Skip to main content

Glia-Neuronal and Glia-Vascular Interrelations in Blood-Brain Barrier Formation and Axon Regeneration in Vertebrates

  • Chapter
Neuron—Glia Interrelations During Phylogeny

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 90 Accesses

Abstract

The capability to regenerate structures of the central nervous system (CNS) after injury differs among vertebrates. Certain regions of the CNS within the same species are distinguished by their regenerative potency following injury. The question: can each neuron grow after lesion, although hindered by environmental factors or, alternatively, do intrinsic factors also influence the regeneration capacity, are not conclusively answered as yet (Franklin and Blakemore, 1990; Fawcett, 1992). However, there is an immense body of experimental data on regeneration from which it can be concluded for the present that if central neurites are confronted with the milieu of a peripheral nerve they are supported to grow (Aguayo, 1985; Kromer and Cornbrooks, 1985; Politis and Spencer, 1986; Vidal-Sanz et al., 1987; Hausmann et al., 1989; Bunge and Hopkins, 1990; Montgomery and Robson, 1993). On the other hand, embryonic and perinatal CNS provide as well a milieu that is supportive for neuron survival and neuritic growth (Kalil and Reh, 1979, 1982; Sievers et al., 1989; Thanos et al., 1989; Schmalenbach and Müller, 1993; Wunderlich et al., 1994). But the molecular environments of perinatal CNS and adult peripheral nervous system (PNS) apparently are not identical. Moreover, the optic nerve of a fish does not need peripheral graft for successful regeneration. This seems to imply a striking difference of the molecular environment between fish and mammalian CNS. Indeed, several factors have been found recently which could explain the different growth capacity between the vertebrate groups (Bawnik et al., 1987; Bastmeyer et al., 1991; Vielmetter et al., 1991; Paschke et al., 1992; Schwab et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott NJ (1991) Permeability and transport of glial blood—brain barriers. Ann NY Acad Sci 633: 378–394.

    Article  PubMed  CAS  Google Scholar 

  • Abbott NJ; Revest PA; Romero IA (1992) Astrocyte-endothelial interaction: physi- ology and pathology. Neuropathol Appl Neurobiol 18: 424–433.

    Article  PubMed  CAS  Google Scholar 

  • Aguayo AJ (1985) Axonal regeneration from injured neurons in the adult mammalian central nervous system, in Synaptic plasticity, ( Cotman, CW, ed.), Guilford, New York, pp. 457–484.

    Google Scholar 

  • Anders JJ; Brightman MW (1979) Assemblies of particles in the cell membranes of developing, mature and reactive astrocytes. J Neurocytol 8: 777–795.

    Article  PubMed  CAS  Google Scholar 

  • Arthur FE; Shivers RR; Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev Brain Res 36: 155–159.

    Article  Google Scholar 

  • Balin BJ; Broadwell RD; Sakman M; El-Kalliny M (1986) Avenues of entry of peripherally administered protein to the central nervous system in mouse, rat and squirrel monkey. J Comp Neurol 251: 260–280.

    Article  PubMed  CAS  Google Scholar 

  • Bandtlow C; Zachleder T; Schwab ME (1990) Oligodendrocytes arrest neurite growth by contact inhibition. J Neurosci 10: 3837–3848.

    PubMed  CAS  Google Scholar 

  • Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209: 809–810.

    Article  PubMed  CAS  Google Scholar 

  • Bär T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59: 1–62.

    Article  Google Scholar 

  • Bartsch U; Bartsch S; Dörries U; Schachner M (1992) Immunohistological localization of tenascin in the developing and lesioned adult mouse optic nerve. Europ J Neurosci 4: 338–352.

    Article  Google Scholar 

  • Bastmeyer M; Beckmann M; Schwab ME; Stürmer CAO (1991) Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish optic nerve tract oligodendrocytelike cells and fish CNS myelin. J Neurosci 11: 626–640.

    PubMed  CAS  Google Scholar 

  • Bäuerle C; Wolburg H (1993) Astrocytes in the nonmyelinated lamina cribrosa of the rat are less polarized than in the optic nerve proper: a freeze-fracture study. Glia 9: 238–241.

    Article  PubMed  Google Scholar 

  • Bawnik Y; Harel A; Stein-Izsak C; Schwartz M (1987) Environmental changes induced by growth-associated triggering factors in injured optic nerve of adult rabbit. Proc Natl Acad Sci USA 84: 2528–2531.

    Article  PubMed  CAS  Google Scholar 

  • Beck WD; Roberts RL; Olson JJ (1986) Glial cells influence membrane-associated enzyme activity at the blood-brain barrier. Brain Res 381: 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Berg-von der Emde K; Wolburg H (1989) Müller (glial) cells but not astrocytes in the retina of the goldfish possess orthogonal arrays of particles. Glia 2: 458–469.

    Google Scholar 

  • Bolz J Novak N; Staiger V (1992) Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus. J Neurosci 12: 3054–3070.

    PubMed  CAS  Google Scholar 

  • Bolz S; Wolburg H (1992) First appearance of orthogonal arrays of particles in Müller cell membranes depends on retina maturation. Dev Neurosci 14: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Bolz S; Wolburg H (1994) Blood-brain barrier related antigens during rat brain development. A light and electron microscopical immunocytochemical study. J Brain Res 35: 128.

    Google Scholar 

  • Bonhoeffer F; Gierer A (1984) How do retinal axons find their target on the tectum? Trends Neurosci 7: 378–381.

    Article  Google Scholar 

  • Bonhoeffer F; Huf J (1982) In vitro experiments on axon guidance and tectal gradients demonstrating an anterior posterior gradient on the tectum. EMBO J 1: 427–431.

    PubMed  CAS  Google Scholar 

  • Bordi C; Amherdt M; Perrelet A (1986) Orthogonal arrays of particles in the gastric parietal cells of the rat: differences between superficial and basal cells in the gland and after pentagastrin or metiamide treatment. Anat Rec 215: 28–34.

    Article  PubMed  CAS  Google Scholar 

  • Bork T; Schabtach E; Grant P (1987) Factors guiding optic fibers in developing Xenopus retina. J Comp Neurol 264: 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW; Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  • Bunge RP; Hopkins JM (1990) The role of peripheral and central neuroglia in neural regeneration in vertebrates. Sem Neurosci 2: 509–518.

    Google Scholar 

  • Butt AM; Jones HC; Abbott NJ (1990) Electrical resistance across the blood—brain barrier in anaesthetized rats: a developmental study. J Physiol 429: 47–62.

    PubMed  CAS  Google Scholar 

  • Caley DW; Maxwell DS (1970) Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J Comp Neurol 42, 31–48.

    Article  Google Scholar 

  • Cancilla PA; De Bault LE (1983) Neutral amino acid transport properties of cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 42: 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Carbonetto S (1991) Facilitatory and inhibitory effects of glial cells and extracellular matrix in axonal regeneration. Curr Op Neurobiol 1: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Citi S (1993) The molecular organization of tight junction. J Cell Biol 121: 485–489.

    Article  PubMed  CAS  Google Scholar 

  • Claude P (1978) Morphologic factors influencing transepithelial permeability. A model for the resistance of the zonula occludens. J. Membrane Biol 39: 219–232.

    Article  CAS  Google Scholar 

  • Claude P; Goodenough, DA (1973) Fracture faces of zonulae occ1udentes from “tight” and “leaky” epithelia. J Cell Biol 58: 390–400.

    Article  PubMed  CAS  Google Scholar 

  • Crone C; Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher KA; Marfurt CF (1988) Nonregenerative axonal growth within the mature mammalian brain: ultrastructural identification of sympathohippocampal sprouts. J Neurosci 8: 2289–2302.

    PubMed  CAS  Google Scholar 

  • Cserr HF; Bundgaard M (1984) Blood—brain interfaces in vertebrates: a comparative approach. Am J Physiol 246: R277 - R288.

    PubMed  CAS  Google Scholar 

  • Cunha-Vaz JG (1979) The blood-ocular barriers. Sury Ophthalmol 23: 279–396.

    Article  CAS  Google Scholar 

  • De Bault LE; Cancilla PA (1980) Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207: 653–655.

    Article  Google Scholar 

  • Dehouck M-P; Méresse S; Delorme P; Fruchart J-C; Cecchelli R (1990) An easier reproducible and mass-production method to study the blood—brain barrier in vitro. J Neurochem 54: 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R (1973) Visualization by freeze-fracturing of regular structures in glial cell membranes. Naturwissenschaften 60: 208.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R; Leibstein AG (1978) The microvascular pattern and perivascular linings of the area postrema. A combined freeze—fracture and ultrathin section study. Cell Tissue Res 186: 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R; Hertzberg EL; Kessler JA; Spray DC (1991) Gap junctions between cultured astrocytes: Immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11: 1421–1432.

    PubMed  CAS  Google Scholar 

  • Dermietzel R; Krause D (1991) Molecular anatomy of the blood—brain barrier as defined by immunocytochemistry. Int Rev Cytol 127: 57–109.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R; Spray DC (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci 16: 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Drazba J; Lemmon V (1990) The role of cell adhesion molecules in neurite outgrowth on Müller cells. Dev Biol 138: 82–93.

    Article  PubMed  CAS  Google Scholar 

  • Easter S; Braton B; Scherer S (1984) Growth-related order of the retinal fiber layer in goldfish. J Neurosci 4: 2173–2190.

    PubMed  Google Scholar 

  • Farrell CL; Pardridge WM (1991) Blood brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes. An electron microscopic immunogold study. Proc Natl Acad Sci USA 88: 5779–5783.

    Google Scholar 

  • Fawcett JW (1992) Intrinsic neuronal determinants of regeneration. Trends Neurosci 15: 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Flage T (1977) Permeability properties of the tissues in the optic nerve head of the rabbit and monkey: an ultrastructural study. Acta Ophthalmol 55: 652–664.

    CAS  Google Scholar 

  • Franklin RIM; Blakemore WF (1990) The peripheral nervous system—central nervous system regeneration dichotomy: a role for glial cell transplantation. J Cell Sci 95: 185–190.

    PubMed  Google Scholar 

  • ffrench-Constant C; Miller RH; Burne JF; Raff MC (1988) Evidence that migratory oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve. J Neurocytol 17: 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Furuse M; Hirase T; Itoh M; Nagafuchi A; Yonemura S; Tsukita S; Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777–1788.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Mariscal L (1992) The relationship between structure and function of tight junctions, in Tight Junctions, ( Cereijido, M, ed.), CRC, Boca Raton, FL, pp. 67–76.

    Google Scholar 

  • Gorgels TGMF (1991) Junctional specializations between growth cones and glia in the developing rat pyramidal tract: Synapse-like contacts and invaginations. J Comp. Neurol 306: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Gotow T; Hashimoto PH (1984) Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J Neurocytol 13: 727–742.

    Article  PubMed  CAS  Google Scholar 

  • Gotow T; Hashimoto PH (1988) Deep-etch structure of astrocytes at the superficial glia limitans, with special emphysis on the internal and external organization of their plasma membranes. J Neurocytol 17: 399–413.

    Article  PubMed  CAS  Google Scholar 

  • Gotow T; Hashimoto PH (1989) Developmental alterations in membrane organization of rat subpial astrocytes. J Neurocytol 18: 731–747.

    Article  PubMed  CAS  Google Scholar 

  • Grebenkämper K; Galla H-J (1994) Translational diffusion measurements of a fluorescent phospholipid between MDCK-1 cells support the lipid model of the tight junctions. Chem Phys Lip 71: 133–143.

    Article  Google Scholar 

  • Greig NH (1989) Brain Tumors and the blood-tumor barrier, in Implications of the Blood–Brain Barrier and Its Manipulation. Clinical aspects, (Neuwelt, EA, ed.), Plenum, New York, London, pp. 77–106.

    Google Scholar 

  • Halfter W; von Boxberg Y (1992) Axonal growth on solubilized and reconstituted matrix from the embryonic chicken retina inner limiting membrane. Europ J Neurosci 4: 840–852.

    Article  Google Scholar 

  • Hankin M; Lund R (1991) How do retinal axons find their targets in the developing brain? Trends in Neurosci 14: 224–228.

    Article  CAS  Google Scholar 

  • Hatae T (1983) Plasma membrane specializations in the cells of the kidney distal segment of the lamprey, Lampetra japonica (von Martens). J Ultrastr Res 85: 58–69.

    Article  CAS  Google Scholar 

  • Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100: 384–396.

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1987) Neuronal inhibition of astroglial cell proliferation is membrane mediated. J Cell Biol 104: 1353–1360.

    Article  PubMed  CAS  Google Scholar 

  • Hatton JD; Ellisman MH (1981) The distribution of orthogonal arrays and their relationship to intercellular junctions in neuroglia of the freeze-fractured hypothalamo-neurohypophysial system. Cell Tissue Res 215: 309–323.

    Article  PubMed  CAS  Google Scholar 

  • Hausmann B; Sievers J; Hermanns J; Berry M (1989) Regeneration of axons from the adult rat optic nerve: influence of fetal brain grafts, laminin, and artificial basement membrane. J Comp Neurol 281: 447–466.

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR; Buxbaum RE (1991) Growth cone motility. Curr Op Neurobiol 1: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Holash JA; Stewart PA (1993) The relationship of astrocyte-like cells to the vessels that contribute to the blood-ocular barriers. Brain Res 629: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Holash HA; Noden DM; Stewart PA (1993) Re-evaluating the role of astrocytes in blood—brain barrier induction. Dev Dynamics 197: 14–25.

    Article  CAS  Google Scholar 

  • Howarth AG; Hughes MR; Stevenson BR (1992) Detection of the tight junction-associa ted protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Physiol 262: C461 - C469.

    PubMed  CAS  Google Scholar 

  • Joe F (1993) The blood—brain barrier in vitro: The second decade. Neurochem Int 23: 499–521.

    Article  Google Scholar 

  • Janzer RC; Raff MC (1987) Astrocytes induce blood—brain barrier properteis in endothelial cells. Nature 325: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Kachar B; Reese TS (1982) Evidence for the lipidic nature of tight junction strands. Nature 296: 464–466.

    Article  PubMed  CAS  Google Scholar 

  • Kalil K; Reh T (1979) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections.

    Google Scholar 

  • Kalil K; Reh T (1982) A light and electron microscopic study of regrowing pyramidal tract fibers. J Comp Neurol 211: 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Kapfhammer JP; Schwab ME (1992) Modulators of neuronal migration and neurite growth. Curr Op Cell Biol 4: 863–868.

    Article  PubMed  CAS  Google Scholar 

  • Kater SB; Mills LR (1991) Regulation of growth cone behavior by calcium. J Neurosci 11. 891–899.

    PubMed  CAS  Google Scholar 

  • Kiernan JA (1978) An explanation of axonal regeneration in peripheral nerves and its failure in the central nervous system. Med Hypotheses 4: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan JA (1979) Hypothesis concerned with axonal regeneration in the mammalian nervous system. Biol Rev 54: 155–197.

    Article  PubMed  CAS  Google Scholar 

  • Kniesel U; Wolburg H (1993) Tight junction complexity in the retinal pigment epithelium of the chicken during development. Neurosci Lett 149: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Kromer LF; Cornbrooks CJ (1985) Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci USA 82: 6330–6334.

    Article  PubMed  CAS  Google Scholar 

  • Krum JM; Rosenstein JM (1993) Effect of astroglial degeneration on the blood—brain barrier to protein in neonatal rats. Dev Brain Res 74: 41–50.

    Article  CAS  Google Scholar 

  • Kuwada JY (1986) Cell recognition by neuronal growth cones in a simple vertebrate embryo. Science 233: 740–746.

    Article  PubMed  CAS  Google Scholar 

  • Landis DMD; Reese TS (1989) Substructure in the assemblies of intramembrane particles in astrocytic membranes. J Neurocytol 18: 819–831.

    Article  PubMed  CAS  Google Scholar 

  • Landis DMD; Weinstein LA (1983) Membrane structure in cultured astrocytes. Brain Res 276: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ (1991) Morphology of glial blood—brain barriers. Ann NY Acad Sci 633: 348–362.

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ Reese TJ Kachar B (1992) Structural domains of ther tight junctional intramembrane fibrils. Tissue Cell 24: 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Langford C; Sefton AJ (1992) The relative time course of axonal loss from the optic nerve of the developing guinea pig is consistent with that of other mammals. Vis Neurosci 9: 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H; Zimprich F; Vass K; Hickey WF (1991) Microglial cells are a com- ponent of the perivascular glia limitans. J Neurosci Res 28: 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H (1980) Ependym and Circumventrikuläre Handbuch der mikroskopischen Anatomie des Menschen. 4. Band Nervensystem Organe, (Oksche, A; Vollrath, L, eds.), Springer Verlag, Berlin, Heidelberg, New York, pp. 177–666.

    Google Scholar 

  • Lobrinus JA; Juillerat-Jeanneret L; Darekar P; Schlosshauer B; Janzer RC (1992) Induction of the blood—brain barrier-specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Dev Brain Res 70: 207–211.

    Article  CAS  Google Scholar 

  • Mack A; Wolburg H (1986) Heterogeneity of glial membranes in the rat olfactory system as revealed by freeze-fracturing. Neurosci Lett 65: 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Mack A; Neuhaus J; Wolburg H (1987) Relationship between orthogonal arrays of particles and tight junctions as demonstrated in cells of the ventricular wall of the rat brain. Cell Tissue Res 248: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Madara JL; Dharmsathaphorn K (1985) Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 101: 2124–2133.

    Article  PubMed  CAS  Google Scholar 

  • Madara JL; Pappenheimer JR (1987) Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membrane Biol 100: 149–164.

    Article  CAS  Google Scholar 

  • Madison R; Crutcher KA; Davis JN (1981) Sympathohippocampal neurons are inside the blood—brain barrier. Brain Res 213: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Mandarino LJ; Sundarraj N; Finlayson J; Hassell JR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57: 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Mandel LJ; Bacallao R; Zampighi G (1993) Uncoupling of the molecular “fence” and paracellular “gate” functions in epithelial tight junctions. Nature 361: 552–555.

    Article  PubMed  CAS  Google Scholar 

  • Martini R (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J Neurocytol 23: 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Massa PT Mugnaini E (1982) Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7: 523–538.

    Article  PubMed  CAS  Google Scholar 

  • Maturana H (1960) The fine anatomy of the optic nerve of anurans: An electron microscopic study. J Biophys Biochem Cytol 7: 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K; Berliner JA; Cancilla PA (1987) Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 410: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K; Berliner JA; Cancilla PA (1989) Stimulation of glucose analogue uptake by cerebral microvessel endothelial cells by a product released by astrocytes. J Neuropathol Exp Neurol 48: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Mollgard K; Saunders NR (1986) The development of the human blood—brain and blood-CSF barriers. Neuropathol Appl Neurobiol 12: 337–358.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery CT; Robson JA (1993) Implants of cultured Schwann cells support axonal growth in the central nervous system of adult rats. Exp Neurol 122: 107–124.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima S; Reese TS; Landis DMD; Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164: 127–170.

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z; Peters H; Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest 50: 313–322.

    PubMed  CAS  Google Scholar 

  • Nakai Y; Ochiai, H; Uchida M (1977) Fine structure of ependymal cells in the median eminence of the frog and mouse revealed by freeze-etching. Cell Tissue Res 181: 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J (1990) Orthogonal arrays of particles in astroglial cells: quantitative analysis of their density, size, and correlation with intramembranous particles. Glia 3: 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J; Wolburg H (1985) Heterogeneity of astrocytic membranes in the optic nerve and spinal cord of the lizard, Anolis carolinensis. Cell Tissue Res 242: 185–190.

    Article  Google Scholar 

  • Oorschot DE; Jones DG (1990) Axonal regeneration in the mammlian central nervous system. A critique of hypotheses. Adv Anat Embryol Cell Biol 119: 1–121.

    Article  PubMed  CAS  Google Scholar 

  • Paschke KA; Lottspeich F; Stürmer CAO (1992) Neurolin, a cell surface glycoprotein on growing retinal axons in the goldfish visual system, is reexpressed during retinal axonal regeneration. J Cell Biol 117: 863–875.

    Article  PubMed  CAS  Google Scholar 

  • Perry VH; Lund RH (1990) Evidence that the lamina cribrosa prevents intraretinal myelination of retinal ganglion cell axons. J Neurocytol 19: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Pinto da Silva P; Kachar B (1982) On tight junction structure. Cell 28:441–450.

    Article  PubMed  CAS  Google Scholar 

  • Privat A (1977) The ependyma and subependymal layer of the young rat: a new contribution with freeze-fracture. Neuroscience 2: 447–457.

    Article  PubMed  CAS  Google Scholar 

  • Raivich G; Kreutzberg GW (1993) Peripheral nerve regeneration: role of growth factors and their receptors. Int J Dev Neurosci 11: 311–324.

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR; Kettenmann H (1990) Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 3: 258–266.

    Article  PubMed  CAS  Google Scholar 

  • Reese TS; Karnovsky MJ (1967) Fine structural localization of a blood—brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM (1991) Neurotrophic factors in regeneration. Curr Op Neurobiol 1: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Risau W; Hallmann R; Albrecht U; Henke-Fahle S (1986) Brain induces the expression of an early cell surface marker for blood—brain barrier-specific endothelium. EMBO J 5: 3179–3184.

    PubMed  CAS  Google Scholar 

  • Risau W; Wolburg H (1990) Development of the blood—brain barrier. Trends Neurosci 13: 174–178.

    Article  PubMed  CAS  Google Scholar 

  • Rohlmann A; Gocht A; Wolburg H (1992) Reactive astrocytes in myelin-deficient rat optic nerve reveal an altered distribution of orthogonal arrays of particles ( OAP ). Glia 5: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL; Hall, DE; Porter S; Barbu K; Cannon C; Homer HC; Janatpour M; Liaw CW; Manning K; Morales J; Tanner LJ; Tomaselli KJ; Bard F (1991) A cell culture model of the blood—brain barrier J Cell Biol 115. 1725–1736.

    CAS  Google Scholar 

  • Rungger-Brändle E; Achtstätter T; Franke WW (1989) An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes. J Cell Biol 109: 705–716.

    Article  PubMed  Google Scholar 

  • Rutten MJ; Hoover RL; Karnovsky MJ (1987) Electrical resistance and macro-molecular permeability of brain endothelial monolayer cultures. Brain Res 425: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer J (1989) Enzyme-histochemical demonstration of microglial cells in the adult and postnatal rabbit retina. J Comp Neurol 282: 249–263.

    Article  PubMed  CAS  Google Scholar 

  • Schmalenbach C; Müller HW (1993) Astroglia-neuron interactions that promote long-term neuronal survival. J Chem Neuroanat 6: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Schultz-Süchting F; Wolburg H (1994) Astrocytes alter their polarity in organotypic slice cultures of rat visual cortex. Cell Tissue Res 277: 557–564.

    Article  PubMed  Google Scholar 

  • Schwab ME; Kapfhammer JP; Bandtlow CE (1993) Inhibitors of neurite growth. Ann Rev Neurosci 16: 565–598.

    Article  PubMed  CAS  Google Scholar 

  • Shivers RR; Arthur FE; Bowman PD (1988) Induction of gap junctions and brain endothelium-like tight junctions in cultured bovine endothelial cells. Local control of cell specialization. J Submicr Cytol Pathol 20: 1–14.

    CAS  Google Scholar 

  • Sievers J; Hausmann B; Berry M (1989) Fetal brain grafts rescue adult retinal ganglion cells from axotomy-induced cell death. J Comp Neurol 281: 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Skoff R; Knapp PE; Bartlett WP (1986) Astrocyte diversity in the optic nerve: a cytoarchitectural study, in Astrocytes, vol. 1, ( Fedoroff, S; Vernadakis, A, eds.), Academic, New York, pp. 269–291.

    Google Scholar 

  • Small RK; Watkins BA; Munro PM; Liu D (1993) Functional properties of retinal Müller cells following transplantation to the anterior eye chamber. Glia 7: 158–169.

    Article  PubMed  CAS  Google Scholar 

  • Smith GM; Miller RH; Silver J (1986) Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. J Comp Neurol 251: 23–43.

    Article  PubMed  CAS  Google Scholar 

  • Smith GM; Rutishauser U; Silver J; Miller RH (1990) Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev Biol 138: 377–390.

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ (1988) Neuronal cytomechanics: the actin-based motility of growth cones. Science 242: 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1972) Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc Natl. Acad Sci USA 69: 1318–1321.

    Article  CAS  Google Scholar 

  • Stevenson BR; Anderson JM; Gooedenough DA; Mooseker MS (1988) Tight junction structure and ZO-1 content are identical in two strains of MadinDarby canine kidney cells which differ in transepithelial resistance. J Cell Biol 107: 2401–2408.

    Article  PubMed  CAS  Google Scholar 

  • Stewart PA; Wiley MJ (1981) Developing nervous tissue induces formation of blood—brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84: 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L; Buchs P-A; Muller D (1993) Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures. Neuroscience 57: 985–994.

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng J-H; Nagy Z; Brightman MW (1987) Tight junctions of brain endot- helium in vitro are enhanced by astroglia. J Neurosci 3293–3299.

    Google Scholar 

  • Thanos S; Bähr M; Barde Y-A; Vanselow J (1989) Survival and axonal elongation of adult rat retinal ganglion cells. In vitro effects of lesioned sciatic nerve and brain derived neurotrophic factor. Europ J Neurosci 1: 19–26.

    Article  Google Scholar 

  • Tontsch U; Bauer HC (1991) Glial cells and neurons induce blood brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res 539: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Tout S; Chan-Ling T; Holländer H; Stone J (1993) The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience 55: 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Tso MOM; Shih C-Y; McLean IW (1975) Is there a blood—brain barrier at the optic nerve head? Arch Opthalmol 93: 815–825.

    Article  CAS  Google Scholar 

  • Vaca K; Wendt E (1992) Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp Neurol 118: 62–72.

    Article  PubMed  CAS  Google Scholar 

  • van Deurs B; Koehler JK (1979) Tight junctions in the choroid plexus epithelium. A freeze fracture study including complementary replicas. J Cell Biol 80: 662–673.

    Article  PubMed  Google Scholar 

  • van Meer G; Gumbiner B; Simons K (1986) The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 322: 639 641.

    Google Scholar 

  • van Meer G; Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5: 1455–1464.

    PubMed  Google Scholar 

  • Vidal-Sanz M; Bray GM; Villegas-Pérez MP; Thanos S; Aguayo AJ (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci 7: 2894–2909.

    PubMed  CAS  Google Scholar 

  • Vielmetter J; Walter J; Stürmer CAO (1991) Regenerating retinal axons of goldfish respond to a repellent guiding component on caudal tectal membranes of adult fish and embryonic chick. J Comp Neurol 311: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Walter J; Allsopp TE; Bonhoeffer F (1990) A common denominator of growth cone guidance and collapse? Trends Neurosci 13: 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Williams RW; Bastiani MJ; Lia B; Chalupa LM (1986) Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J Comp. Neurol. 246: 32–69.

    Article  PubMed  CAS  Google Scholar 

  • Williams RW; Borodkin M; Rakic P (1991) Growth cone distribution patterns in the optic nerve of fetal monkeys: implications for mechanisms of axon guidance. J Neurosci 11: 1081–1094.

    PubMed  CAS  Google Scholar 

  • Wolburg H (1995) Orthogenal arrays of intramembranous particles. A review with special reference to astrocytes. J Brain Res, in press.

    Google Scholar 

  • Wolburg H; Bäuerle C (1993) Astrocytes in the lamina cribrosa of the rat optic nerve: Are their morphological peculiarities involved in an altered blood-brain barrier? J Hirnforsch 34: 445–459.

    PubMed  CAS  Google Scholar 

  • Wolburg H; Kästner R; Kurz-Isler G (1983) Lack of orthogonal particle assemblies and presence of tight junctions in astrocytes of the goldfish (Carassius auratus). A freeze-fracture study. Cell Tissue Res 234: 389–402.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H; Kästner R (1984) Astroglial-axonal interrelationship during regeneration of the optic nerve in goldfish. A freeze-fracture study. J Hirnforsch 25: 493–504.

    PubMed  CAS  Google Scholar 

  • Wolburg H; Neuhaus J; Mack A (1986a) The glio-axonal interaction and the problem of regeneration of axons in the central nervous system—concept and perspectives. Z Naturforsch 41c: 1147–1155.

    CAS  Google Scholar 

  • Wolburg H; Neuhaus J; Pettmann B; Labourdette G; Sensenbrenner M (1986b) Decrease in the density of orthogonal arrays of particles in membranes of cultured rat astroglial cells by the brain fibroblast growth factor. Neurosci Lett 72: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H; Neuhaus J; Kniesel U; Kraub B; Schmid E-M; Ocalan M; Farrell C; Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells: effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107: 1347–1357.

    PubMed  CAS  Google Scholar 

  • Wolburg H; Reichelt W; Stolzenburg J-U; Richter W; Reichenbach A (1990) Rabbit retinal Müller cells in cell culture show gap and tight junctions which they do not express in situ. Neurosci Lett 111: 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H; Risau W (1995) Formation of the blood-brain barrier, in Neuro-glial Cells, (Kettenmann, H; Ransom, BR, eds.), Oxford University Press, New York, Oxford, in press.

    Google Scholar 

  • Wujek JR; Akeson RA (1987) Extracellular matrix derived from astrocytes stimulates neuritic outgrowth from PC12 cells in vitro. Dev Brain Res 34: 87–97.

    Article  Google Scholar 

  • Wujek JR; Reier PJ (1984) Astrocytic membrane morphology: differences between mammalian and amphibian astrocytes after axotomy. J Comp Neurol 222: 607–619.

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich G; Stichel CC; Schroeder WO; Müller HW (1994) Transplants of immature astrocytes promote axonal regeneration in the adult rat brain. Glia 10: 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Zamora AJ; Thiesson D (1980) Tight junctions in the ependyma of the spinal cord of the urodele Pleurodeles waltlii. Anat Embryol 160: 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Zippel HP (1993) Regeneration in the peripheral and central olfactory system: a review of morphological, physiological and behavioral aspects. J Hirnforsch 34: 207–229.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolburg, H. (1995). Glia-Neuronal and Glia-Vascular Interrelations in Blood-Brain Barrier Formation and Axon Regeneration in Vertebrates. In: Vernadakis, A., Roots, B.I. (eds) Neuron—Glia Interrelations During Phylogeny. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-468-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-468-9_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5964-8

  • Online ISBN: 978-1-59259-468-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics