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1. INTRODUCTION 

Over the last several decades, hematopoietic stem cell transplantation (SeT) has emerged 
as an important therapeutic option for a number of malignant and nonmalignant conditions. 
Unfortunately, the utility of this treatment strategy is limited by several side effects, the most 
serious of which include the development of graft-vs-host disease (GVHD) and pulmonary 
toxicity. Puhnonary dysfunction, specifically diffuse lung injury, is a major complication of 
SeT; it occurs in 25-55% of SeT recipients and can account for approximately 50% of 
transplant-related mortality (1--6). Diffuse lung injury is described as either acute or chronic 
with respect to both the time of onset after SeT and the tempo of disease progression once the 
diagnosis has been established. Approximately 50% of the time, an infectious etiology is 
uncovered, whereas in the remaining 50% of cases, no microbial organisms are identified in 
the lungs of affected patients (7). In recent years, the judicious use of broad-spectrum antimi­
crobial prophy lax is has tipped the balance of pulmonary complications after seT from infec­
tious to noninfectious. In this context, two types of pulmonary dysfunction have been 
recognized: acute noninfectious lung injury (termed idiopathic pneumonia syndrome [IPS]) 
and subacute or chronic noninfectious lung injury. Two forms of subacute/chronic lung injury 
are common in patients over 100 d posttransplant: airflow obstruction and restrictive lung 
injury (8-16). Each form of noninfectious lung injury is associated with significant morbidity 
and mortality and, unfortunately, clinical responses to standard therapeutic approaches are 
limited. This chapter will be devoted to noninfectious lung injury occurring both early and late 
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after allogeneic SCT (alloSCT), with the goal of providing a better understanding of the 
definition, risk factors, and pathogenesis of these important transplant-related complications. 

2. ACUTE LUNG INJURY: IDIOPATHIC PNEUMONIA SYNDROME 

2.1. Overview 

Idiopathic pneumonia syndrome refers to diffuse, noninfectious lung injury that occurs 
early in the time-course of SCT. In 1993, a panel convened by the National Institutes of Health 
(NIH) proposed a broad working definition of IPS to include widespread alveolar injury in the 
absence of active lower-respiratory-tract infection following SCT (7). The NIH panel was 
careful to stress that they considered this definition to be that of a clinical syndrome, with 
variable histopathologic correlates and several potential etiologies (7). Diagnostic criteria of 
IPS include signs and symptoms of pneumonia, evidence fornonlobar radiographic infiltrates, 
abnormal pulmonary function, and the absence of infectious organisms in the lowerrespiratory 
tract as determined by broncho-alveolar lavage (BAL) or lung biopsy (2,7). A variety of 
histopathologic findings have been associated with IPS, including hyaline membranes, bron­
chiolitis obliterans organizing pneumonia (BOOP), and lymphocytic bronchitis; however, the 
most frequently reported pattern is interstitial pneumonitis, a term historically used inter­
changeably with IPS (17). The median time of onset for IPS was initially described to be 6-7 
wk after SCT, with a range from 14 to 90 d after the infusion of donor stem cells (7). Perhaps 
the most striking featureofIPS is its impact on overall survival; mortality rates of50-80% have 
been reported, with survival being less than 5% for patients requiring mechanical ventilation 
(2,3,5-7,18,19). Although a more recent retrospective study from the Seattle group showed a 
lower incidence and earlier onset of IPS than previously reported, the typical clinical course 
involving the rapid onset of respiratory failure leading to death remained unchanged (6). A 
retrospective review performed at the University of Michigan Medical Center demonstrated 
that the frequency ofIPS after alloSCT ranged from 5% to 25 % depending on donor source and 
the degree of antigenic mismatch. Consistent with the Seattle report, the median time for 
development ofIPS was 18 days after transplant in unrelated donor (URD) recipients, and 13 
d in the allogeneic peripheral blood stem cell (PBSC) group. Strikingly, the overall d 100 
mortality in patients with IPS was 90% and the median time to death from onset of IPS was 13 
days, despite high-dose steroids and broad-spectrum antimicrobial therapy (20). As noted, 
these findings are consistent with published reports and underscore the critical nature of this 
transplant-related problem. 

Potential risk factors for IPS are several and include SCT conditioning with total-body 
irradiation (TBI), acute graph-vs-hostdisease (GVHD) , olderrecipientage, SCT formalignan­
cies other than leukemia, and methotrexate (MTX) for GVHD prophylaxis (5,21-23). Further­
more, the likelihood of developing IPS increases with the number of identified risk factors (3). 
Whereas the effects of MTX and recipient age on IPS have been disputed, the correlation of 
TBI use or the development of acute GVHD with IPS has been observed in several reports 
(2,5,6,23-25). The definition of IPS encompasses numerous descriptive forms of pulmonary 
toxicity as well, including diffuse alveolar hemorrhage (DAH), peri-engraftment respiratory 
distress syndrome (PERDS), and delayed pulmonary toxicity syndrome (DPTS) (19). DAH 
generally develops in the immediate post-SCT period and is characterized by progressive 
shortness of breath, cough, and hypoxemia with or without fever ( 19,26-28). Althoughhemop­
tysis is rare, BAL showing progressively bloodier aliquots of lavage return has traditionally 



Chapter 12 I Lung Injury After SeT 273 

diagnosed DAR (26). Mortality has been reported in up to three-quarters of affected patients 
despite high-dose (250mg/kg to 2 g/kg) steroids, with death occurring within 3 wkofdiagnosis 
(27). Peri-engraftment syndrome and DPTS typically occur after autologous SCT (autoSCT) 
(19). Each is characterized by fever, dyspnea, and hypoxemia and tends to have a more favor­
able response to corticosteroids and overall prognosis (29-31). By definition, PERDS occurs 
within 5 d of engraftment, whereas the onset of DPTS may be delayed for months and com­
monly occurs following high-dose chemotherapy (HDC) containing cyclophosphamide, 
cisplatin, and bischloroethylinitrosurea (BCNU) and stem cell rescue for breast cancer (31). 

2.2. Pathogenesis of Idiopathic Pneumonia Syndrome: The Lung As a Potential 
Target of the GVH Response 

Potential etiologies for IPS are several and include direct toxic effects of SCT conditioning 
regimens, occult pulmonary infections, and inflammatory cytokines that have been implicated 
in other forms of pulmonary injury (32-36). In addition, immunologic factors may be impor­
tant. Support for the latter can be found in several large series in which IPS was associated with 
allogeneic (vs autologous or syngeneic) SCT and severe GVHD (vs mild or absent) 
(2,3,5,6,18,19). In many instances, acute GVHD often precedes IPS, suggesting a possible 
causal relationship between the two entities (5,21,37,38). Although the lung is not recognized 
as a classic targetorganofGVHD, the clinical association between lung injury and GVHD and 
the demonstration of pathologic lung changes in rodents with acute GVHD make this possi­
bility intriguing (2,3,5,6,39--43). The pathophysiology of GVHD is complex and is now known 
to involve donor T-cell responses to host antigens, inflammatory cytokine effectors such as 
tumor necrosis factor -a (TNF-a) and interleukin -1 (ll.,-1), and endoto xin ( 16, 44--48). Endot­
oxin or lipopolysaccharide (LPS) is a component of endogenous bowel flora and is a potent 
enhancer of inflammatory cytokine release. Translocation of LPS across a gut mucosa dam­
aged early in the posttransplant period by the effects of conditioning regimens and GVHD has 
been demonstrated after both experimental and clinical SCT (49-52). When LPS reaches the 
systemic circulation, it induces the release of inflammatory cytokines, which, together with 
cellular effectors, contribute to GVHD target organ damage and dysfunction (44,53,54). 

The role of GVHD and specifically alloreactive donor lymphocytes in the pathogenesis of 
IPS remains a topic of considerable debate. Although acute pulmonary dysfunction has been 
associated with the development of systemic GVHD, IPS has also been reported after alloge­
neic T -cell-depleted SCT and when signs and symptoms of GVHD are limited or absent (55-
58), making a causal relationship between the two entities difficult to establish. The principal 
objection to the identification of the lung as a target of the GVH reaction is that epithelial 
apoptosis, a finding classically attributed to selective T -cell-mediated injury and considered 
pathognomonic for acute GVHD in other target tissue, has not been consistently identified in 
the lungs of patients with IPS (38,59--61). In 1978, Beschorner and colleagues reported an 
association between the severity of clinical GVHD and a histologic pattern consistent with 
lymphocytic bronchitis found on postmortem exams. This finding was not seen in patients who 
received auto SCT or in untransplanted controls (38). Although initially considered a potential 
histopathologic correlate for GVHD of the lung, the association between lymphocytic bron­
chitis and the development of systemic GVHD was not consistently identified in subsequent 
reports (59-61). 

The heterogeneity of pulmonary histopathology after clinical SCT is complicated further by 
the nonspecific changes that occur after mechanical ventilation and by the risks associated with 
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lung biopsy procedures that can significantly limit the quality and quantity of pathology 
specimens obtained. Despite the lack of classic GVHD histopathology, it is not unreasonable 
to suggest that pulmonary epithelial and endothelial cells can be potential targets for activated 
donor T cells after allo SCT. First, the lung is a rich source of major and minor histocompat­
ibility (HC) antigens and professional antigen-presenting cells (62,63) and is the site of com­
plex immunologic networks, the proper balance of which allows for infectious surveillance and 
maintenance of structural integrity, whereas dysregulation of such networks can result in tissue 
injury and scarring (64). Furthermore, the inflammatory mediators TNF-a andLPS, which are 
believed to playa part in GVHD (52,54,65), have also been implicated as contributors to 
pulmonary dysfunction in several experimental systems and clinical syndromes, including 
adult respiratory distress syndrome (ARDS), lung allograft rejection, and pneumonitis after 
toxin exposure (32-36,39,66--69). The role ofT lymphocytes in immune-mediated pulmonary 
inflammation has recently been confirmed by several groups and is thoughtto involve dendritic 
cells, macrophages, and the secretion of cytokines (70,71 ). Enhanced lymphocyte activation 
has been reported in the lungs of patients after BMT and during lung allograft rejection as well 
(55,56,72). 

Second, as discussed in detail later in this chapter, the association of chronic GVHD with 
obstructive lung disease after alloSCT is well accepted (8,9,73-76). Although a causal link 
between these two entities has yet to be defmitively established, the striking similarities between 
the consistent histopathologic features of bronchiolitis obliterans seen after SCT and that 
observed during lung transplant rejection, along with reports of improvement in lung function 
with immunosuppressive agents, strongly suggest an immunologic component to this pulmonary 
process (9,74-76). Third, epithelial cell apoptosis is not a requirement of GVHD pathology; the 
thymus is a known target of GVHD and displays extensive cytolytic damage early in the course 
of this process, but epithelial cell apoptosis is not a prominent histologic feature (77). Finally, 
recent studies have demonstrated that GVHD target organs vary with respect to their suscepti­
bility to injury by inflammatory effectors such as cytotoxic T lymphocytes (CTLs), TNF-a, and 
FasL (48,78). If the mechanisms of GVHD related tissue injury can differ between individual 
target organs, it is possible that the histopathologic manifestation of this injury may also vary. 

2.3. Murine Models of IPS After Allogeneic BMT 

2.3.1. OVERVIEW 

Using well-establishedrodentSCT models, several investigators have recently explored the 
relationship between alloreactivity and IPS and have consistently shown that animals with 
systemic GVHD develop lung injury (39,42,79,80). Importantly, these studies have uncovered 
potential roles for both inflammatory mediators and cellular effectors in the evolution of IPS 
and support the hypothesis that the lung may, indeed, be vulnerable to a "two-pronged" immu­
nologic attack after allo SCT. Advantages of these systems include the unlimited availability 
of tissue for pathologic analysis, tight control over SCT parameters (including HC differences 
between donor and host, SCT conditioning regimens, and T-cell dose) and the ability to analyze 
the development of tissue injury without the confounding influences of immunosuppressive 
chemoprophy laxis, underlying disease, or prior treatment. Surprisingly, even under contro lIed 
experimental conditions, several patterns of lung injury have been identified. For example, 
using a B 10 --;> (CBA x BIO)Fl murine SCT model, Piguet and co-workers observed both an 
acute hemorrhagic alveolitis and a late-onset interstitial pneumonitis (IP) after infusion ofBl 0 
parental lymphocytes, whereas induction of GVHD with T cells from CBA donors led to IP 
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only (39). In addition, the development of interstitial pneumonitis along with a lymphocytic 
bronchiolitislbronchitis comparable to the histopathology seen in lung allograft rejection was 
noted in an unirradiatedrat GVHD model (79). Similar pulmonary pathology has beenreported 
in several mouse SCT systems that model a variety ofHC antigenic mismatches between donor 
and host (40-43,80,81). 

In studies completed by Cooke and colleagues, BlO.BRdonorstemcellsand T lymphocytes 
were transplanted into CBA recipients. This donorlrecipient strain combination is matched at 
the loci but differs at multiple minor HC antigens and therefore most closely models a SCT 
from a matched unrelated donor. At 6 wk after SCT, lungs of mice receiving syngeneic trans­
plants maintained virtually normal histology. By contrast, two major abnormalities were ap­
parent in the allogeneic group: a dense mononuclear cell infiltrate around both pulmonary 
vessels and bronchioles and an acute pneumonitis involving the interstitium and alveolar 
spaces (42). The alveolar infiltrate was composed of macrophages, lymphocytes, epithelial 
cells, and scattered polymorphonuclear cells within a fibrin matrix (42). Both of these histo­
pathologic patterns closely resemble the microscopic features of the nonspecific, diffuse in­
terstitial pneumonias seen in allo SCT recipients (7,17,38,59). As noted earlier, similar 
histopathology has been observed using other strain combinations where the GVH reaction is 
induced across (1) other minor antigens, (2) class I or class II antigens only, and (3) major and 
minor HCantigenic differences, whereas findings of diffuse alveolar injury, including alveolar 
hemorrhage, edema, or hyaline membranes, were not seen (82--84). Pulmonary function has 
been measured in live transplanted mice in order to assess the physiologic consequences of 
lung pathology present after SCT (43,80). Mice with GVHD showed significant reductions in 
both dynamic compliance and airway conductance compared with syngeneic controls consis­
tent with both the interstitial and peribronchial infiltrates seen microscopically (43 ). Of note, 
no differences in pulmonary function or lung histopathology were observed between animals 
with mild and moderate GVHD. Thus, initial studies suggested that the development of IPS 
after allo SCT correlated with the presence, but not the severity, of systemic GVHD. The 
nonlinear relationship between lung injury and the severity of acute GVHD was consistentwith 
clinical reports of IPS in patients whose signs and symptoms of GVHD were mild or absent 
(8,9,57,73,74). Physiologically significant lung injury has also been reported in a fully major 
H C mismatched sy stem within thefirst 2 wk 0 f SCT (80), suggesting that increasing antig enic 
disparity between donor and host may directly correlate with the time of onset ofIPS in these 
mouse BMT systems. 

2.3.2. INFLAMMATORY EFFECTORS TNF-a AND LPS AND THE DEVELOPMENT OF IPS 

Experimental models have also provided insight into the possible pathophysiologic mecha­
nisms responsible for acute noninfectious lung injury occurring after SCT. Consistent with the 
mixed inflammatory alveolar infiltrates observed on histopathology, lung injury in recipients 
of allo SCT has been shown to be associated with a significant increase in the number ofBAL 
lymphocytes, macrophages, and neutrophils (42). Furthermore, increased expression of TNF­
a mRNA and protein has been detected in the lungs and BAL fluid of animals with GVHD (40-
42,45,81). The correlation between increasedBAL fluid TNF-a levels, neutrophil content, and 
pulmonary pathology in the absence of infection suggests that endotoxin (LPS) might also play 
an important role in the observed damage. Not only are increased levels ofLPS noted in theBAL 
fluid ofmice with IPS, but LPS may also be a "trigger" for the release of inflammatory cytokines 
that directly contribute to lung damage; LPS injection 6 wk after SCT increased the total number 
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ofneutrophils in the BAL fluid and significantly amplified the severity oflung injury in animals 
with advanced GVHD (42). These pathologic changes were associated with large increases in 
BAL fluid levels ofTNF-a and LPS and with the development of alveolar hemorrhage (42,81). 
The role ofTNF-a in the development of experimental IPS has been examined further by using 
strategies that neutralize the effects of this inflammatory cytokine (45,81,82). Recently, the 
effects of a soluble, dimeric, TNF-binding protein (rhTNFR:Fc; Immunex Corp. Seattle, WA) 
on lung injury were studied after allo SCT. Administration of rhTNFR:Fc around the time of 
LPS challenge effectively reduced mortality and prevented increases in pulmonary pathology, 
BAL fluid cellularity and endotoxin content, confirming that TNF-a is central to LPS-mediated 
systemic and pulmonary toxicity in this setting (81). Furthermore, TNF-a neutralization from 
wk 4 to wk 6 after SCT significantly reduced the severity of lung injury and prevented the 
progression of systemic and hepatic GVHD seen in the control group during the treatment 
period (81). 

TNF-a is likely to contribute to the development of IPS through both direct and indirect 
mechanisms. TNF-a increases MHC expression, modulates leukocyte migration, facilitates 
cell-mediated cytotoxicity, and is itself cytotoxic (45,85). It is also possible that the protective 
effects seen in the lung are secondary to a systemic anti-inflammatory response (86) because 
TNF-a blockade also attenuates the progression systemic and hepatic GVHD (81 ). The partial 
reduction in lung injury provided by TNF-a neutralization is consistent with reports from 
many groups (39,45,51,52,78,87,88) and suggests that other inflammatory mediators and 
cellular mechanisms that are involved in acute GVHD may also contribute to the development 
ofIPS (47,48,78). Specifically, interleukin (IL)-lP, transforming growth factor-p (TGF-P), 
and nitrating species including nitric oxide and peroxynitrite have been implicated in the 
generation of early lung toxicity after allo SCT, particularly when cyclophosphamide is in­
cluded in the conditioning regimen (80,89,90). 

The results of endotoxin challenge experiments confirm that TNF-a mediates systemic and 
pulmonary toxicity caused by LPS (91-93). The reduction in BAL fluid LPS after TNF-a 
neutralization was intriguing however and strongly suggested that in addition to directly neu­
tralizing TNF-a in the alveolar space, treatment with rhTNFR:Fc altered the systemic inflam­
matory response to LPS "upstream" from the lung (86). From this perspective, the structural 
and functional integrity of the liver is likely to be critical. The li ver is pivotally located between 
the intestinal reservoir of Gram-negative bacteria and their toxic byproducts and the rich 
capillary network in the lung. Kupffer cells in the liver detoxify and subsequently clear endot­
oxin from the systemic circulation (94) and protect the lung in experimental models of sepsis 
and ARDS (95,96). Inflammation engendered during the normal clearance of endotoxin re­
mains contained within the reticulo-endothelial system of the liver (94). If, however, the 
capacity of the liver to clear an endoto xin challeng e is exceeded, both inflammatory cytokines 
and unprocessed LPS can traverse into the systemic circulation and cause acute end-organ 
damage. Several experimental studies have shown that pre-existing injury decreases the ability 
of the liver to neutralize endotoxin effectively (97-100). In the setting of acute GVHD, an 
endotoxin surge can arise from increased leakage of LPS across damaged intestinal mucosa. 
In this scenario, underlying hepatic damage as a consequence of direct target organ injury could 
then serve to decrease the liver's capacity for LPS uptake and clearance. Animals with mild 
or no GVHD effectively detoxify exogenous endotoxin and protect their lungs from further 
damage, whereas mice with extensive disease are unable to do so and ultimately develop severe 
pulmonary toxicity, including alveolar hemorrhage (42). In the studies noted earlier using 
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rhTNFR:Fc, all animals had advanced GVHD at the time of analysis. As expected, adminis­
tration ofLPS to animals treated with control IgG overwhelmed the liver's capacity to clear 
circulating endotoxin and caused enhanced hepatic injury and the propagation of systemic and 
pulmonary disease. By contrast, systemic neutralization of TNF-a protected the liver from 
endotoxin-induced inflammation and resulted in decreased mortality and a reduction of BAL 
fluid LPS levels and pulmonary inflammation (81). 

These data demonstrate that the inflammatory mediators TNF-a and LPS both contribute 
to experimental IPS. Moreover, they support the hypothesis that a "gut-liver-Iung" axis of 
inflammation may playa role in IPS pathophysiology and suggest that any process or combi­
nation of events that eventually results in large amounts of endotoxin and/or TNF-a into the 
pulmonary circulation could contribute to the development of lung injury. This hypothesis is 
supported by the clinical observation of increased levels ofTNF-a in the serum of patients that 
develop IPS (101). A role for hepatic dysfunction in pulmonary toxicity after SCT is also 
consistent with clinical reports of acute noninfectious pulmonary toxicity associated with 
severe GVHD and veno-occlusive disease (VOD) (2,102). Furthermore, evidence forcytokine 
activation and LPS amplification in the broncho-alveolar compartment, which has been noted 
during ARDS (103 ), has recently been demonstrated in patients with IPS after SCT as well ( 1 ). 
Clark and colleagues found increased pulmonary vascular permeability and BAL fluid levels 
of IL-l, IL-12, IL-6, and TNF-a and components of the LPS amplification system (LPB and 
CD14) in patients with IPS (1). The investigators conclude that pro-inflammatory cytokine 
activation contributes to IPS and suggest that patients with this complication may be at in­
creased risk for LPS-mediated lung injury. 

2.3.3. CELLULAR EFFECTORS AND THE DEVELOPMENT OF IPS 

2.3.3.1. THE ROLE OF NEUTROPHIL/POL YMORPHONUCLEAR CELLS 

As demonstrated earlier, the presence of neutrophils, in the absence of infection, is a major 
component of the inflammatory infiltrate seen in animals with IPS (42). A role for neutrophils 
in noninfectious lung injury has been observed in both the acute and chronic setting; neutro­
philia is a prominent finding in acute respiratory distress syndrome (ARDS) and in the early 
and late stages of bronchiolitis obliterans (BO) that develops during lung allograft rejection 
( 104-109). Po lymorphonuclear (PMN) products are abundant in the B AL fluid of patients with 
ARDS and are believed to significantly contribute to endothelial and epithelial damage that 
occurs in this setting ( 104), whereas similar increases in PMN activation markers may be early 
indicators ofBO after lung transplant (106). Neutrophils are likely to playa role in lung injury 
after SCT as well; more that 60% of patients diagnosed with IPS at the University of Michigan 
developed signs and symptoms of pulmonary dysfunction within 7 d of neutrophil engraftment 
(20). Furthermore, a significant neutrophilic influx has also been observed in the BAL fluid and 
biopsy specimens of SCT recipients with BO (110,111). In mouse IPS models, the influx of 
neutrophils is most prominent between wk 4 and 6 after SCT and is associated with the presence 
ofTNF-a and LPS in the BAL fluid (42,81). The relationship among neutrophils, TNF-a, and 
LPS is underscored by the outcome ofLPS challenge and TNF-a neutralization experiments; 
administration ofrhTNFR:Fc completely abrogated the robust influx of PMN cells resulting 
from LPS administration (81). Importantly, this finding directly correlated with protection 
from enhanced pulmonary histopathology (including hemorrhage) and the preservation of 
pulmonary function (81). Furthermore, reduction in lung injury resulting from neutralizing 
TNF from wk 4 to 6 was also accompanied by a significant decrease in neutrophils in BAL 
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fluid. Taken tog eth er, these data support a ro Ie for neutro phils in the injury incurred during IPS 
and suggest that aspects of the innate immune response may also contribute to this process. 

2.3.3.2. ROLE OF DONOR ACCESSORY CELLS IN THE DEVELOPMENT OF IPS 

The relationship among LPS, TNF-a, and donor leukocytes in the pathophysiology IPS has 
been examined further by detennining whether the responsiveness of donor cells to LPS stimu­
lation would influence the development of lung injury after allo SCT. To test this hypothesis, 
two related substrains of mice, C3H1Hej and C3Heb/Fej, that differ in theirresponse to the lethal 
effects of LPS (112) were used as SCT donors. C3HebIFej animals exhibit nonnal murine 
sensitivity to LPS challenge (LPS-s), whereas a genetic mutation in the Toll-like receptor 4 (Tlr 
4) gene of C3H1Hej mice has made this strain resistant to LPS (LPS-r) (112-115). Initial 
experiments demonstrated that transplantation of cells from LPS-r donors resulted in a signifi­
cant decrease in systemic GVHD. Specifically, LPS-r SCT reduced early intestinal injury 
mediated by TNF-a, a finding that was independent of donor T-cell response to host antigens 
(52). In subsequent experiments, recipients of LPS-r SCT were also found to develop signifi­
cantly less lung toxicity as measured by pathology, function, and BAL fluid cellularity (82). 
This protective effect was associated with decreased TNF-a secretion in vivo and in vitro; BAL 
fluid TNF-a levels were lower after LPS-r SCT andBAL cells harvested from LPS-r recipients 
produced approx 30-fold less TNF-a to LPS stimulation compared to cells collected from 
recipients ofLPS-s SCT (82). This finding correlated with the nave phenotype of C3H1Hej and 
C3HebIFej BALcells, respectively, and was consistent with the observation that more than 98% 
of BAL cells are of donor origin by wk 4 after transplant. BAL LPS concentrations were also 
decreased after LPS-r SCT and correlated with a reduction in intestinal toxicity and serum LPS 
levels at wk 1 and with decreased intestinal and hepatic injury at wk 5 (52,82). Similar reduc­
tions in systemic GVHD and lung injury have also been observed when animals deficient in 
CD 14, a cell surface receptor critical to the innate immune response and an important receptor 
for LPS, wereusedas SCT donors ina second P--;. FI SCT model ( 116). These data demonstrate 
that resistance of donor accessory cells to LPS stimulation reduces the severity of lung injury 
after allo SCT. Importantly, these findings also reveal a significant role for donor-derived 
macrophages in IPS and support an etiologic link between gut and lung damage that occurs after 
alloSCT. 

2.3.3.3. ROLE OF DONOR-DERIVED T-CELL EFFECTORS 

Although the induction of GVHD fundamentally depends on interactions between donor T 
cells and host antigen-presenting cells (117), the role of alloreactive donor T cells in the 
pathogenesis of IPS has been a topic of considerable debate. The importance of lymphocytes 
to lung injury after experimental SCT has, however, been suggested by several groups 
(40,80,118,119). Donor T cells are critical to the early pro-inflammatory events associated 
with lung toxicity that develops within the first week of SCT across MI-IC antigens, whereas 
in a minor HC antigen mismatch system, donor lymphocytes have been shown to persistently 
respond to host antigens and contribute to physiologically significant lung histopathology at 
later time-points after SCT (43,80). Furthermore, donor T-cell clones that recognize CD45 
polymorphisms result in a rapidly progressive pulmonary vasculitis within the first 3 dafter 
their injection into nonirradiated recipients (40,119). Finally, Gartner and colleagues showed 
that pulmonary natural killer (NK)-cell activity remained increased over an extended period 
of time during GVHD in contrast to the transient and mild increase in splenic NK activity that 
occurred during the same interval ( 120). These experimental data support clinical observations 
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suggesting that alveolar lymphocytosis associated with interstitial pneumonitis after allo BMT 
could represent a pulmonary manifestation of chronic GVHD (121). 

Additional experiments have been completed to determine whether donor cytotoxic T lym­
phocyte (CTL) effectors contribute to lung injury via c ell--c ell-mediated killing. Two primary 
cytolytic pathways have been identified: the perforin-granzyme pathway and the Fas-Fas 
ligand (FasL) pathway. Both perforin and Fas pathways contribute to cytolysis mediated by 
CTLs and lymphokine-activated killer (LAK) cells (122-125). The Fas pathway is primarily 
used by CD4+ cells (126), whereas perforin-mediated killing has been shown to involve both 
CD4+ and CD8+ T-cell populations (48,127). Furthermore, each cytolytic pathway has been 
shown to playa role in the development of GVHD and lung injury in non-SCT settings (128-
131). Using a parent ---i> FI model, significant CTL activity has been observed in the lungs of 
allo SCT recipients; alloantigen-specific killing using both perforin and FaslFasL pathways 
was present as early as wk 2 after BMT and persisted over time as lung injury developed (83 ). 
The relative contribution of each cytolytic pathway to the developmentofIPS was determined 
by using wild-type mice or animals deficient in either perforin (Pfp) or FasL (gld) as SCT 
donors. Recipients of gld, but not pfp-I- SCT developed significantly less lung injury com­
pared to allogeneic controls, a finding that was associated with reductions in BAL fluid cel­
lularity, donor CD4+ and CD8+ T cells, and TNF-a levels (83). 

As mentioned earlier however, noninfectious lung injury has been reported in patients in 
whom systemic GVHD is mild or absent, making a causal relationship between alloreactive 
T cells and IPS difficultto establish (8,9,57,73,74). Of interest, T-cell depletion (TCD) at the 
time of SCT using the BlO.BR ---i> CBA system reduced, but did not abrogate, lymphocyte 
responses in the lungs even though the number ofT cells in the donor stem cell inoculum was 
insufficient to cause clinical or histologic GVHD. The observation that host reactive donor 
lymphocytes were present in the BAL fluid but not the spleens of animals after TCD SCT was 
intriguing and suggested that the lung may be particularly sensitive to the effects ofthese cells 
even when systemic tolerance has been established. Clinically, BAL fluid lymphocytosis has 
been described after TCD SCT in association with pneumonitis that resulted from a local 
immune response; pulmonary T cells appeared to be activated despite systemic immune sup­
pression (55). Collectively, these data support a role for cellular effector mechanisms in IPS 
pathophysiology. Donor-derived T cells can contribute to lung injury after SCT, even when 
systemic GVHD ismild or absent. In addition, CTL activity is present in the lungs of mice with 
IPS, and Fas-FasL but not perforin-mediated killing significantly contributes to the develop­
ment of lung injury in an experimental system. 

2.3.4. ROLE OF HOST ANTIGEN-PRESENTING CELLS IN THE DEVELOPMENT OF IPS 

Although several groups have generated data to support a role for alloreactive donor T cells 
in the evolution oflung injury after SCT, the precise mechanisms by which these cells interact 
with host antigens and cause injury remain unresolved. This process is likely to be complex and 
to ultimately involve the interaction of donor lymphocytes with pulmonary antigen-presenting 
cells (APCs). It is conceivable that pulmonary dendritic cells, which are potent stimulators of 
primary T-cell responses, are intimately involved with this process (132,133). These cells are 
thought to play a critical role in the initiation and regulation of immune responses in the lung, 
and recent data suggest that they are important to both acute and chronic rejection after lung 
transplantation (134-137). Furthermore, the Thl cytokines IL-2, and interferon-y (IFN-y), 
which are critical to the development of GVHD (138) are felt to be involved in the activation 
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and recruitment of dendritic cells to sites of inflammation ( 139,140). The specific requirement 
of host APCs for the generation of acute GVHD was recently reported in a CD8+ T -cell-driven 
GVHD model in which chimeric animals that did not express alloantigen (MHC class I) on 
their APCs were used as SCT recipients (117). These results were recently extended by the 
work of Teshima and colleagues, who showed that alloantigen expression on host epithelial 
cells is not required for the development of acute GVHD; rather, recognition of alloantigen on 
host APCs is necessary and sufficient to induce a GVH reaction in which early cytotoxic 
damage to GVHD target organs is driven by inflammatory cytokines (65). It is possible that 
radio-resistant, pulmonary APCs in the host persist longer than those in other organs, thus 
allowing sustained presentation of host antigens in the lung (but not in other visceral sites) to 
small numbers of donor T cells trapped within the pulmonary microvascular circulation. This 
hypothesis could account for the apparent "sanctuary" status of the lung with respect to donor 
T cells and may have important implications with regard to the evaluation and treatment of 
pulmonary dysfunction after SCT even when clinical GVHD is absent. 

2.3.5. MECHANISMS OF LEUKOCYJE RECRUITMENT TO THE LUNG AFTER ALLO SCT 

Although cellular effectors likely playa significant role in development of IPS, the mecha­
nisms by which white blood cells (WBCs) traffic to the lung and cause inflammation have yet 
to be determined. WBC trafficking to sites of inflammation is a complex process involving 
interactions between leukocytes and endothelial cells that are facilitated by adhesion mol­
ecules, chemokines, and their receptors (141). Chemokines are a large family of 8- to lO-kDa 
polypeptide molecules that have well-defined roles in directing cell movements of lympho­
cytes, monocytes, and neutrophils during immune responses and do so both directly via their 
chemoattractant properties (i.e., by providing "directional clues") and indirectly via integrin 
activation (142,143). The 50+ chemokines that have been identified to date are classified 
structurally into 4 main groups according to the configuration of cysteine residues near the 
NH2-terminus (CC, CXC, C, and CX3C) (143). Actions of chemokines are mediated through 
a large family of seven-transmembrane-spanning, serpentine, Gj-protein-coupled receptors 
that have ligand specificity and a restricted expression on subclasses of leukocytes. However, 
ligand specificities can overlap; some chemokines bind to several receptors and some receptors 
bind multiple ligands (144). Chemokines and their receptors can be functionally divided into 
two broad categories: "inducible" or "inflammatory" chemokines that are regulated by pro­
inflammatory stimuli, help orchestrate innate and adaptive immunity, and recruit leukocytes 
to sites of inflammation in response to physiologic stress and "constitutive" or "homeostatic" 
chemokines responsible for basal leukocyte migration during immune surveillance and forma­
tion ofthe architectural framework of secondary lymphoid organs. "Inducible" or "inflamma­
tory" chemokines are produced by a variety of cell types and are induced to high levels of 
expression by inflammatory stimuli such as LPS, IL-l and TNF-a (141). The corresponding 
"inflammatory" chemokine receptors tend to have more promiscuous or redundant ligand­
binding interactions compared to "homeostatic" receptors and tend to be expressed on cells 
with an "effector" phenotype (145). 

Although chemokines have been shown to facilitate the recruitment of leukocytes to the 
lung in a variety of inflammatory states, including asthma, ARDS, infectious pneumonia, 
pulmonary fibrosis, and lung allograft rejection (145,146), investigators have just begun to 
explore their role in IPS. In each scenario, the composition of the accompanying leukocytic 
infiltrate is determined by the pattern of chemokine expression in the inflamed lung. The mixed 
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pulmonary infiltrate observed in mice after allo SCT suggests, therefore, that chemokines 
responsible for the recruitment ofmonocytes, lymphocytes, and neutrophils may be upregulated 
during the development of IPS. This hypothesis is supported by the work of Panoskaltsis­
Mortari and co-workers, who noted that enhanced expression of monocyte- and T -cell-attract­
ing chemokines in the lungs correlated with lung injury that developed within the first 2 wk 
after SCT (147). Work by the same group specifically demonstrated that T -lymphocyte pro­
duction of MIP-la is critical to the recruitment of CD8+ T cells to GVHD target organs, 
including the lung at later time-points after SCT (148). These findings are supported by the 
observation that specific interactions between MIP-l a and CCR5+ CD8+ T cells also contrib­
ute to the pathogenesis of liver GVHD (149). Studies are ongoing to more specifically deter­
mine the role of inflammatory chemokines in leukocyte recruitment during the development ofIPS. 

2.3.6. SUMMARY 

Extensive preclinical and clinic al data sugg est that both inflammato ry and cellular effectors 
participate in the development of IPS after alloSCT; TNF-a and LPS appear to be significant, 
albeit not exclusive, contributors to IPS, and cells of both myeloid and lymphoid origin also 
play a direct role in lung injury that occurs in this setting. In particular, the contribution of donor 
accessory cells appears to be tightly linked to the relationship between LPS and TNF-a as it 
exists along a "gut-liver-Iung" axis of inflammation, whereas donor-derived T-cell effectors 
can home to the lung and cause damage even when systemic GVHD is mild or absent. These 
findings have led to the development of a schema of IPS pathophysiology wherein it is hypoth­
esized that the lung is susceptible to two distinct but interrelated pathways of injury involving 
aspects of both the adaptive and innate immune response (see Fig. 1). These studies are 
significant because they support a paradigm shift away from the current understanding of acute 
lung injury after SCT as an idiopathic clinical syndrome to a process in which the lung is the 
target of an alloantigen-specific, immune-mediated attack. It is anticipated that mechanistic 
insights gained using experimental models will form the basis for translational research pro­
tocols with the specific intent of treating or preventing IPS after SCT. 

2.4. Treatment Strategies for IPS After AlloSCT 

Currently, standard treatment regimens for IPS include supportive care measures in conjunc­
tion with broad-spectrum antimicrobial agents with or without intravenous corticosteroids 
(6,20). Although reports of anecdotal responses to standard therapy are available, these re­
sponses are limited; despite such measures, the mortality ofpatients diagnosed with IPS remains 
unacceptably high (19). Furthermore, prospective studies addressing the treatment of IPS and 
specifically the use of steroids are lacking in the literature. In the light of the poor response rate 
to standard treatment and preclinical and clinical data that suggest a potential role for TNF-a 
in the development ofIPS, etanercept (Enbrel, Immunex, Seattle, W A) a soluble, dimeric TNF­
a binding protein, was administered to three consecutive pediatric patients at the University of 
Michigan SCT program who met criteria for IPS (20). All three patients underwent broncho­
scopy withBAL 24-48 h prior to etanerceptadministration, and in each case, BAL fluid analysis 
was negative for infection. Pulmonary edema from fluid overload and cardiogenic etiologic 
factors were also ruled out in all cases. Each patient received empiric broad-spectrum antimi­
crobial therapy and methylprednisolone (2 mg/kg/d) prior to and during etanercepttherapy. The 
administration of etanercept in combination with standard immunosuppressive therapy was 
well tolerated and associated with significant improvements in pulmonary function within the 
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Fig. 1. Pathophysiology of noninfectious lung injury. Data generated using murine SCT models have 
been incorporated into a working hypothesis of IPS physiology. This schema postulates that the lung is 
susceptible to two distinct but interrelated pathways of immune-mediated injury that occur along aT­
lymphocyte activation axis and a "gut-liver-Iung" axis of inflammation. The lymphocyte-activation 
axis fundamentally depends on interactions between donor T cells and host APCs. Chemo-radiotherapy 
of SCT conditioning causes TNF-a and IL-I release that enhances the ability of host APC to present 
alloantigens to mature donor T cells present in the BM inoculum ( 16,182). Once engaged, donor T cells 
become activated and secrete a number of cytokines, including IFN-y, which is a critical cytokine for 
the priming of pulmonary macrophages (M</» and monocytes (183-185), and IL-2, which facilitates T­
cell activation, and proliferation and generation of both CTL andNK cells. Donor-derived, host reactive 
T cells and CTLs are present in the lung after alloSCT and contribute to pulmonary toxicity via Fas­
FasL-mediated cell killing. The inflammatory axis focuses on the relationship between the cellular 
activating effects of LPS and the downstream production of TNF-a as it occurs along a gut-liver-Iung 
axis of inflammation. During GVHD, the production of IFN-y by allogeneic donor T cells is both 
necessary and sufficient to prime macrophages in those animals to secrete lethal amounts ofTNF-a (44). 
These primed macrophages are triggered to secrete inflammatory cytokines by doses of exogenous 
endotoxin too small to stimulate normal cells. Endotoxin enters the systemic circulation through gaps 
in the intestinal mucosa (44,49-52). The ability of systemic endotoxin to reach the alveolar space is 
related to the consequences of GVHD in other target organs, particularly the liver, which is pivotally 
located immediately downstream (via the splanchnic circulation) of the intestinal reservoir of Gram­
negative bacteria and their toxic byproducts. When confronted with a sudden endotoxin surge from 
increasedLPS crossing a damaged intestinal mucosa, liver macrophages secrete inflammatory cytokines. 
If the endotoxin load surpasses the hepatic capacity for its clearance, both inflammatory cytokines (TNF­
a) and unprocessed LPS spill over into the systemic circulation (96,97,100). Underlying liver damage 
from hepatic GVHD decreases the liver's capacity for LPS uptake and clearance; thus, LPS remains in 
the systemic circulation for prolonged periods. Once in the alveolar space, LPS triggers pulmonary 
macrophage populations to secrete additional TNF-a, which results in the recruitment of neutrophils to 
the lung and enhances tissue damage. 
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first week oftherapy. These data suggest that etanerceptmay represent a safe, noncrossreactive, 
therapeutic option for patients with IPS, and clinical trials studying etanerceptforthis indication 
are ongoing (20). 

3. SUBACUTE PULMONARY TOXICITY AFTER SCT: OBSTRUCTIVE 
LUNG DISEASE AND RESTRICTIVE LUNG DISEASE 

3.1. Overview 
Two forms of subacute pulmonary toxicity are common in patients over 100 d posttransplant: 

obstructive lung disease and restrictive lung injury (8,9,14,74,150,151). Obstructive lung 
disease involves enhanced resistance to airflow on expiration and reflects conditions in the 
smaller airways and bronchioles. Obstructive defects are demonstrated by decreases in forced 
expiratory volumes at 1 s (FEV 1) and specifically by reductions in the forced expiratory ratio 
FEV1IFVC (defined below) as measured by standard pulmonary function testing (PFT) 
(150,152). By contrast, restrictive lung disease is classically associated with reductions in 
forced vital capacity (PVC), total lung capacity (TLC) and diffusion capacity of the lung for 
carbon monoxide (DLCO) with theFEV 1IFVCratio maintained near 100% (10,14,19,74,150). 
The reported incidence of both airflow obstruction and restrictive lung disease in alloSCT 
survivors ranges from 20% to 50% depending on donor source and time interval post SCT (8-
15,57,150 ). 

3.2. Obstructive Lung Disease After seT 
Obstructive lung disease (OLD) is a well-recognized cause of morbidity following alloSCT 

(8,74,151-154). Obstructive defects as defined by a FEV1.0IFVC < 70% on pulmonary func­
tion testing have been observed in approx 15-25 % of allogeneic transplant recipients by d 100 
and can persist for years after SCT (10,57,74,150). Airflow obstruction may be a sequelae of 
extensive restrictive changes in small airways or may be related to small-airway destruction 
( 155). Lung biopsies from patients with OLD have shown a variety of histologic patterns, 
including lymphocytic bronchitis, chronic and acute interstitial pneumonitis, and varying 
degrees of bronchiolar inflammation, including BO (8,57,76,111,153). This variation in his­
topathology is complicated further by the methods used to procure lung tissue; specifically, 
transbronchiallung biopsies rarely include an adequate sampling of distal bronchiolar struc­
tures and, therefore, are frequently considered nondiagnostic. 

Despite these limitations, BO remains the most common form of histopathology associated 
with OLD and has been used historically to describe "GVHD ofthe lung" and interchangeably 
with OLD afterSCT (8,57,76,111,153). As the name implies, BOdescribesthehistopathologic 
pattern of small-airway inflammation with fibrinous obliteration of the bronchiolar lumen that 
is classically associated with a fixed obstructive defect on PFT (8,9,12,57,155). Airflow 
obstruction may, however, exist without BO, and BO may be present on biopsy without 
evidence for significant pulmonary dysfunction (156). Furthermore, OLD is diagnosed by the 
appropriate clinical and PFT findings without histopathologic confirmation in the majority of 
cases. In this context, two phrases have been used to identify affected patients. The term 
"obstructive bronchiolitis" has been used to describe patients with airflow obstruction noted 
on PFT that have signs and symptoms consistentwith bronchiolar inflammation ( 151 ). Second, 
the phrase "bronchiolitis obliterates syndrome" or "BOS" has been developed to define the 
constellation of clinical, functional, and pathologic findings that accompany rejection after 
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lung transplantation (157). BOS is specifically defined as an irreversible decline in FEVI of 
at least 20% from baseline and is graded using the international heart and lung transplantation 
criteria: BOS stageO=FEVI 80% baseline; stage 1 =FEVI from 66% to 79%; stage2=FEVI 
from 51 % to 65%; stage 3 = FEVI 50% of baseline value (157). 

The lack of consistent terminology and variability in diagnostic criteria used to define OLD 
has contributed to the wide variation in the reported incidence of this form oflung injury after 
SCT. A review by Afessa and colleagues found that OLD was reported in 8.3% of 2152 allo 
SCT patients included in 9 studies and that the incidence varied between 6% and 20% in long­
term survivors with chronic GVHD ( 19). When compared to IPS, the onset of airflow obstruc­
tion tends to be later (ranging from 3 to 18 mo after SCT) and more insidious. However, the 
rate of progression of disease once symptoms are established is variable, with rapid deterio­
ration in FEVI being associated with a poor outcome (8,9,73,152). Symptoms may include 
cough, dyspnea, and wheezing; however, many patients remain asymptomatic despite having 
evidence of moderate to severe airway obstruction on PFfs (8,74). Chest radiographs may 
show patchy, diffuse infiltrates but are frequently unrevealing except for hyperinflation and 
flattening ofthe diaphragm (8,57,73). Likewise, findings on chest computed tomography (CT) 
can range from essentially normal early in the course of disease to demonstrating extensive 
peribronchial inflammation, bronchiectasis, significant air trapping, and diffuse parenchymal 
hypoattenuation (9,158,159). 

The clinical course of OLD varies from mild, with slow deterioration, to diffuse, necrotiz­
ing, fatal bronchiolitis of the small airways. Mortality rates of 25-50% have been reported in 
association with the latter form o flung injury ( 11-13,152). Response to bronchodilator therapy 
is usually marginal because airflow obstruction tends to be "fixed" rather than "reversible." 
Furthermore, response to immunosuppressive therapy, including steroids alone or in combi­
nation with cyclosporine, or azathioprine, is limited and typically results in preservation (rather 
than significant improvement) of existing lung function, suggesting that early detection of 
disease is important (8,9,13,152). In this light, two studies have suggested that analysis of 
maximum mid -expiratory flow rates (MMFR) may be used as an ear lier indicator 0 f impending 
airflow obstruction than FEV 1 (13,73). Because enhanced immunosuppression significantly 
increases the risk of infection, the utility of such therapy is questionable when a clinical 
response is not seen within the first months of treatment or when pulmonary dysfunction is long 
standing. 

As with IPS, the etiology of airflow obstruction after SCT is likely to be multifactorial and 
may include the effects of pre transplant conditioning regimens, concomitant infections, chronic 
aspiration, and the occurrence of GVHD targeting the lung. Significant airflow obstruction has 
been reported in association with older donor age, use of methotrexate for GVHD prophylaxis, 
lower levels of serum immunoglobulins, the presence of esophageal dysfunction (with aspi­
ration), mismatched stem cell grafts, and busulfan (rather than TBI)-containing SCT condi­
tioning regimens (8,9,13,74,151,152,160). From an infectious disease perspective, donor and 
recipient baseline cytomegalovirus (CMV) status have not been shown to impact on the devel­
opment of OLD. However, a history of both respiratory syncytial virus (RSV) and adenoviral 
infections has been suggested as possible etiologies for the higher incidence of OLD in the 
pediatric population (9 ). From an immunologic standpoint, the development of OLD is strongly 
associated with cGVHD, particularly in patients with low serum IgG levels (8,152) and chronic 
hepatic GVHD (9). Furthermore, recipients of mismatched related donor or matched unrelated 
donor grafts have a much higher incidence of OLD than patients receiving matched related 
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donor transplants (40% vs 13%)(9). Collectively, thesedatasuggestthat immunologicmecha­
nisms that are responsible for systemic GVHD may also contribute to OLD after alloSCT. 

3.3. Restrictive Lung Disease After SCT 
Reductions in lung volume (PVC, TLC) and diffusion capacity (DLCO) are common 

during the posttransplant period (10,14,74,150). By 100 d posttransplant, significant de­
creases in FVC or TLC have been reported in as many as 25-45% of allogeneic transplant 
recipients and occur with greater frequency than obstructive abnormalities at this time 
( 10,14,15,150). An increase in nonrelapse mortality has been associated with the presence of 
a decline in TLC or PVC at 100 d posttransplant, even if the absolute values for each were 
within the normal range ( 1 0). The presence of restrictive lung disease (RLD) at 1 yr or more 
posttransplant has likewise correlated with increased nonrelapse mortality (14). Increasing 
recipient age, underlying diagnosis, total-body irradation (TBI) containing conditioning regi­
mens and the presence of acute GVHD have been associated with lower lung capacities and 
higher mortality rates (10,14,15,161-163). In contrast to airflow obstruction, RLD 
posttransplant has not been consistently associated with chronic GVHD ( 1 0). In one pediatric 
study, the incidence ofRLD was less common than in adult patients, but the incidence of these 
defects increased with increasing patient age ( 15). A more recent report revealed that a large 
proportion of children receiving SCT in the 1990s were at risk for significant pulmonary 
dysfunction despite the absence of symptoms ( 150). This risk was greatest for patients with 
more advanced disease at the time of SCT. 

3.4. Pathogenesis of Subacute Pulmonary Toxicity After SCT 
3.4.1. OBSTRUCTIVE LUNG DISEASE/BRONCHIOLITIS OBLITERANS SYNDROME 

In comparison to IPS, the pathophysiology of subacute lung injury after SCT is less well 
defined. This limitation stems from the lack of correlative data obtained from afflicted SCT 
recipients and the paucity of suitable SCT animal models for either form of injury. The devel­
opment of OLD is characterized by bronchiolar leukocyte recruitment leading to fibro-oblit­
eration of the airway. The mechanism of injury likely involves an initial insult to the small 
airway epithelium followed by an ongoing inflammatory response. The duration of the inciting 
stimulus determines the ultimate outcome of the ensuing inflammatory response: A static 
insult may result in wound healing with resolution and repair, whereas a persistent stimulus can 
lead to an overexuberant reparative response resulting in a more destructive and less reversible 
state characterized by airway obliteration and airflow obstruction. The normal repair mecha­
nism is predicated on the proper balance between pro-inflammatory and anti-inflammatory 
"mediators" and changes in this balance can significantly influence the ultimate outcome of 
the immune response. 

Most of what is known about the pathogenesis of OLD has been formulated from clinical 
investigation of lung allograft recipients and from murine heterotopic tracheal transplant 
models. The absence of an initial inflammatory response from BMT conditioning regimens 
and the presence of a' 'host vs graft" rather than "graft vs host" reaction are just two 0 f the issues 
that limit the extrapolation of data obtained from these systems to that which occurs after SCT. 
However, clinical and experimental pulmonary allograft rejection are characterized by exuber­
ant alloantigen-driven, immune-mediated injury to the bronchial structures of the lung. This 
response most certainly involves antigen presentation, T-cell activation, leukocyte recruit­
ment, and enhanced expression of various mediators of inflammation, suggesting therefore 
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that mechanisms of lung injury may be similar in each scenario. Data generated from humans 
and mice support the hypothesis that the development of OLD or BO involves the interactions 
among cytokine, chemokine, and cellular effectors. Compared to healthy transplant recipients, 
analysis ofBAL fluid obtained from patients with BO has revealed elevations in IL-lra, TGF-
13, IL-S, and MCP-I, all of which have been implicated in other fibro-proliferative processes 
(106,164-166). Elevations ofTGF-13 and MCP-I have also been observed in murine models 
of BO (164,167). TNF-a is also known to playa critical role in the development of interstitial 
lung disease and fibrosis ( 168,169). Although marked elevations ofTNF-a have been reported 
during the development of murine BO, similar increases have not been observed in the BAL 
fluid of lung allograft recipients with BO (165). 

Because IL-S is a potent chemoattractant for neutrophils, elevations of this chemokine 
during the development of BO is consistent with the reproducible finding of BAL neutrophilia 
that accompanies this process (109,170). Clinical data also support a role for the interaction 
between pulmonary APCs and lymphocytes in the development ofBO because effectorT cells 
and dendritic cells expressing the costimulatory molecules CDSO and CDS6 are present in the 
lungs of patients with BOS (171,172). These observations have been extended by animal 
models; BO developing in heterotopic tracheal allografts requires donor-type rather than host­
type APCs and can occur in the absence of either MHC class I or II antigens on donor tissue. 
These findings suggest that direct allorecognition by either CDS+ or CD4+ cells is important 
to this form of airway injury (173). Additional studies have shown that CD2S-B7 interactions 
are critical to this response because blocking this pathway using CTLA4IgG abrogates the 
development ofBO (174). 

3.4.2. RESTRICTIVE LUNG INJURY 

Similar to that which occurs during the development of BO, the pathogenesis of restrictive 
lung injury involves a chronic inflammatory process and the interplay between immune effec­
tor cells (that have been recruited to the lung) with the resident cellular constituents of the 
pulmonary vascular endothelium and interstitial space. In the setting of BMT, expression of 
class II MHC antigens on pulmonary epithelium, APCs, and vascular endothelium could 
promote alloantigen recognition and immune activation. The resulting inflammatory response 
would likely include secretion of pro-inflammatory cytokines, including TNF-a, IL-II3, IL-6, 
and TGF-13 along with chemokines like IL-S, MCP-I, and MIP-I-a, all of which are known 
to stimulate fibroblast proliferation and promote collagen synthesis and deposition or leuko­
cyte recruitment to inflamed tissue (175,176). As chronic inflammation proceeds, fibroblasts 
increase dramatically in number within the lung leading to the loss of type I epithelial cells, 
proliferation of type II cells, the recruitment and proliferation of endothelial cells, and en­
hanced collagen deposition (176). Ultimately, this process would result in interstitial thicken­
ing, loss of alveolar architecture, and end-stage fibrosis leading to significant loss of lung 
volume and severely impaired gas exchange. 

Within this conceptual framework, Shankar and colleagues have suggested a biphasic model 
of noninfectious lung injury involving the interplay of ionizing irradiation and alloreactive 
donor T cells. This irradiated murine SCT model is characterized by early pro-inflammatory 
cytokine release and the promotion of lymphocyte influx, followed by a shift to a pro-fibrotic 
environment and the persistent secretion ofTNF-a and IL-12 (175). As noted earlier, TNF-a 
is one of several mediators that is known to promote chemotaxis, activation and proliferation 
of fibroblasts, and stimulation of collagen synthesis in vitro (176). TNF-a gene expression has 
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been shown to rise after administration of agents that cause pulmonary fibrosis in rats ( 168). 
A causal role for TNF-a in the development of interstitial lung disease and fibrosis has been 
shown using various methods to block the effects of TNF-a. Neutralization of TNF-a results 
in reduction of lung fibrosis in murine models by decreasing the cellularity of the lung paren­
chyma, attenuating destruction of the alveolar architecture, and reducing total lung hydrox­
ypro line content ( 168,169). In addition, mutant mice deficient in both TNF receptors (p55 and 
p75 knockout mice) are protected from injury after silica and bleomycin exposure (177). 
Perhaps the most compelling evidence for a role ofTNF-a in interstitial lung injury stems from 
a study in which targeted overexpression ofTNF-a in the lungs of transgenic mice resulted in 
the development of lymphocytic and fibrosing alveolitis (178). Although early lung histopa­
thology observed in the TNF transgenic mice was not dissimilar to that seen in experimental 
IPS models (42), the histologic changes associated with more chronic exposure to TNF-a 
resembled those seen in interstitial lung disease (175). 

3.5 Treatment of Subacute Lung Injury After seT 

Evaluation of treatment strategies for subacute lung injury after SCT is again hampered by 
the absence of controlled clinical trials addressing this problem. Furthermore, most reports 
focus on patients treated for OLD rather than RLD. Although the etiology of airflow obstruc­
tion after SCT is likely to be multifactorial, the undoubted association of OLD and chronic 
GVHD has resulted in a general acceptance that immunologic damage contributes to this 
process. Thus, "standard" therapy has historically employed enhanced immunosuppression in 
conjunction with supportive care, including supplemental oxygen therapy and broad-spectrum 
antimicrobial prophylaxis. Unfortunately, the response to agents, including steroids, 
cyclosporine, tacrolimus, and azathioprine, is limited, and when present, ittends to occur early 
in the course of treatment (8,13,57,73,152). Patients with more severe disease at the start of 
treatment have a poor prognosis and high mortality rates, suggesting that recognition of OLD 
at a more reversible stage may be important (13,73,152). Although no agent or combination 
of agents has been proven superior with respect to treating OLD, a study by Payne and col­
leagues showed that when compared to historical controls receiving prednisone and methotr­
exate for GVHD prophylaxis, the use of cyclosporine and methotrexate was protective against 
the development of OLD (179). Unfortunately, results of prospective, randomized trials study­
ing the impact of current GVHD prophy lax is regimens on the incidence and severity of OLD, 
have yet to be reported. However, a recent clinical trial examining the effectiveness of inhaled 
steroids in addition to standard systemic immunosuppression to prevent BOS after lung trans­
plant was completed and found no benefitto such treatment when compared to placebo controls 
( 180). The poor response to standard therapy and the unacceptable morbidity and mortality 
associated with subacute lung injury after SCT is underscored by the recent report of a success­
fullung transplant in a SCT recipient with BO (181). Collectively, these findings necessitate 
the development of prospective trials that willI) enhance our understanding of the immuno­
logic mechanisms responsible for OLD and RLD after SCT, 2) determine the most appropriate 
therapeutic approach, and 3) test new agents in this clinical setting. 

4. SUMMARY 

Diffuse noninfectious lung injury remains a significant problem following allo SCT both in 
the immediate posttransplant period and in the months to years that follow. Along with the 
development ofGVHD, pulmonary toxicity limits the broader application ofSCT and can have 
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significant implications with respect to the quality of life of SeT survivors. Although it is 
plausible that noninfectious lung injury and GVHD are connected mechanistically, a causal 
relationship between these two entities has yet to be definitively determined. Our understand­
ing of the immunologic mechanisms involved with lung injury is limited by the absence of 
controlled clinical and the resultant paucity of clinical data, but these limitations have been 
overcome in part by observations made using animal seT models; significant preclinical data 
suggest that the lung may be vulnerable to a two-pronged immunologic attack involving both 
inflammatory cytokine/chemokine and cellular effectors. As animal models for acute lung 
injury after SeT are explored further and those for subacute lung injury are developed, it is 
hoped that insights gained from each will improve our understanding of these disease processes 
and ultimately lead to the development of successful therapeutic strategies designed to diag­
nose, treat, or prevent noninfectious pulmonary toxicity in our SeT recipients. 
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