Skip to main content

Hematopoietic Progenitor Cell Transplantation for Breast Cancer

  • Chapter
Stem Cell Transplantation for Hematologic Malignancies

Part of the book series: Contemporary Hematology ((CH))

  • 141 Accesses

Abstract

Autologous hematopoietic progenitor cell transplantation (AHPCT), from either the bone marrow or peripheral blood, allows for the administration of chemotherapy with a several-fold increase in the drug doses. High-dose chemotherapy (HDC) achieves a higher tumor-cell kill than standard-dose chemotherapy (SDC), with the goal of improving long-term outcome. In this setting, nonhematopoietic organ toxicities become dose limiting (1) Improvements in supportive care have produced a decrease in the morbidity and mortality associated with HDC to a current toxic death rate of less than 5% in centers where large numbers of these procedures are performed (2, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peters WP, Henner WD, Bast RC, Schnipper L, Frei E III. Novel toxicities associated with high dose combination alkylating agents in autologous bone marrow support. In: Dicke KA, Spitzer G, Zander AR, eds. Autologous Bone Marrow Transplantation: Proceedings of the First International Symposium. Houstin, TX: University of Texas Cancer Center, M.D. Anderson Hospital, 1986; pp 231–235.

    Google Scholar 

  2. Antman KH, Rowlings PA, Vaughan WP, et al. High-dose chemotherapy with autologous hematopoietic stem-cell support for breast cancer in North America. J Clin Oncol 1997; 15: 1870–1879.

    PubMed  CAS  Google Scholar 

  3. Damon LE, Hu WW, Stockerl-Goldstein KE, et al. High-dose chemotherapy and hematopoietic stem cell rescue for breast cancer: Experience in California. Biol Blood Marrow Transplant 2000; 6: 496–505.

    Article  PubMed  CAS  Google Scholar 

  4. Hryniuk W, Busch H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 1984; 2: 1281–1288.

    PubMed  CAS  Google Scholar 

  5. Hryniuk W, Frei E III, Wright FA. A single scale for comparing dose-intensity of all chemotherapy regimens in breast cancer: Summation dose-intensity. J Clin Oncol 1998; 16: 3137–3147.

    PubMed  CAS  Google Scholar 

  6. Fossati R, Confalonieri C, Torri V, et al. Cytotoxic and hormonal treatment for metastatic breast cancer: A systematic review of published randomized trials involving 31,510 women. J Clin Oncol 1998; 16: 3439–3460.

    PubMed  CAS  Google Scholar 

  7. Hryniuk W, Levine MN. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol 1986; 4: 1162–1170.

    PubMed  CAS  Google Scholar 

  8. Bonadonna G, Valagussa P. Dose-response effect of adjuvant chemotherapy in breast cancer. N Eng J Med 1981; 304: 10–15.

    Article  CAS  Google Scholar 

  9. Tannock IF, Boyd NF, DeBoer G, et al. A randomized trial of two doses of cyclophosphamide, methotrexate and fluorouracil for patients with metastatic breast cancer. J Clin Oncol 1988; 6: 1377–1387.

    PubMed  CAS  Google Scholar 

  10. Hortobagyi GN, Bodey GP, Buzdar AU, et al. Evaluation of high-dose versus standard FAC chemotherapy for advanced breast cancer in protected environment units: A prospective randomized study. J Clin Oncol 1987; 5: 354–364.

    PubMed  CAS  Google Scholar 

  11. Winer E. Berry D, Duggan D, et al. Failure of higher dose paclitaxel to improve outcome in patients with metastatic breast cancer Results from CALGB 9342. Proc Am Soc Clin Oncol 1998; 17: 101a.

    Google Scholar 

  12. Habeshaw T, Paul R, Jones R, et al. Epirubicin at two dose levels with prednisolone as treatment for advanced breast cancer: The results of a randomized trial. J Clin Oncol 1991; 9: 295–304.

    PubMed  CAS  Google Scholar 

  13. Bastholt L, Dalmark M, Gjedde SB, et al. Dose-response relationship of epirubicin in the treatment of postmenopausal patients with metastatic breast cancer: A randomized study of epirubicin at four different dose levels performed by the Danish Breast Cancer Cooperative Group. J Clin Oncol 1996; 14: 1146–1155.

    PubMed  CAS  Google Scholar 

  14. Brufman G, Corajort E, Ghilezan N, et al. Doubling epirubicin dose intensity (100 mg/m2 versus 50 mg/m2) in the FEC regimen significantly increases response rate. An international randomized phase III study in metastatic breast cancer. Ann Oncol 1997; 8: 155–162.

    Article  PubMed  CAS  Google Scholar 

  15. Focan C, Andrien JM, Closon M, et al. Dose-response relationship of epirubicin based first-line chemotherapy for advanced breast cancer: A prospective randomized trial. J Clin Oncol 1993; 11: 1253–1263.

    PubMed  CAS  Google Scholar 

  16. Fountzilas G, Athanassiades A, Giannakkais T, et al. A randomized study of epirubicin monotherapy every four or every two weeks in advanced breast cancer. A Hellenic Cooperative Oncology Group study. Ann Oncol 1997; 8: 1213–1220.

    Article  PubMed  CAS  Google Scholar 

  17. Wood WC, Budman DR, Korzun AH, et al. Dose and dose intensity of adjuvant chemotherapy for stage II, node-positive breast carcinoma. N Eng J Med 1994; 330: 1253–1259.

    Article  CAS  Google Scholar 

  18. Budman DR, Berry DA, Cirrincione CT, et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. J Natl Cancer Inst 1999; 91: 286–287.

    Article  Google Scholar 

  19. Bonneterre J, Roché H, Bremond A, et al. Results of a randomized trial of adjuvant chemotherapy with FEC 50 vs. FEC 100 in high risk node-positive breast cancer patients. Proc Am Soc Clin Oncol 1998; 17: 124a.

    Google Scholar 

  20. Fisher B, Anderson S, Wickerham DL, et al. Increased intensification and total dose of cyclophosphamide in a doxorubicin-cyclophosphamide regimen for the treatment of primary breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-22. J Clin Oncol 1997; 15: 1858–1869.

    PubMed  CAS  Google Scholar 

  21. Fisher B, Anderson S, DeCillis A, et al. Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-25. J Clin Oncol 1999; 17: 3374–3388.

    PubMed  CAS  Google Scholar 

  22. Henderson IC, Berry D, Demetri G, et al. Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 2003; 21: 976–983.

    Article  PubMed  CAS  Google Scholar 

  23. Frei III E, Canellos GP. Dose: A critical factor in cancer chemotherapy. The Am J Med 1980; 69: 585–594.

    Article  Google Scholar 

  24. Frei E III, Antman K, Teicher B, et al. Bone Marrow Autotransplantation for solid tumors–Prospects. J Clin Oncol 1989; 4: 515–526.

    Google Scholar 

  25. Falkson G, Gelman RS, Leone L, Falkson CI. Survival of premenopausal women with metastatic breast cancer. Long-term follow-up of Eastern Cooperative Group and Cancer and Leukemia Group B studies. Cancer 1990; 66: 1621.

    Article  PubMed  CAS  Google Scholar 

  26. Greenberg PA, Hortobagyi GN, Smith TL, et al. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 1996; 14: 2197–2205.

    PubMed  CAS  Google Scholar 

  27. Rivera E, Holmes FA, Buzdar AU, et al. Fluorouracil, doxorubicin, and cyclophosphamide followed by tamoxifen as adjuvant treatment for patients with stage IV breast cancer with no evidence of disease. Breast J 2002; 8: 2–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hortobagyi GN. Can we cure limited metastatic breast cancer? J Clin Oncol 2002; 20: 620–623.

    PubMed  Google Scholar 

  29. Sledge Jr GW, Neuberg D, Ingle J, et al. Phase III trial of doxorubicin (A) vs. paclitaxel (T) vs. doxorubicin + paclitaxel (A + T) as first-line therapy for metastatic breast cancer (MBC): An intergroup trial. Proc Am Soc Clin Oncol 1997; 16: 1a.

    Google Scholar 

  30. Nabholtz JM, Falkson G, Campos D, et al. A phase III trial comparing doxorubicin (A) and docetaxel (T) (AT) to doxorubicin and cyclophosphamide (AC) as first-line chemotherapy for MBC. Proc Am Soc Clin Oncol 1999; 18: 127a.

    Google Scholar 

  31. Mackey JR, Paterson A, Dirix LY, et al. Final results of the phase III randomized trial comparing docetaxel (T), doxorubicin (A) and cyclophosphamide (C) to FAC as first line chemotherapy (CT) for patients with metastatic breast cancer. Proc Am Soc Clin Oncol 2002; 21: 35a.

    Google Scholar 

  32. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    Article  PubMed  CAS  Google Scholar 

  33. Peters WP, Eder JP, Henner WD, et al. High-dose combination chemotherapy with autologous bone marrow support: A phase I trial. J Clin Oncol 1986; 4: 646–654.

    PubMed  CAS  Google Scholar 

  34. Eder JP, Antman K, Peters WP, et al. High dose combination alkylating agent chemotherapy with autologous bone marrow support for metastatic breast cancer. J Clin Oncol 1986; 4: 646–654.

    PubMed  Google Scholar 

  35. Eder JP, Elias A, Shea TC, et al. A phase I-II study of cyclophosphamide, thiotepa, and carboplatin with autologous bone marrow transplantation in solid tumor patients. J Clin Oncol 1990; 8: 1239–1245.

    PubMed  CAS  Google Scholar 

  36. Williams SF, Bitran JD, KaminerL, et al. A phase I-II study ofbialkylator chemotherapy, high-dose thiotepa, and cyclophosphamide with autologous bone marrow reinfusion in patients with advanced cancer. J Clin Oncol 1990; 5: 260–265.

    Google Scholar 

  37. Peters WP, Shpall EJ, Jones RB, et al. High-dose combination chemotherapy with bone marrow support as initial treatment for metastatic breast cancer. J Clin Oncol 1988; 6: 1368–1376.

    PubMed  CAS  Google Scholar 

  38. Peters WP, Dansey R. New Concepts in the treatment of breast cancer using high-dose chemotherapy. Cancer Chemother Pharmacol 1997; 40 (Suppl): S88 - S93.

    Article  PubMed  Google Scholar 

  39. Jones RB, Shpall EJ, Ross M, et al. AFM induction chemotherapy followed by intensive alkylating agent consolidation with autologous bone marrow support (ABMS) for advanced breast cancer: current results. Proc Am Soc Clin Oncol 1990; 7: 121.

    Google Scholar 

  40. Rizzieri DA, Vredenburgh JJ, Chao NJ, et al. Long term disease free survival for patients with metastatic breast cancer undergoing aggressive induction therapy followed by high dose therapy with hematopoetic support. Blood 1998; 92: 323a.

    Google Scholar 

  41. Antman K, Ayash L, Elias A, et al. A phase II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous bone marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. J Clin Oncol 1992; 10: 102–110.

    PubMed  CAS  Google Scholar 

  42. Williams SF, Gilewski T, Mick R, et al. High-dose consolidation therapy with autologous stem cell rescue in stage IV breast cancer: Follow-up report. J Clin Oncol 1992; 10: 1743–1747.

    PubMed  CAS  Google Scholar 

  43. Laport GF, Grad G, Grinblatt DL, et al. High-dose chemotherapy consolidation with autologous stem cell rescue in metastatic breast cancer: a 10-year experience. Bone Marrow Transplant 1998; 21: 127–132.

    Article  PubMed  CAS  Google Scholar 

  44. Jones RB, Shpall EJ, Shogan J, et al. The Duke AFM program. Intensive induction chemotherapy for metastatic breast cancer. Cancer 1990; 66: 431–436.

    Article  PubMed  CAS  Google Scholar 

  45. Carter DL, Marks LB, Bean JM, et al. Impact of consolidation radiotherapy in patients with advanced breast cancer treated with high-dose chemotherapy and autologous bone marrow rescue. J Clin Oncol 1999; 17: 887–893.

    PubMed  CAS  Google Scholar 

  46. University of Colorado BMTP, unpublished observations.

    Google Scholar 

  47. Decker DA, Ahman DL, Bisel HF, et al. Complete responders to chemotherapy in metastatic breast cancer. Characterization and analysis. JAMA 1979; 242: 2075–2079.

    Article  PubMed  CAS  Google Scholar 

  48. Powles TJ, Smith IE, Ford HT, et al. Failure of chemotherapy to prolong survival in a group of patients with metastatic breast cancer. Lancet 1980; 1: 580–582.

    Article  PubMed  CAS  Google Scholar 

  49. Smith GA, Henderson IC. High-dose chemotherapy (HDC) with autologous bone marrow transplantation (ABMT) for the treatment of breast cancer: The jury is still out. In Hellman S, and Rosenberg SA, Important Advances in Oncology 1995, pp 201–214, JB Lippincott Company, Philadelphia, 1995.

    Google Scholar 

  50. Rahman ZU, Frye DK, Buzdar AU, et al. Impact of selection process on response rate and long-term survival of potential high-dose chemotherapy candidates treated with standard-dose doxorubicin-containing chemotherapy in patients with metastatic breast cancer. J Clin Oncol 1997; 15: 3171–3177.

    PubMed  CAS  Google Scholar 

  51. Dunphy FR, Spitzer G, Rossiter JE, et al. Factors predicting long-term survival for metastatic breast cancer patients treated with high-dose chemotherapy and bone marrow support. Cancer 1994; 73: 2157–2167.

    Article  PubMed  CAS  Google Scholar 

  52. Ayash LJ, Wheeler C, Fairclough D, et al. Prognostic factors for prolonged progression-free survival with high-dose chemotherapy with autologous stem-cell support for advanced breast cancer. J Clin Oncol 1995; 13: 2043–2049.

    PubMed  CAS  Google Scholar 

  53. Doroshow JH, Somlo G, Ahn C, et al. Prognostic factors predicting progression-free and overall survival in patients with responsive metastatic breast cancer treated with high-dose chemotherapy and bone marrow stem cell reinfusion. Proc Am Soc Clin Oncol 14: 319a, 1995.

    Google Scholar 

  54. Rizzieri DA, Vredenburgh JJ, Jones RB, et al. Prognostic and predictive factors for patients with metastatic breast cancer undergoing aggressive induction therapy followed by high dose therapy with autologous stem-cell support. J Clin Oncol 1999; 17: 3064–3074.

    PubMed  CAS  Google Scholar 

  55. Rowlings PA, Williams SF, Antman KH, et al. Factors correlated with progression-free survival after high-dose chemotherapy and hematopoietic stem cell transplantation for metastatic breast cancer. JAMA 1999; 282: 1335–1343.

    Article  PubMed  CAS  Google Scholar 

  56. Nieto Y, Nawaz S, Jones RB, et al. Prognostic model for relapse after high-dose chemotherapy with autologous stem-cell transplantation for stage IV oligometastatic breast cancer. J Clin Oncol 2002; 20: 707–718.

    Article  PubMed  CAS  Google Scholar 

  57. Kim YS, Konoplev SN, Montemurro F, et al. HER-2/neu overexpression as a poor prognostic factor for patients with metastatic breast cancer undergoing high-dose chemotherapy with autologous stem cell transplantation. Clin Cancer Res 2001; 7: 4008–4012.

    PubMed  CAS  Google Scholar 

  58. Bewick M, Chadderton T, Conlon M, et al. Expression of C-erbB-2/HER-2 in patients with metastatic breast cancer undergoing high-dose chemotherapy and autologous blood stem cell support. Bone Marrow Transplant 1999; 24: 377–384.

    Article  PubMed  CAS  Google Scholar 

  59. Nieto Y, Cagnoni PJ, Shpall EJ, et al. Phase II trial of high-dose chemotherapy with autologous stem cell transplant for stage IV patients with minimal metastatic disease. Clin Cancer Res 1999; 5: 1731–1737.

    PubMed  CAS  Google Scholar 

  60. Abraham R, Nagy T, Goss PE, Crump M. High dose chemotherapy and autologous blood stem cell support in women with breast carcinoma and isolated supraclavicular lymph node metastases. Cancer 2000; 88: 790–795.

    Article  PubMed  CAS  Google Scholar 

  61. Stadtmauer EA, O’Neill A, Goldstein LJ, et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. N Engl J Med 2000; 342: 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  62. Stadtmauer EA, O’Neill L, Goldstein LJ, et al. Conventional-dose chemotherapy compared with high-dose chemotherapy (HDC) plus autologous stem-cell transplantation (SCT) for metastatic breast cancer: 5-year update of the `Philadelphia Trial’ (PBT-01). Proc Am Soc Clin Oncol 2002; 12: 43a.

    Google Scholar 

  63. Livingston R, Crowley J. Commentary on PBT-1 study of high-dose consolidation versus standard therapy in metastatic breast cancer. J Clin Oncol 1999; 17 (115, November supplement): 22 24.

    Google Scholar 

  64. Crump M, Gluck S, Stewart D, et al. A randomized trial of high-dose chemotherapy (HDC) with autologous peripheral blood stem cell support (AHPCT) compared to standard chemotherapy in women with metastatic breast cancer: A National Cancer Institute of Canada (NCIC) Clinical Trials Group study. Proc Am Soc Clin Oncol 20: 21a, 2001 (abstr 82).

    Google Scholar 

  65. Biron P, Durand M, Roché H, et al. High dose thiotepa (TTP), cyclophosphamide (CPM) and stem cell transplantation after 4 FEC 100 compared with 4 FEC alone allowed a better disease free survival but the same overall survival in first line chemotherapy for metastatic breast cancer. Results of the PEGASE 03 French protocol. Proc Am Soc Clin Oncol 2002; 21: 42a.

    Google Scholar 

  66. Crown, J, Perey L, Lind M, et al. Superiority of tandem high-dose chemotherapy (HDC) versus optimized conventionally-dosed chemotherapy (CDC) in patients (pts) with metastatic breast cancer (MBC): The International Breast Cancer Dose Intensity Study (IBDIS 1). Proc Am Soc Clin Oncol 2003; 22: 23a.

    Google Scholar 

  67. Lotz J-P, Curé H, Janvier M, et al. Intensive chemotherapy and autograft of hematopoietic stem cells in the treatment of metastatic breast cancer: Results of the national protocol PEGASE 04 [French]. Hematol Cell Ther 1999; 41: 71–74.

    Article  PubMed  CAS  Google Scholar 

  68. Schmid P, Samonigg H, Nitsch T, et al. Randomized trial of up front tandem high-dose chemotherapy (HD) compared to standard chemotherapy with doxorubicin and paclitaxel (AT) in metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 2002; 21: 43a.

    Google Scholar 

  69. Peters WP, Jones RB, Vredenburgh J, et al. A large, prospective, randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support (ABMS) as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicin-based induction therapy (AFM). Proc Am Soc Clin Oncol 1996; 15: 121a.

    Google Scholar 

  70. Vredenburgh JJ. Personal communication.

    Google Scholar 

  71. Madan B, Broadwater G, Rubin P, et al. Improved survival with consolidation high-dose cyclophosphamide, cisplatin and carmustine (HD-CPB) compared with observation in women with metastatic breast cancer (MBC) and only bone metastases treated with induction adriamycin, 5-fluorouracil and methotrexate (AFM): A phase III prospective randomized comparative trial. Proc Am Soc Clin Oncol 2000; 19: 48a.

    Google Scholar 

  72. Berry D, Broadwater G, Klein JP, et al. High-dose versus standard chemotherapy in metastatic breast cancer: Comparison of Cancer and Leukemia Group B trials with data from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol 2002; 20: 743–750.

    Article  PubMed  CAS  Google Scholar 

  73. Bonadonna G, Valagussa P. Adjuvant systemic therapy for resectable breast cancer. J Clin Oncol 1985; 3: 259–275.

    PubMed  CAS  Google Scholar 

  74. Bonadonna G, Zambetti M, Valagussa P. Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes. Ten-year results. JAMA 1995; 273: 542–547.

    Google Scholar 

  75. Mamounas EP, Bryant J, Lembersky BC, et al. Paclitaxel (T) following doxorubicin/cyclophosphamide (AC) as adjuvant chemotherapy for node-positive breast cancer: Results from NSABP B-28. Proc Am Soc Clin Oncol 2003; 22: 4a.

    Google Scholar 

  76. Buzdar AU, Singletary SE, Valero V, et al. Evaluation of Paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res 2002; 8: 1073–1079.

    PubMed  CAS  Google Scholar 

  77. Nabholtz J-M, Pienkowski T, Mackey J, et al. Phase III trial comparing TAC (docetaxel, doxorubicin, cyclophosphamide) with FAC (5-flurouracil, doxorubicin, cyclophosphamide) in the adjuvant treatment of node positive breast cancer patients: Interim analysis of the BCIRG 001 study. ProcAm Soc Clin Oncol 2002; 21: 36a.

    Google Scholar 

  78. Citron ML, Berry DA, Cin-incione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003; 21: 1431–1439.

    Article  PubMed  CAS  Google Scholar 

  79. Peters WP, Ross M, Vredenburgh JJ, et al. High-dose chemotherapy and autologous bone marrow suppport as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancer. J Clin Oncol 1993; 11: 1132–1143.

    PubMed  CAS  Google Scholar 

  80. Nikcevich DA, Vredenburgh JJ, Broadwater G, et al. Ten year follow-up after high-dose chemotherapy and autologous bone marrow support as consolidation after standard-dose adjuvant therapy for high-risk primary breast cancer. Proc Am Soc Clin Oncol 2002; 21: 415a.

    Google Scholar 

  81. Nieto Y, Shpall EJ, Bearman SI, et al. Long-term analysis of high-risk primary breast cancer patients enrolled in prospective trials of high-dose chemotherapy and autologous hematopoietic progenitor cell transplant. Biol Blood Marrow Transplant 2003; 9: 72a.

    Google Scholar 

  82. Gianni AM, Siena S, Bregni M, et al. Efficacy, toxicity and applicability of high-dose chemotherapy as adjuvant treatment in operable breast cancer with 10 or more involved axillary nodes: Five-year results. J Clin Oncol 1997; 15: 2312–2321.

    PubMed  CAS  Google Scholar 

  83. Buzzoni R, Bonadonna G, Valagussa P, et al. Adjuvant chemotherapy with doxorubicin plus cyclophosphamide, methotrexate and fluorouracil in the treatment of resectable breast cancer with more than three positive nodes. J Clin Oncol 1991; 9: 2134–2140.

    PubMed  CAS  Google Scholar 

  84. Bearman SI, Overmoyer BA, Bolwell BJ, et al. High-dose chemotherapy with autologous peripheral blood progenitor cell support for primary breast cancer in patients with 4–9 involved axillary lymph nodes. Bone Marrow Transplantation 1997; 20: 931–937.

    Article  PubMed  CAS  Google Scholar 

  85. Hussein A, Plummer M, Vredenburgh J, et al. High-dose chemotherapy (HDC) with cyclophosphamide, cisplatin, and BCNU (CPB) and autologous bone marrow and peripheral blood progenitor cells for stage II/ III breast cancer involving 4–9 axillary lymph nodes. Proc Am Soc Clin Oncol 1996; 15: 350a.

    Google Scholar 

  86. De Graaf H, Willemse PHB, De Vries EGE, et al. Intensive chemotherapy with autologous bone marrow transfusion as primary treatment in women with breast cancer and more than five involved axillary lymph nodes. Eur J Cancer 1994; 30A, 150–153.

    Article  Google Scholar 

  87. Hortobagyi GN, Singletary SE, Strom EA. Treatment of locally advanced and inflammatory breast cancer. In Diseases of the Breast ( JR Harris, editor). Lippincott Williams and Wilkins, Philadelphia, 2000.

    Google Scholar 

  88. Ayash L, Elias A, Ibrahim J, et al. High-dose multimodality therapy with autologous stem cell support for stage IIIB breast cancer. J Clin Oncol 1998; 16: 1000–1007.

    PubMed  CAS  Google Scholar 

  89. Cagnoni PJ, Nieto Y, Shpall EJ, et al. High-dose chemotherapy with autologous progenitor cell support as part of combined modality therapy for inflammatory breast cancer. J Clin Oncol 1998; 16: 1661–1668.

    PubMed  CAS  Google Scholar 

  90. Viens P, Penault-Llorca F, Jacquemier J, et al. High-dose chemotherapy and haematopoietic stem cell transplantation for inflammatory breast cancer: pathologic response and outcome. Bone marrow Transplant 1998; 21: 249–254.

    Article  PubMed  CAS  Google Scholar 

  91. Somlo G, Doroshow JH, Forman SJ, et al. High-dose chemotherapy and stem-cell rescue in the treatment of high-risk breast cancer: Prognostic indicators of progression-free and overall survival. J Clin Oncol 1997; 15: 2882–2893.

    PubMed  CAS  Google Scholar 

  92. Adkins D, Brown R, Trinkaus K, et al. Outcomes of high-dose chemotherapy and autologous stem-cell transplantation in stage IIIB inflammatory breast cancer. J Clin Oncol 1999; 17: 2006–2014.

    PubMed  CAS  Google Scholar 

  93. Nieto Y, Cagnoni PJ, Xu X, et al. Predictive model for relapse after high-dose chemotherapy with peripheral blood progenitor cell support for high-risk primary breast cancer. Clin Cancer Res 1999; 5: 3425–3431.

    PubMed  CAS  Google Scholar 

  94. Bolwell BJ, Andresen SW, Pohlman BL, et al. The prognostic importance of the axillary lymph node ratio in autologous transplantation for high-risk stage II-III breast cancer. Proc Am Soc Clin Oncol 2000; 19: 57a.

    Google Scholar 

  95. Prosper F, Sola C, Hornedo J, et al. Prognostic factors for relapse after high-dose chemotherapy (HDC) and stem cell transplant (SCT) in patients with high risk breast cancer (HRBC). Proc Am Soc Clin Oncol 2000; 19: 147a.

    Google Scholar 

  96. Schneeweiss A, Goerner R, Hensel MA, et al. Tandem high-dose chemotherapy in high-risk primary breast cancer: a multivariate analysis and a matched-pair comparison with standard-dose chemotherapy. Biol Blood Marrow Transplant 2001; 7: 332–342.

    Article  PubMed  CAS  Google Scholar 

  97. University of Colorado BMT Program, unpublished observations.

    Google Scholar 

  98. Bitran JD, Samuels B, Trujillo Y, et al. Her2/neu overexpression is associated with treatment failure in women with high-risk stage II and stage IIIA breast cancer (10 involved lymph nodes) treated with high-dose chemotherapy and autologous hematopoietic progenitor cell support following standard-dose adjuvant chemotherapy. Clin Cancer Res 1996; 2: 1509–1513.

    PubMed  CAS  Google Scholar 

  99. Nieto Y, Cagnoni PJ, Nawaz S, et al. Evaluation of the predictive value of HER2/neu overexpression and p53 mutations in high-risk primary breast cancer patients treated with high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 2000; 18: 2070–2080.

    PubMed  CAS  Google Scholar 

  100. Crump M, Goss PE, Prince M, et al. Outcome of extensive evaluation before adjuvant therapy in women with breast cancer and ten or more positive axillary lymph nodes. J Clin Oncol 1996; 14: 66–69.

    PubMed  CAS  Google Scholar 

  101. García-Carbonero R, Hidalgo M, Paz-Ares L, et al. Patient selection in high-dose chemotherapy trials: Relevance in high-risk breast cancer. J Clin Oncol 15: 3178–3184, 1997.

    PubMed  Google Scholar 

  102. Schrama JG, Faneyte IF, Schornagel JH, et al. Randomized trial of high-dose chemotherapy and hematopoietic progenitor-cell support in operable breast cancer with extensive lymph node involvement: final analysis with 7 years of follow-up. Ann Oncol 2002; 13: 689–698.

    Article  PubMed  CAS  Google Scholar 

  103. Hortobagyi GN, Buzdar AU, Theriault RL, et al. Randomized trial of high-dose chemotherapy and blood cell autografts for high-risk primary breast carcinoma. J Nall Cancer Inst 2000; 92: 225–233.

    Article  CAS  Google Scholar 

  104. Dunphy FR, Spitzer G, Buzdar AU, et al. Treatment of estrogen receptor-negative or hormonally refractory breast cancer with double high-dose chemotherapy intensification and bone marrow support. J Clin Oncol 1990; 8: 1207–1216.

    PubMed  CAS  Google Scholar 

  105. Neidhart JE, Kohler W, Stidley C, et al. A phase I study of repeated cycles of high-dose cyclophosphamide, etoposide and cisplatin administered without bone marrow transplantation. J Clin Oncol 1990; 8: 1728–1738.

    PubMed  CAS  Google Scholar 

  106. Rodenhuis S, Bontenbal M, Beex LVAM, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 2003; 349: 7–16.

    Article  PubMed  CAS  Google Scholar 

  107. Peters WP, Rosner G, Vredenburgh J, et al. Updated results of a prospective, randomized comparison of two doses of combination alkylating agents (AA) as consolidation after CAF in high-risk primary breast cancer involving ten or more axillary lymph nodes (LN): CALGB 9082/SWOG 9114/NCIC Ma-13. Proc Am Soc Clin Oncol 2001; 20: 21a.

    Google Scholar 

  108. Marks LB, Fitzgerald TJ, Laurie F, et al. Preliminary analysis of radiotherapy data from CALGB 9082: Variability of treatment fields for local/regional breast cancer and the impact of high dose chemotherapy on the ability to deliver radiation therapy. Int J Rad Oncol Biol Phys 1999; 45 (Suppl): 195a.

    Article  Google Scholar 

  109. Winer EP, Herndon J, Peters WP, et al. Quality of life in patients with breast cancer randomized to high dose chemotherapy with bone marrow support vs. intermediate dose chemotherapy: CALGB 9066 (companion protocol to CALGB 9082). Proc Am Soc Clin Oncol 1999; 18: 412a.

    Google Scholar 

  110. Tallman M, Gray R, Robert N, et al. Conventional adjuvant chemotherapy with or without high-dose chemotherapy and autologous stem-cell transplantation in high-risk breast cancer. N Engl JMed 2003; 349: 17–26.

    Article  CAS  Google Scholar 

  111. Bergh J, Wiklund T, Erikstein B, et al. Tailored fluoruracil, epirubicin, and cyclophosphamide compared with marrow-supported high-dose chemotherapy as adjuvant treatment for high-risk breast cancer: a randomised trial. Lancet 2000; 356: 1384–1391.

    Article  PubMed  CAS  Google Scholar 

  112. Antman KH. Critique of the high-dose chemotherapy studies in breast cancer: A positive look at the data. J Clin Oncol 1999; 17 (11S, November Supplement): 30–35.

    PubMed  CAS  Google Scholar 

  113. Crown JP, Lind M, Gould A, et al. High-dose chemotherapy (HDC) with autograft (PBP) support is not superior to cyclophosphamide (CPA), methotrexate and 5-FU (CMF) following doxorubicin (D) induction in patients (pts) with breast cancer and 4 or more involved acillary lymph nodes (4+ LN): The Anglo-Celtic I study. Proc Am Soc Clin Oncol 2002; 21: 42a.

    Google Scholar 

  114. Zander AR, Krüger W, Kröger N, et al. High-dose chemotherapy with autologous hematopoietic stem-cell support (HSCS) vs. standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: first results of a randomized trial. Proc Am Soc Clin Oncol 2002; 21: 415a.

    Google Scholar 

  115. Roché HH, Pouillart P, Meyer N, et al. Adjuvant high dose chemotherapy (HDC) improves early outcome for high risk (N7) breast cancer patients: The PEGASE 01 trial. Proc Am Soc Clin Oncol 2001; 20: 27a.

    Google Scholar 

  116. Nitz UA, Frick M, Mohrmann S, et al. Tandem high dose chemotherapy versus dose-dense conventional chemotherapy for patients with high risk breast cancer: Interim results from a multicenter phase III trial. Proc Am Soc Clin Oncol 2003; 22: 832a.

    Google Scholar 

  117. Gianni A, Bonadonna G. Five-year results of the randomized clinical trial comparing standard versus high-dose myeloablative chemotherapy in the adjuvant treatment of breast cancer with 3 positive nodes (LN+). Proc Am Soc Clin Oncol 2001; 20: 21a.

    Google Scholar 

  118. Basser R, O’Neill A, Martinelli G, et al. Randomized trial comparing up-front, multi-cycle dose-intensive chemotherapy (CT) versus standard dose CT in women with high-risk stage 2 or 3 breast cancer (BC): First results from IBCSG trial 15–95. Proc Am Soc Clin Oncol 2003; 22: 6a.

    Google Scholar 

  119. Philip T, Chauvin F, Bron D, et al. PARMA international protocol: Pilot study on 50 patients and preliminary analysis of the ongoing randomized study (62 patients). Ann Oncol 1991; 2: 57–64.

    Article  PubMed  Google Scholar 

  120. Bron D, Philip T, Guglielmi C, et al. The PARMA international randomized study in relapsed non-Hodgkin’s lymphoma. Analysis on the first 153 preincluded patients. Exp Hematol 1991; 19 (6): 546.

    Google Scholar 

  121. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 1995; 333: 1540–1545.

    Article  PubMed  CAS  Google Scholar 

  122. Sledge GW, Loehrer PJ, Roht BJ, Einhorn LH. Cisplatin as first-line therapy for metastatic breats cancer. J Clin Oncol 1988; 6: 1811–1814.

    PubMed  Google Scholar 

  123. Martin M, Díaz-Rubio E, Casado A, et al. Carboplatin: An active drug in metastatic breast cancer. J Clin Oncol 1992; 10: 433–437.

    PubMed  CAS  Google Scholar 

  124. Tew K, Colvin OM, Chabner BA. Alkylating agents. In: BA Chabner and DL Longo (eds), Cancer Chemotherapy and Biotherapy, 2nd edition, pp 297–332. Philadelphia: Lippincott-Raven, 1996.

    Google Scholar 

  125. Huitema ADR, Tibben MM, Kerbusch TH, et al. Simultaneous determination of thiotepa, cyclophosphamide and some metabolites in plasma using capillary gas chromatography. J Chromatogr 1998; B 716: 177–186.

    Google Scholar 

  126. Chen T-L, Passos-Coelho JL, Noe DA, et al. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 1996; 55: 810–816.

    Google Scholar 

  127. Nieto Y, Xu X, Cagnoni PJ, et al. Nonpredictable pharmacokinetic behavior of high-dose cyclophosphamide in combination with cisplatin and 1,3-bis(2-chloroethyl)-1-nitrosourea. Clin Cancer Res 1999; 5: 747–751.

    PubMed  CAS  Google Scholar 

  128. Busse D, Busch FW, Bohnenstengel F, Eichelbaum M, Fischer P, Opalinska J, Schumacher K, Schweizer E, Kroemer HK. Dose escalation of cyclophosphamide in patients with breast cancer: Consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–1896.

    PubMed  CAS  Google Scholar 

  129. Doroshow JH. Anthracyclines and anthracenediones. In: Chabner BA and Longo DL (eds). Cancer Chemotherapy and Biotherapy. Lippincott-Raven, 2nd ed., 1996.

    Google Scholar 

  130. Eisenhauer EA, Ten Bokkel Huinink WW, Swenerton KD, et al. European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: High-dose versus low-dose and long versus short infusion. J Clin Oncol 1994; 12: 2654–2666.

    PubMed  CAS  Google Scholar 

  131. Kohn EC, Sarosy G, Bicher A, et al. Dose intense taxol: High response rate in patients with platinum resistant recurrent ovarian cancer. J Natl Cancer Inst 1994; 86: 18–24.

    Article  PubMed  CAS  Google Scholar 

  132. Raymond E, Hanauske A, Faivre S, et al. Effects of prolonged versus short-term exposure paclitaxel on human tumor colony-forming units. Anticancer Drugs 1997; 8: 379–385.

    Article  PubMed  CAS  Google Scholar 

  133. Hanauske AR, Degen D, Hilsenbeck SG, et al. Effects of Taxotere and Taxol in vitro colony formation of freshly explanted human tumour cells. Anticancer Drugs 3: 121–124, 1992

    Article  PubMed  CAS  Google Scholar 

  134. García P, Braguer D, Carkes G, et al. Comparative effects of taxol and taxotere on two different human carcinoma cell lines. Cancer Chemother Pharmacol 1994; 34: 335–343.

    Article  PubMed  Google Scholar 

  135. Von Hoff DD. The taxoids: same roots, different drugs. Semin Oncol 1997; 24(4 Suppl 13):S13–3-S13–10.

    Google Scholar 

  136. Somlo G, Doroshow JH, Forman SJ, et al. High-dose doxorubicin, etoposide, and cyclophosphamide with stem cell reinfusion in patients with metastatic or high-risk primary breast cancer. Cancer 1994; 15: 1678–1685.

    Article  Google Scholar 

  137. Donehower RC, Rowinsky EK, Grochow LB,et al. Phase I trial of taxol in patients with advanced cancer. Cancer Treatment Reports 1987; 71: 1171–1177.

    PubMed  CAS  Google Scholar 

  138. Aapro MS, Zulian G, Alberto P, et al. Phase I and pharmacokinetic study of RP 569876 in a new ethanol-free formulation of Taxotere. Ann Oncol 1992; 3 (Suppl 5): 208.

    Google Scholar 

  139. Extra JM, Rousseau F, Bruno R, et al. Phase I and pharmacokinetic study of Taxotere (RP 569876; NSC 628503) given as a short intravenous infusion. Cancer Res 1993; 53: 1037–1042.

    PubMed  CAS  Google Scholar 

  140. Stemmer SM, Cagnoni PJ, Shpall EJ, et al. High-dose paclitaxel, cyclophosphamide, and cisplatin with autologous hematopoietic progenitor-cell support: A phase I trial. J Clin Oncol 1996; 14: 1463–1472.

    PubMed  CAS  Google Scholar 

  141. Holmes FA, Walters RS, Theriault RL, et al. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 1991; 83: 1797–1805.

    Article  PubMed  CAS  Google Scholar 

  142. Smith RE, Brown AM, Mamounas EP, et al. Randomized trial of 3-hour versus 24-hour infusion of high-dose paclitaxel in patients with metastatic or locally advanced breast cancer: National Surgical Adjuvant Breast and Bowel Project protocol B-26. J Clin Oncol 1999; 17: 3403–3411.

    PubMed  CAS  Google Scholar 

  143. Buzdar AU, Singletary E, Theriault RL, et al. Prospective evaluation of paclitaxel versus combination chemotherapy with fluorouracil, doxorubicin, and cyclophosphamide as neoadjuvant therapy in patients with operable breast cancer. J Clin Oncol 1999; 17: 3412–3417.

    PubMed  CAS  Google Scholar 

  144. Fields KK, Elfenbein G7, Perkins 7B, et al. High versus standard dose chemotherapy for the treatment of breast cancer. Annals New York Academy of Sciences 1995; 770: 288–304.

    Article  CAS  Google Scholar 

  145. Mayordomo 7I, Yubero A, Caj al R, et al. Phase I trial of high-dose paclitaxel in combination with cyclophosphamide, thiotepa and carboplatin with autologous peripheral blood stem cell rescue. Proc Am Soc Clin Oncol 1997; 16: 102a.

    Google Scholar 

  146. Vandat LT, Papadopoulos KP, Balmaceda C, et al. Phase I trial of sequential high-dose chemotherapy with escalating dose paclitaxel, melphalan and cyclophosphamide, thiotepa, and carboplatin with peripheral blood progenitor support in women with responding metastatic breast cancer. Clin Cancer Res 1998; 4: 1689–1695.

    Google Scholar 

  147. Elias AD, Richardson P, Avigan D, et al. A short course of induction chemotherapy followed by two cycles of high-dose chemotherapy with stem cell rescue for chemotherapy naive metastatic breast cancer. Bone Marrow Transplant 2001; 27: 269–278.

    Article  PubMed  CAS  Google Scholar 

  148. Hu WW, Negrin RS, Stockerl-Goldstein K, et al. Four-cycle high-dose therapy with hematopoeitic support for metastatic breast cancer: No improvement in outcomes compared with single-course high-dose therapy. Biol Blood Marrow Transplant 2000; 6: 58–69.

    Article  PubMed  CAS  Google Scholar 

  149. Nabholtz 7M, Reese DM, Lindsay MA, Riva A. Docetaxel in the treatment of breast cancer: an update on recent studies. Semin Oncol 2002; 29 (3 Suppl 12): 28–34.

    Google Scholar 

  150. Hanauske AR, Degen D, Hilsenbeck SG, et al. Effects of Taxotere and Taxol in vitro colony formation of freshly explanted human tumour cells. Anticancer Drugs 1992; 3: 121–124.

    Article  PubMed  CAS  Google Scholar 

  151. Garcia P, Braguer D, Carkes G, et al. Comparative effects of taxol and taxotere on two different human carcinoma cell lines. Cancer Chemother Pharmacol 1994; 34: 335–343.

    Article  PubMed  CAS  Google Scholar 

  152. Nieto Y, Cagnoni P7, Shpall E7, et al. Phase I trial of docetaxel (DTX) (Taxotere) with peripheral blood progenitor cell (PBPC) support, with melphalan and carboplatin, in refractory advanced cancer. Proc Am Soc Clin Oncol 2000; 19: 56a.

    Google Scholar 

  153. Dunphy FR, Spitzer G, Buzdar AU, et al: Treatment of estrogen receptor-negative or hormonally refractory breast cancer with double high-dose chemotherapy intensification and bone marrow support. J Clin Oncol 1990; 8: 1207–1216.

    PubMed  CAS  Google Scholar 

  154. Crown J, Kritz A, Vandat L, et al. Rapid administration of multiple cycles of high-dose myelosuppressive chemotherapy in patients with metastatic breast cancer. J Clin Oncol 1993; 11: 1144–1149.

    PubMed  CAS  Google Scholar 

  155. Shapiro CL, Ayash L, Webb I7, et al. Repetitive cycles of cyclophosphamide, thiotepa, and carboplatin intensification with peripheral-blood progenitor cells and filgrastim in advanced breast cancer patients. J Clin Oncol 1997; 15: 674–683.

    PubMed  CAS  Google Scholar 

  156. Ayash L7, Elias A, Wheeler C, et al. Double dose-intensive chemotherapy with autologous marrow and peripheral-blood progenitor-cell support for metastatic breast cancer: A feasibility study. J Clin Oncol 1994; 12: 37–44.

    Google Scholar 

  157. Rodenhuis S, Westermann A, Holtkamp M7, et al. Feasibility of multiple courses of high-dose cyclophosphamide, thiotepa, and carboplatin for breast cancer or germ cell cancer. J Clin Oncol 1996; 14: 1473–1483.

    PubMed  CAS  Google Scholar 

  158. Broun ER, Sridhara R, Sledge GW, et al. Tandem autotransplantion for the treatment of metastatic breast cancer. J Clin Oncol 1995; 13: 2050–2055.

    PubMed  CAS  Google Scholar 

  159. Ayash L7, Elias A, Schwartz G, et al. Double dose-intensive chemotherapy with autologous stem-cell support for metastatic breast cancer: No improvement in progression-free survival by the sequence of high-dose melphalan followed by cyclophosphamide, thiotepa, and carboplatin. J Clin Oncol 1996; 14: 2984–2992.

    Google Scholar 

  160. Bitran JD, Samuels B, Klein L, et al. Tandem high-dose chemotherapy supported by hematopoietic progenitor cells yields prolonged survival in stage IV breast cancer. Bone Marrow Transplant 1996; 17: 157–162.

    PubMed  CAS  Google Scholar 

  161. Vandat L, Balmaceda C, Papadopoulos K, et al. Phase II trial of sequential high-dose chemotherapy with paclitaxel, melphalan, and cyclophosphamide, thiotepa, and carboplatin with peripheral blood progenitor support in women with responding metastatic breast cancer. Bone Marrow Transplant 2002; 30: 149–155.

    Article  Google Scholar 

  162. Elias AD, Ibrahim J, Richardson P, et al. The impact of induction duration and the number of high-dose cycles on the long-term survival of women with metastatic breast cancer treated with high-dose chemotherapy with stem cell rescue: An analysis of sequential phase I/II trials from the Dana Farber/B eth Israel STAMP program. Biol Blood Marrow Transplant 2002; 8: 198–205.

    Article  PubMed  CAS  Google Scholar 

  163. Teicher BA, Ara G, Keyes SR, et al. Acute in vivo resistance in high-dose therapy. Clin Cancer Res 1998; 4: 483–491.

    PubMed  CAS  Google Scholar 

  164. Frei E III, Ara G, Teicher B, Bunnell C, Richardson P, Wheeler C, Tew K, Elias A. Double high-dose chemotherapy with stem cell rescue (HD-SCR) in patients with breast cancer-effect of sequence. Cancer Chemother Pharmacol 2000; 45: 239–246.

    Article  PubMed  CAS  Google Scholar 

  165. Slamon DJ, Clark G, Wong S, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science 1987; 2235: 177–181.

    Google Scholar 

  166. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized antip185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–744.

    PubMed  CAS  Google Scholar 

  167. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized antiHER2 monoclonal antibody in women who have HER2-over-expressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648.

    PubMed  CAS  Google Scholar 

  168. Hancock MC, Langton BC, Chan T, et al. A monoclonal antibody against the c-erB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 1991; 51: 4575–4580.

    PubMed  CAS  Google Scholar 

  169. Arteaga CL, Winnier AR, Poirier MC, et al. p185c-erbB-2 signaling enhances cisplatin-induced cytotoxicity in human breast carcinoma cells: Association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res 1994; 54: 3758–3765.

    PubMed  CAS  Google Scholar 

  170. Pietras RJ, Fendly BM, Chazin VR, et al. Antibody to HER2 receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 1994; 9: 1829–1838.

    PubMed  CAS  Google Scholar 

  171. Slamon DL. Alteration of the HER2/neu gene in human breast cancer: Diagnostic and therapeutic implications. Rosenthal Award Lecture at the 90th Annual Meeting of the American Association for Cancer Research (AACR), Philadelphia, PA, April 10–14, 1999.

    Google Scholar 

  172. Pegram MD, Lipton A, Hayes DF, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neuoverexpres sing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16: 2659–2671.

    PubMed  CAS  Google Scholar 

  173. Nieto Y, Vredenburgh JJ, Shpall EJ, et al. Pilot phase II study of concurrent administration of trastuzumab and high-dose chemotherapy in advanced HER2+ breast cancer. Proc Am Soc Clin Oncol 2002; 21: 416a.

    Google Scholar 

  174. De Magalhaes-Silverman M, Bloom E, Lembersky B, et al. High-dose chemotherapy and autologous stem cell support followed by posttransplantation doxorubicin as initial therapy for metastatic breast cancer. Clin Cancer Res 1997; 3: 193–197.

    Google Scholar 

  175. Rahman Z, Kavanagh J, Champlin R, et al. Chemotherapy immediately following autologous stem-cell transplantation in patients with advanced breast cancer. Clin Cancer Res 1998; 4: 2717 2721.

    Google Scholar 

  176. Douer D, Levine A, Anderson WF, Gordon M, Groshen S, Khan A, et al. High-dose chemotherapy and autologous bone marrow plus peripheral blood stem cell transplantation for patients with lymphoma or metastatic breast cancer: use of marker genes to investigate hematopoietic reconstitution in adults. Human Gene Therapy 1996; 7: 669–684.

    Article  PubMed  CAS  Google Scholar 

  177. Hanania EG, Fu S, Roninson I, Zu Z, Deisseroth AB. Resistance to taxol chemotherapy produced in mouse marrow cells by safety-modified retroviruses containing a human MDR-1 transcription unit. Gene Therapy 1995; 2: 279–284.

    PubMed  CAS  Google Scholar 

  178. Hanania EG, Fu S, Zu Z, Hegewisch-Becker S, et al. Chemotherapy resistance to taxol in clonogenic progenitor cells following transduction of CD34 selected marrow and peripheral blood cells with a retrovirus that contains the MDR-1 chemotherapy resistance gene. Gene Therapy 1995; 2: 285294.

    Google Scholar 

  179. Rahman Z, Kavanagh J, Champlin R, et al. Chemotherapy immediately following autologous stem-cell transplantation in patients with advanced breast cancer. Clin Cancer Res 1998; 4: 2717–2721.

    PubMed  CAS  Google Scholar 

  180. Porcata LF, Ingle JN, Litzow MR, Geyer SM, Markovic SN. Prolonged survival associated with early lymphocyte recovery after autologous stem cell transplantation for patients with metastatic breast cancer. Bone Marrow Transplant 2001; 28: 865–871.

    Article  Google Scholar 

  181. Nieto Y, Jones RB, Bearman SI, McNiece IK, McSweeney PA, Shpall EJ. Prognostic analysis of the early lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with an autologous hematopoietic progenitor cell transplant. Biol Blood Marrow Transplant 2003; 9: 72a.

    Google Scholar 

  182. Kennedy MJ, Vogelsang GB, Beveridge RA, et al. Phase I trial of intravenous cyclosporine to induce graftversus-host disease in women undergoing autologous bone marrow transplantation for breast cancer. J Clin Oncol 1993; 11: 478–484.

    PubMed  CAS  Google Scholar 

  183. Kennedy MJ, Vogelsang GB, Jones RJ, et al. Phase I trial of interferon gamma to potentiate cyclosporineinduced graft-versus-host disease in women undergoing autologous bone marrow transplantation for breast cancer. J Clin Oncol 1994; 12: 249–257.

    PubMed  Google Scholar 

  184. StiffPJ, Bayer R, Tan S, et al. High-dose chemotherapy combined with escalating doses of cyclosporin A and an autologous bone marrow transplant for the treatment of drug-resistant solid tumors: a phase I clinical trail. Clin Cancer Res 1995; 1: 1495–1502.

    Google Scholar 

  185. Burns LJ, Weisdorf DJ, DeFor TE, et al. Enhancement of the anti-tumor activity of a peripheral blood progenitor cell graft by mobilization with interleukin-2 plus granulocyte colony-stimulating factor in patients with advanced breast cancer. Exp Hematol 2000; 28: 96–103.

    Article  PubMed  CAS  Google Scholar 

  186. Sosman JA, Stiff P, Moss SM, et al. Pilot trial of interleukin-2 with granulocyte colony-stimulating factor for the mobilization fo progenitor cells in advanced breast cancer patients undergoing high-dose chemotherapy: Expansion of immune effectors within the stem-cell graft and post-stem-cell infusion. J Clin Oncol 2001; 19: 634–644.

    Google Scholar 

  187. Morse MA, Vredenburgh JJ, Lyerly HK. A comparative study of the generation of dendritic cells from mobilized peripheral blood progenitor cells of patients undergoing high-dose chemotherapy. J Hematother Stem Cell Res 1999; 8: 577–584.

    Article  PubMed  CAS  Google Scholar 

  188. Asavaroengchai W, Kotera Y, Mulé J. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. PNAS 2002; 99: 931–936.

    Article  PubMed  CAS  Google Scholar 

  189. De Gast GC, Vyth-Dreese FA, Nooijen W, et al. Reinfusion of autologous lymphocytes with granulocyte-macrophage colony-stimulating factor induces rapid recovery of CD4+ and CD8+ T cells after high-dose chemotherapy for metastatic breast cancer. J Clin Oncol 2002; 20: 58–64.

    Article  PubMed  Google Scholar 

  190. Ross AA, Cooper BW, Lazarus HM, et al: Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 1993; 82: 2605.

    Google Scholar 

  191. Schoenfeld A, Kruger KH, Gomm J, et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 1997; 33: 854–861.

    Article  PubMed  CAS  Google Scholar 

  192. Datta YH, Adams PT, Drobyski WR, Ethier SP, Terry VH, Roth MS. Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 1994; 12: 475–482.

    PubMed  CAS  Google Scholar 

  193. Fields KK, Elfenbein GJ, Trudeau WL. Clinical significance of bone marrow metastases in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 1996; 14: 1868–1876.

    PubMed  CAS  Google Scholar 

  194. Franklin W, Shpall EJ, Archer P, et al. Immunocytochemical detection of breast cancer cells in marrow and peripheral blood of patients undergoing high dose chemotherapy with autologous stem cell support. Breast Cancer Research and Treatment 41: 1–13, 1996.

    Article  PubMed  CAS  Google Scholar 

  195. Sharp JC, Kessinger A, Mann S, et al: Detection and clinical significance of minimal tumor cell contamination of peripheral blood stem cell harvests. International Journal of Cell Cloning 1992; 10 (suppl 1): 92–94.

    Article  Google Scholar 

  196. Vredenburgh J, Silva O, Broadwater G, et al: The significance of tumor contamination in the bone marrow from high-risk primary breast cancer patients treated with high-dose chemotherapy and hematopoietic support. Biol Blood Marrow Transplantation 1997; 3: 91–97.

    CAS  Google Scholar 

  197. Umiel T, Moss TJ, Cooper B, et al. The prognostic value of bone marrow micro-metastases in stage II/IIIbreast cancer patients undergoing autologous transplant (ABMT) therapy. Proc Am Soc Clin Oncol 17: 79a, 1998.

    Google Scholar 

  198. Solano C, Badia B, Lluch A, et al. Prognostic significance of the immunocytochemical detection of contaminating tumor cells (CTC) in apheresis products of patients with high-risk breast cancer treated with high-dose chemotherapy and stem cell transplantation. Bone Marrow Transplant 2001; 27: 287–293.

    Article  PubMed  CAS  Google Scholar 

  199. Cooper BW, Moss TJ, Ross AA, Ybanez J, and Lazarus HM. Occult tumor contamination of hematopoietic stem-cell product does not affect clinical outcome of autologous transplantation in patients with metastatic breast cancer. J Clin Oncol 1998; 16: 3509–3517.

    PubMed  CAS  Google Scholar 

  200. Shpall EJ, Jones RB, Bast RC, et al: 4-Hydroperoxycyclophosphamide purging of breast cancer from the mononuclear cell fraction of bone marrow in patients receiving high-dose chemotherapy and autologous marrow support: A phase I trial. J Clin Oncol 1991; 9: 85–93.

    PubMed  CAS  Google Scholar 

  201. Shpall EJ, Bast RC, Joines WT, et al. Immunomagnetic purging of breast cancer from bone marrow for autologous transplantation. Bone Marrow Transplantation 1991; 7: 145–151.

    PubMed  CAS  Google Scholar 

  202. Anderson IC, Shpall EJ, Leslie DS, et al. Elimination of malignant clonogenic breast cancer cells from human bone marrow. Cancer Research 1989; 15: 4659.

    Google Scholar 

  203. Vredenburgh JJ, Hussein A, Rubin P, et al: High-dose chemotherapy and immuno-magnetically purged peripheral blood progenitor cells and bone marrow for metastatic breast carcinoma. Proc Am Soc Clin Oncol 1996; 15: 339.

    Google Scholar 

  204. Krause DS, Fackler MJ, Civin CI, and Stratford May W: CD34: Structure, biology and clinical utility. Blood 1996; 87: 1–13.

    PubMed  CAS  Google Scholar 

  205. Shpall EJ, Jones RB, Bearman SI, et al: Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J Clin Oncol 1994; 12: 28–36.

    PubMed  CAS  Google Scholar 

  206. University of Colorado BMT Program, unpublished observations.

    Google Scholar 

  207. Shpall EJ, LeMaistre CF, Holland K, et al. A prospective randomized trial ofbuffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy. Blood 1997; 90: 4313–4320.

    PubMed  CAS  Google Scholar 

  208. Yanovich S, Mitsky P, Cometta K, et al. Transplantation of CD34+ peripheral blood cells selected using a fully automated immunomagnetic system in patients with high-risk breast cancer: results of a prospective randomized multicenter clinical trial. Bone Marrow Transplant 2000; 25: 1165–1174.

    Article  PubMed  CAS  Google Scholar 

  209. University of Colorado BMTP, unpublished observations.

    Google Scholar 

  210. Mohr M, Hilgenfeld E, Fietz T, et al. Efficacy and safety of simultaneous immuno-magnetic CD34+ cell selection and breast cancer cell purging in peripheral blood progenitor cell samples used for hematopoietic rescue after high-dose therapy. Clin Cancer Res 1999; 5: 1035–1040.

    PubMed  CAS  Google Scholar 

  211. Negrin RS, Atkinson K, Leemhuis T, et al. Transplantation of highly purified CD34+ Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol Blood Marrow Transplant 2000; 6: 262–271.

    Article  PubMed  CAS  Google Scholar 

  212. Eibl B, Schwaighofer H, Nachbaur D, et al. Evidence for a graft-versus-tumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer. Blood 1996; 88: 1501–1508.

    PubMed  CAS  Google Scholar 

  213. Ben-Yosef R, Or R, Nagler A, Slavin S. Graft-versus-tumour and graft-versus-leukaemia effect in patient with concurrent breast cancer and acute myelocytic leukaemia. Lancet 1996; 348: 1242–1243.

    Article  PubMed  CAS  Google Scholar 

  214. Ueno NT, Rondón G, Mirza NQ, et al. Allogeneic peripheral-blood progenitor-cell transplantation for poor-risk patients with metastatic breast cancer. J Clin Oncol 1998; 16: 986–993.

    PubMed  CAS  Google Scholar 

  215. Childs R, Chemoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000; 343: 750–758.

    Article  PubMed  CAS  Google Scholar 

  216. Rini BI, Zimmerman T, Stadler WM, et al. Allogeneic stem-cell transplantation of renal cell cancer after nonmyeloablative chemotherapy: feasibility, engraftment, and clinical results. J Clin Oncol 2002; 20: 2017 2024.

    Google Scholar 

  217. Ueno NT, Cheng YC, Giralt SA, et al. Complete donor chimerism by fludarabine/melphalan in mini-allogeneic transplantation for metastatic renal cell carcinoma (RCC) and breast cancer (BC). Proc Am Soc Clin Oncol 2002; 21: 415a.

    Google Scholar 

  218. Bregni M, Peccatori J, Dodero A, et al. Clinical responses to reduced-intensity allogeneic stem cell transplantation in solid tumors: strong association with graft-vserus-host-disease. Proc Am Soc Clin Oncol 2002; 21: 417a.

    Google Scholar 

  219. Blaise DP, Bay JO, Michallet M, et al. A feasibility study of allogeneic immunotherapy for solid tumors. Proc Am Soc Clin Oncol 2002; 21: 417a.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nieto, Y., Shpall, E.J. (2004). Hematopoietic Progenitor Cell Transplantation for Breast Cancer. In: Soiffer, R.J. (eds) Stem Cell Transplantation for Hematologic Malignancies. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-733-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-733-8_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6588-5

  • Online ISBN: 978-1-59259-733-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics