficiency virus-associated non-Hodgkin’s lymphoma: preliminary results of a phase I/II study. Recent Results Cancer Res 2002; 159: 149–153.

    Article  PubMed  CAS  Google Scholar 

  61. Tulpule A, Rarick MU, Kolitz J, et al. Liposomal daunorubicin in the treatment of relapsed or refractory non-Hodgkin’s lymphoma. Ann Oncol 2001; 12: 457–462.

    Article  PubMed  CAS  Google Scholar 

  62. Vaccher E, Spina M, di Gennaro G, et al. Concomitant cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy plus highly active antiretroviral therapy in patients with human immunodeficiency virus-related, non-Hodgkin lymphoma. Cancer 2001; 91: 155–163.

    Article  PubMed  CAS  Google Scholar 

  63. Walsh C, Wernz JC, Levine A, et al. Phase I trial of m-BACOD and granulocyte macrophage colony stimulating factor in HIV-associated non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr 1993; 6: 265–271.

    PubMed  CAS  Google Scholar 

  64. Krishnan A, Molina A, Zaia J, et al. Autologous stem cell transplantation for HIV-associated lymphoma. Blood 2001; 98: 3857–3859.

    Article  PubMed  CAS  Google Scholar 

  65. Molina A, Krishnan AY, Nademanee A, et al. High dose therapy and autologous stem cell transplantation for human immunodeficiency virus-associated non-Hodgkin lymphoma in the era of highly active antiretroviral therapy. Cancer 2000; 89: 680–689.

    Article  PubMed  CAS  Google Scholar 

  66. Maiman M, Fruchter RG, Guy L, Cuthill S, Levine P, Serur E. Human immunodeficiency virus infection and invasive cervical carcinoma. Cancer 1993; 71: 402–406.

    Article  PubMed  CAS  Google Scholar 

  67. Maiman M. Management of cervical neoplasia in human immunodeficiency virus-infected women. J Natl Cancer Inst Monogr 1998; 23: 43–49.

    Article  PubMed  Google Scholar 

  68. Errante D, Gabarre J, Ridolfo AL, et al. Hodgkin’s disease in 35 patients with HIV infection: an experience with epirubicin, bleomycin, vinblastine and prednisone chemotherapy in combination with antiretroviral therapy and primary use of G-CSF. Ann Oncol 1999; 10: 189–195.

    Article  PubMed  CAS  Google Scholar 

  69. Levine AM, Li P, Cheung T, et al. Chemotherapy consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine with granulocyte-colony-stimulating factor in HIV-infected patients with newly diagnosed Hodgkin’s disease: a prospective, multi-institutional AIDS clinical trials group study (ACTG 149). J Acquir Immune Defic Syndr 2000; 24: 44450.

    Article  Google Scholar 

  70. Spina M, Gabarre J, Rossi G, et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood 2002; 100: 1984–1988.

    Article  PubMed  CAS  Google Scholar 

  71. Evison J, Jost J, Ledergerber B, Jost L, Strasser F, Weber R. HIV-associated non-Hodgkin’s lymphoma: highly active antiretroviral therapy improves remission rate of chemotherapy. AIDS 1999; 13: 732–734.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Foote, M. (2004). Use of Hematopoietic Growth Factors in AIDS-Related Malignancies. In: Morstyn, G., Foote, M., Lieschke, G.J. (eds) Hematopoietic Growth Factors in Oncology. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-747-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-747-5_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9847-9

  • Online ISBN: 978-1-59259-747-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics