Skip to main content

Immunophenotypic Diagnosis of Leukemic B-Cell Chronic Lymphoproliferative Disorders Other Than Chronic Lymphocytic Leukemia

  • Chapter
Book cover Chronic Lymphocytic Leukemia

Abstract

Leukemic B-cell chronic lymphoproliferative disorders (B-CLPD) are a relatively heterogeneous group of diseases, all of which exhibit a clonal expansion of mature-appearing B-lymphoid cells in the peripheral blood (PB). Both primary leukemias and the leukemic phase of primary lymphomas are included in this category (1). Among the primary B-cell leukemias, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), and hairy cell leukemia (HCL) are usually considered; within the primary lymphomas, follicular lymphoma (FL), mantle cell lymphoma (MCL), marginal zone splenic lymphoma (MZSL), lymphoplasmacytic lymphoma (LPL), and the large B-cell lymphomas (LCLs) exhibit PB involvement more frequently (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris N, Jaffe E, Diebold J, et al. World Health Organization Classification of Neoplastic Diseases of the Hematopoietic and Lymphoid Tissues: Report of the Clinical Advisory Committee Meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 3835–3849.

    PubMed  CAS  Google Scholar 

  2. Harris NL, Jaffe ES, Stein H, et al. A revised european-american classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood 1994; 84: 1361–1392.

    PubMed  CAS  Google Scholar 

  3. Di Giuseppe JA, Borowitz MJ. Clinical utility of flow cytometry in the chronic lymphoid leukemias. Semin Oncol 1998; 25: 6–10.

    Google Scholar 

  4. Stetler-Stevenson M, Braylan RC. Flow cytometric analysis of lymphomas and lymphoproliferative disorders. Semin Hematol 2001; 38: 2111–2123.

    Article  Google Scholar 

  5. Jennings CD, Foon KA. Recent advances in flow cytometry: application to the diagnosis of hematologic malig¬nancy. Blood 1997; 90: 2863–2892.

    PubMed  CAS  Google Scholar 

  6. Matutes E, Polliack A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol 2000; 4: 22–47.

    Article  PubMed  CAS  Google Scholar 

  7. Matutes E. Contribution of immunophenotype in the diagnosis and classification of haemapoietic malignancies. J Clin Pathol 1995; 48: 194–197.

    Article  PubMed  CAS  Google Scholar 

  8. Montserrat E. Chronic lymphoproliferative disorders. Curr Opin Oncol 1997; 9: 34–41.

    Article  PubMed  CAS  Google Scholar 

  9. Rawstron AC, Kennedy B, Evans PA, et al. Quantification of minimal residual disease levels in chronic lympho¬cytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98: 29–35.

    Article  PubMed  CAS  Google Scholar 

  10. Foran JM, Rohatiner AZ, Cunningham D, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma and small B-cell lymphocytic lymphoma. J Clin Oncol 2000; 18: 317–324.

    PubMed  CAS  Google Scholar 

  11. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in loss of CD20 antigen expression. Clin Cancer Res 1999; 5: 611–615.

    PubMed  CAS  Google Scholar 

  12. Foran JM, Norton AJ, Micallef IN, et al. Loss of CD20 expression following treatment with rituximab (chimaeric monoclonal anti-CD20): a retrospective cohort analysis. Br J Haematol 2001; 114: 881–883.

    Article  PubMed  CAS  Google Scholar 

  13. Samoilava RS. Possibilities of differential diagnosis of B-cell chronic lymphoproliferative diseases using mono¬clonal antibodies. Gematol Transfuzion 1990; 35: 24–27.

    Google Scholar 

  14. Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malig¬nancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 1996; 10: 877–895.

    PubMed  CAS  Google Scholar 

  15. Davis BH, Foucar K, Szczarkowski W, et al. U.S.-Canadian Consensus recommendations on the immunopheno¬typic analysis of hematologic neoplasia by flow cytometry: medical indications. Cytometry 1997; 30: 249–263.

    Article  PubMed  CAS  Google Scholar 

  16. Whiteside TL. Basic techniques for the detection of human T and B lymphocytes in tissues. Clin Immunol News 1980; 1: 1–15.

    Google Scholar 

  17. Orfao A, Schmitz G, Brando B, et al. Clinically useful information provided by the flow cytometric immunophenotyping of haematological malignancies: current status and future directions. Clin Chem 1999; 45: 1708–1717.

    PubMed  CAS  Google Scholar 

  18. Geary W, Frierson HF, Innes DJ, et al. Quantitative criteria for clonality in the diagnosis of B-cell non-Hodgkin’s lymphoma by flow cytometry. Mod Pathol 1993; 6: 155–161.

    PubMed  CAS  Google Scholar 

  19. Peters R, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry. III. B-cell gating in CD37 x/X clonality test. Leukemia 1994; 8: 1864–1870.

    PubMed  CAS  Google Scholar 

  20. Fend F, Quintanilla-Martinez L, Kumar S, et al. Composite low grade B-cell lymphomas with two immuno¬phenotypically distinct cell populations are true biclonal lymphomas. A molecular analysis using laser capture microdissection. Am J Pathol 1999; 154: 1857–1866.

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez ML, Almeida J, Gonzalez D, et al. Incidence and clinico-biologic characteristics of biclonality in leuke¬mic B-cell Chronic lymphoproliferative disorders (B-CLPD). In: Proceedings of the 7th Congress of the European Hematology Association (abstract).

    Google Scholar 

  22. Ciudad J, San Miguel JF, Lopez-Berges MC, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998; 16: 3774–3781.

    PubMed  CAS  Google Scholar 

  23. San Miguel JF, Martinez A, Macedo A, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2465–2470.

    PubMed  CAS  Google Scholar 

  24. Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554.

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez ML, Almeida J, Vidriales B, et al. Incidence of phenotypic aberrations in a series of 467 patients with B-chronic lymphoproliferative disorders: basis for the design of specific 4-color stainings to be used for minimal residual disease investigation. Leukemia 2002; 16: 1460–1469.

    Article  PubMed  CAS  Google Scholar 

  26. Wells DA, Hall MC, Shulman HM, Loken MR. Occult B cell malignancies can be detected by three-color flow cytometry in patients with cytopenias. Leukemia 1998; 12: 2015–2023.

    Article  PubMed  CAS  Google Scholar 

  27. Chan LC, Lam CK, Yeung TC, et al. The spectrum of chronic lymphoproliferative disorders in Hong Kong. A prospective study. Leukemia 1997; 11: 1964–1972.

    Article  PubMed  CAS  Google Scholar 

  28. Deneys V, Mazzon AM, Marques JL, Benoit H, De Bruyere M. Reference values for peripheral blood B-lympho¬cyte subpopulations: a basis for multiparametric immunophenotyping of abnormal lymphocytes. J Immunol Methods 2001; 253: 23–36.

    Article  PubMed  CAS  Google Scholar 

  29. Haase D, Feuring-Buske M, Schafer C, et al. Cytogenetic analysis of CD34+ subpopulations in AML and MDS characterized by the expression of CD38 and CD117. Leukemia 1997; 11: 674–679.

    Article  PubMed  CAS  Google Scholar 

  30. Wuchter C, Harbott J, Schoch C, et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000; 14: 1232–1238.

    Article  PubMed  CAS  Google Scholar 

  31. Groeneveld K, to Marvelde JG, van den Beemd MW, Hooijkaas H, van Dongen JJ. Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes. Leukemia 1996; 10: 1383–1389.

    PubMed  CAS  Google Scholar 

  32. Lucio P, Parreira A, van den Beemd MWM, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B ALL. Leukemia 1999; 13: 419–427.

    Article  PubMed  CAS  Google Scholar 

  33. Dworzak MN, Fritsch G, Froschl G, Printz D, Gadner H. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression pre¬cedes CD19 in early B-cell ontogeny. Blood 1998; 92: 3203–3209.

    PubMed  CAS  Google Scholar 

  34. Ciudad J, Orfao A, Vidriales B, et al. Immunophenotypic analysis of CD 19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica 1998; 83: 1069–1075.

    PubMed  CAS  Google Scholar 

  35. De Waele M, Renmans W, Jochmans K, et al. Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol 1999; 63: 192–201.

    Article  PubMed  Google Scholar 

  36. Weir EG, Cowan K, LeBeau P, Borowitz MJ. A limited antibody panel can distinguish B-precursor acute lympho¬blastic leukemia from normal B precursors with four color flow cytometry: implications for minimal residual disease detection. Leukemia 1999; 13: 558–567.

    Article  PubMed  CAS  Google Scholar 

  37. Agematsu K. Memory B-cells and CD27. Histol Histopathol 2000; 15: 573–576.

    PubMed  CAS  Google Scholar 

  38. Jacquot S. CD27/CD70 interactions regulate T dependent B-cell differentiation. Immunol Res 2000; 21: 23–30.

    Article  PubMed  CAS  Google Scholar 

  39. Tangye SG, Liu YJ, Aversa G, Philips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 1998; 188: 1691–1703.

    Article  PubMed  CAS  Google Scholar 

  40. Klein U, Goossens T, Fischer M, et al. Somatic hypermutation in normal and transformed human B cells. Immunol Rev 1998; 162: 261–280.

    Article  PubMed  CAS  Google Scholar 

  41. Klein U, Jajewski K, Kuppers R. Human immunoglobulin (Ig)M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somati¬cally mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  PubMed  CAS  Google Scholar 

  42. Klein U, Kuppers R, Jajewski K. Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 1997; 89: 1288–1298.

    PubMed  CAS  Google Scholar 

  43. Klein U, Rajewsky, Köppers R. Phenotypic and molecular characterization of human peripheral blood B-cell subsets with special reference to N-region addition and J kappa -usage in V B-cell-subsets to identify traces of receptor editing processes. Cuff Top Microbiol Immunol 1999; 246: 141–147.

    CAS  Google Scholar 

  44. Matutes E, Owusuankomah K, Morilla R, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    PubMed  CAS  Google Scholar 

  45. Bennet JM, Catovsky D, Daniel MT, et al. Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. J Clin Pathol 1989; 42: 567–584.

    Article  Google Scholar 

  46. Matutes E, Worner I, Sainati L, de Olivera MP, Cayovsky D. Advances in the lymphoproliferative disorders. Review of our experience in the study of over 1000 cases. Biol Clin Hematol 1989; 11: 53–62.

    Google Scholar 

  47. Matutes E. Immunophenotype of the chronic lymphoproliferative disorders. Haematologica 1998; 83 (suppl): 193–198.

    Google Scholar 

  48. Matutes E, Morilla R, Owusu-Ankomah K, et al. The immunophenotype of hairy-cell leukemia (HCL) -Proposal for a scoring system to distinguish HCL from B-cell disorders with hairy or villous lymphocytes. Leuk Lymph 1994; 14: 57–61.

    Google Scholar 

  49. Trentin L, Zambello R, Sancetta R, et al. B lymphocytes from patients with chronic lymphoproliferative disorders are equipped with different costimulatory molecules. Cancer Res 1997; 57: 4940–4947.

    PubMed  CAS  Google Scholar 

  50. Deneys V, Michaux L, Leveugle P, et al. Atypical lymphocytic leukemia and mantle cell lymphoma immunologi¬cally very close: flow cytometric distinction by use of CD20 and CD54 expression. Leukemia 2001; 15: 1458–1465.

    Article  PubMed  CAS  Google Scholar 

  51. Moreau E, Matutes E, a’Hern RP, et al. Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antobody SN8 (CD79b). Am J Clin Pathol 2000; 108: 378–382.

    Google Scholar 

  52. Braylan RC, Orfao A, Borowitz MJ, Davis BH. Optimal number of reagents required to evaluate hematolymphoid neoplasias: Results of an International Consensus Meeting. Cytometry 2001; 46: 23–27.

    Article  PubMed  CAS  Google Scholar 

  53. Catovsky D. Chronic lymphoproliferative disorders. Curr Opin Oncol 1995; 7: 3–11.

    PubMed  CAS  Google Scholar 

  54. Melo JV, Catovsky D, Galton DAG. The relationship between chronic lymphocytic leukemia and prolymphocytic leukaemia. I. Clinical and laboratory features of 300 patients and characterization of an intermediate group. Br J Haematol 1986; 63: 377–387.

    Article  PubMed  CAS  Google Scholar 

  55. Orfao A, Gonzalez M, San Miguel JF, et al. Clinical and immunological findings in large B-cell chronic lympho¬cytic leukemia. Clin Immunol Immunopahol 1988; 46: 177–185.

    Article  CAS  Google Scholar 

  56. Marotta G, Raspadori D, Sestigiani C, Scalia G, Biqazzi C, Lauria F. Expression of the CD1 lc antigen in B-cell chronic lymphoproliferative disorders. Leuk Lymph 2000; 37: 145–149.

    Article  CAS  Google Scholar 

  57. Melo JV, Catovsky D, Galton DA. The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia. H. Patterns of evolution of “prolymphocytoid” transformation. Br J Haematol 1986; 64: 77–86.

    Article  PubMed  CAS  Google Scholar 

  58. Melo JV, Wardle J, Chetty M, et al. The relationship between chronic lymphocytic leukaemia and prolymphocytic leukaemia. III. Evaluation of cell size by morphology and volume measurements. Br J Haematol 1986; 84: 469–478.

    Article  Google Scholar 

  59. Bouroncle BA, Wiseman BK, Doan CA. Leukemic reticuloendotheliosis. Blood 1958; 13: 609–615.

    PubMed  CAS  Google Scholar 

  60. Bouroncle BA. Leukemic reticuloendotheliosis (Hairy-cell leukemia). Blood 1979; 53: 412–436.

    PubMed  CAS  Google Scholar 

  61. Bouroncle BA. Clinica, biologia y formas variantes de tricoleucemia. In: Lopez Borrasca, et al. Enciclopedia de Hematologia Iberoamericana (EHIA). Universidad de Salamanca, Salamanca, 1992.

    Google Scholar 

  62. Frassoldati A, Lamparelli T, Federico M, et al. Hairy cell leukemia: a clinical review based on 725 cases of the Italian Cooperative Group (ICGHCL). Leuk Lymph 1994; 13: 307–316.

    Article  CAS  Google Scholar 

  63. Troussard X, Maloisel F, Flandrin G. Hairy cell leukemia. What is new forty years after the first description ? Hematol Cell Ther 1998; 40: 139–148.

    PubMed  CAS  Google Scholar 

  64. Polliack A. Hairy cell leukemia and allied chronic lymphoid leukemias: current knowledge and new therapeutic options. Leuk Lymph 1997; 26: 41–51.

    Article  Google Scholar 

  65. Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057.

    Article  PubMed  CAS  Google Scholar 

  66. Ahmad E, Garcia D, Davis BH. Clinical utility od CD23 and FMC7 antigen coexistent expression in B-cell lymphoproliferative disorder subclassification. Cytometry 2002; 50: 1–7.

    Article  PubMed  CAS  Google Scholar 

  67. Melo JV, San Miguel JF, Moss VE, Catovsky D. The membrane phenotype of hairy cells: a study with monoclonal antibodies. Semin Oncol 1984; 11: 381–385.

    PubMed  CAS  Google Scholar 

  68. Bain BJ, Catovsky D. The leukaemic phase of non-Hodgkin’s lymphoma. J Clin Pathol 1995; 48: 189–193.

    Article  PubMed  CAS  Google Scholar 

  69. Lopez-Guillermo A, Cabanillas F, McLaughlin P, et al. Molecular response assessed by PCR is the most important factor predicting failure-free survival in indolent follicular lymphoma: update of the MDACC series. Ann Oncol 2000;l 1(suppl 1 ): 137–140.

    Google Scholar 

  70. Almasri NM, Iturraspe JA, Braylan RC. CD10 expression in follicular lymphoma and large cell lymphoma is different from that of reactive lymph node follicles. Arch Pathol Lab Med 1998; 122: 539–544.

    PubMed  CAS  Google Scholar 

  71. Cao J, Vescio RA, Rettig MB, et al. A CD10-positive subset of malignant cells is identified in multiple myeloma using PCR with patient-specific immunoglobulin gene primers. Leukemia 1995; 9: 1948–1953.

    PubMed  CAS  Google Scholar 

  72. San Miguel JF, Gonzalez M, Gascon A, et al. Immunophenotypic heterogeneity of multiple myeloma: influence on the biology and clinical course of the disease. Castellano-Leones (Spain) Cooperative Group for the Study of Monoclonal Gammapathies. Br J Haematol 1991; 77: 185–190.

    Article  PubMed  CAS  Google Scholar 

  73. Bellido M, Rubiol E, Ubeda J, et al. Flow cytometry using the monoclonal antibody CD10-PE/Cy5 is a useful tool to identify follicular lymphoma cells. Eur J Haematol 2001; 66: 100–106.

    Article  PubMed  CAS  Google Scholar 

  74. Sun Y, Wyatt RT, Bigley A, Krontiris TG. Expression and replication timing patterns of wildtype and translocated BCL2 genes. Genomics 2001; 73: 161–170.

    Article  PubMed  CAS  Google Scholar 

  75. Cornfield DB, Mitchell DM, Almasri NM, et al.: Follicular lymphoma can be distinguished from benign follicular hyperplasia by flow cytometry using simultaneous staining of cytoplasmic bc1–2 and cell surface CD20. Am J Clin Pathol 2000; 114: 258–263.

    Article  PubMed  CAS  Google Scholar 

  76. Rodriguez J, McLaughlin P, Fayad L, et al. Follicular large cell lymphoma: long-term follow-up of 62 patients treated between 1973–1981. Ann Oncol 2000; 11: 1551–1556.

    Article  PubMed  CAS  Google Scholar 

  77. Weisenburger D, Armitage JO. Mantle cell lymphoma: an entity comes of age. Blood 1996; 87: 4483–4494.

    PubMed  CAS  Google Scholar 

  78. Kurtin PJ. Mantle cell lymphoma. Adv Anat Patholo 1998; 5: 376–398.

    Article  CAS  Google Scholar 

  79. Elnenaei MO, Jadayer DM, Matutes E, et al. Cyclin D1 by flow cytometry as a useful tool in the diagnosis of B-cell maligancies. Leuk Res 2001; 25: 115–123.

    Article  PubMed  CAS  Google Scholar 

  80. Matutes E, Morill a R, Owusu-Ankomah K, Houlihan A, Catovsky D. The immunophenotype of splenic lymphoma with villous lymphocytes and its relevance to the differential diagnosis with other B-cell disorders. Blood 1994; 83: 1558–1562.

    PubMed  CAS  Google Scholar 

  81. Catovsky D, Matutes E. Splenic lymphoma with circulating villous lymphocytes/splenic marginal-zone lym¬phoma. Semin Hematol 1999; 36: 148–154.

    PubMed  CAS  Google Scholar 

  82. Trourssard X, Valensi F, Duchayne E, et al. Splenic lymphoma with villous lymphocytes: clinical presentation, biology and prognostic factors in a series of 100 patients. Br J Haematol 1996; 93: 731–736.

    Article  Google Scholar 

  83. Kramer PA, Oosterhuis WP,Vankammen E, et al. A patient with a variant form of hairy-cell leukemia. Nether J Med 1993; 43: 262–268.

    CAS  Google Scholar 

  84. Matutes E, Meeus P, Mc Lennan K, Catovsky D. The significance of minimal residual disease in hairy cell leukaemia treated with deoxycoformycin: a long-term follow-up study. Br J Haematol 1997; 98: 375–387.

    Article  PubMed  CAS  Google Scholar 

  85. Bossuyt X, Bogaerts A, Schiettekatte G, Blanckaert N. Serum protein electrophoresis and immunofixation by a semiautomated electrophoresis system. Clin Chem 1998; 44: 944–949.

    PubMed  CAS  Google Scholar 

  86. Iida S, Rao P, Nallasivam P, et al. The t(9;14) (p13;q32) chromosomal translocation associated with lympho¬plasmacytic lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117.

    PubMed  CAS  Google Scholar 

  87. Jacob MC, Agrawal S, Chaperot L, et al. Quantification of cellular adhesion molecules on malignant B cells from non-Hodgkin’ s lymphoma. Leukemia 1999; 13: 1428–1433.

    Article  PubMed  CAS  Google Scholar 

  88. Czader M, Porwit A, Tani E, Ost A, Mazur J, Auer G. DNA image cytometry and the expression of proliferative markers (proliferating cell nuclear antigen and Ki67) in non-Hodgkin’s lymphomas. Mod Pathol 1995; 8: 51–58.

    PubMed  CAS  Google Scholar 

  89. Winter JN, Andersen J, Variakojis D, et al. Prognostic implications of ploidy and proliferative activity in the diffuse, aggresive non-Hodgkin’s lymphomas. Blood 1996; 88: 3919–3125.

    PubMed  CAS  Google Scholar 

  90. Subira D, Castanon S, Aceituno E, et al. Flow cytometric analysis of cerebrospinal fluid samples and its utility in routine clinical practice. Am J Clin Pathol 2002; 117: 952–958.

    Article  PubMed  Google Scholar 

  91. Cabezudo E, Matutes E, Ramrattan M, Morilla R, Catovsky D. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia 1997; 11: 1909–1914.

    Article  PubMed  CAS  Google Scholar 

  92. Lenormand B, Bizet M, Fruchart C, et al. Residual disease in B-cell chronic lymphocytic leukemia patients and prognostic value. Leukemia 1994; 8: 1019–1026.

    PubMed  CAS  Google Scholar 

  93. Garcia-Vela A, Delgado I, Benito L, et al. CD79b expression in B cell chronic lymphocytic leukemia: its impli¬cation for minimal residual disease detection. Leukemia 1999; 13: 1501–1505.

    Article  PubMed  CAS  Google Scholar 

  94. Ocqueteau M, Orfao A, Garcia R, San Miguel JF. Detection of monoclonality in bone marrow plasma cells by flow cytometry: limitations for minimal residual disease detection. Br J Haematol 1996; 93: 251–252.

    Article  PubMed  CAS  Google Scholar 

  95. Terol MJ, Lopez-Guillermo A, Bosh F, et al. Expression of beta-integrin adhesion molecules in non-Hodgkin’s lymphoma: correlation with clinical and evolutive features. J Clin Oncol 1999; 17: 1869–1875.

    PubMed  CAS  Google Scholar 

  96. Keating MJ. Chronic lymphocytic leukemia. Semin Oncol 1999; 26: 107–114.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orfao, A., Almeida, J., Sanchez, M.L., San Miguel, J.F. (2004). Immunophenotypic Diagnosis of Leukemic B-Cell Chronic Lymphoproliferative Disorders Other Than Chronic Lymphocytic Leukemia. In: Faguet, G.B. (eds) Chronic Lymphocytic Leukemia. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-412-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-412-2_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-355-8

  • Online ISBN: 978-1-59259-412-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics