Skip to main content

Cell Death in Mammalian Development

  • Chapter
Essentials of Apoptosis
  • 141 Accesses

Abstract

Physiological mechanisms of cell death are required throughout the development and adulthood of all multicellular organisms (1,2). From primitive multicellular organisms to higher vertebrates, well-orchestrated cell-death events are critical for the removal of superfluous cells as a vital part of tissue sculpting during development. Physiological cell death enables the elimination of unwanted extra cells to maintain cellular homeostasis in developed adults, as well as the elimination of organisms of harmful cells or cells with serious cellular or genomic damage. Apoptosis—physiological cell death—is characterized by a distinct set of morphological and biochemical features including chromatin condensation, internucleosomal DNA fragmentation, and perhaps most important, cell-surface alterations, which signal for the rapid recognition and engulfment of apoptotic cells by neighboring phagocytic cells, thus avoiding the induction of any pathological reactions (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaux, D. L. and Korsmeyer, S. J. (1999) Cell death in development. Cell 96 (2), 245–254.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson, M. D., Weil, M., and Raff, M. C. (1997) Programmed cell death in animal development. Cell 88 (3), 347–354.

    Article  PubMed  CAS  Google Scholar 

  3. Wyllie, A. H., Kerr, J. F., and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306.

    Article  PubMed  CAS  Google Scholar 

  4. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26 (4), 239–257.

    Article  PubMed  CAS  Google Scholar 

  5. Morris, R. G., Hargreaves, A. D., Duvall, E., and Wyllie, A. H. (1984) Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am. J. Pathol. 115 (3), 426–436.

    PubMed  CAS  Google Scholar 

  6. Metzstein, M. M., Stanfield, G. M., and Horvitz, H. R. (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14 (10), 410–416.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis, H. M., and Horvitz, H. R. (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44 (6), 817–829.

    Article  PubMed  CAS  Google Scholar 

  8. Yuan, J. Y., and Horvitz, H. R. (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138 (1), 33–41.

    Article  PubMed  CAS  Google Scholar 

  9. Hengartner, M. O., Ellis, R. E., and Horvitz, H. R. (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356 (6369), 494–499.

    Article  PubMed  CAS  Google Scholar 

  10. Hengartner, M. O. and Horvitz, H. R. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76 (4), 665–676.

    Article  PubMed  CAS  Google Scholar 

  11. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75 (4), 641–652.

    Article  PubMed  CAS  Google Scholar 

  12. Strasser, A., O’Connor, L., and Dixit, V. M. (2000) Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245.

    Article  PubMed  CAS  Google Scholar 

  13. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90 (3), 405–413.

    Article  PubMed  CAS  Google Scholar 

  14. Salvesen, G. S. and Dixit, V. M. (1999) Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96 (20), 10964–10967.

    Article  PubMed  CAS  Google Scholar 

  15. Salvesen, G. S. (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ. 9 (1), 3–5.

    Article  PubMed  CAS  Google Scholar 

  16. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 85 (6), 817–827.

    Article  PubMed  CAS  Google Scholar 

  17. Chinnaiyan, A. M., O’Rourke, K., Tewari, M., and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81 (4), 505–512.

    Article  PubMed  CAS  Google Scholar 

  18. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85 (6), 803–815.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86 (1), 147–157.

    Article  PubMed  CAS  Google Scholar 

  20. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275 (5303), 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  21. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275 (5303), 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  22. Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. B. (1997) Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91 (5), 627–637.

    Article  PubMed  CAS  Google Scholar 

  23. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., et al. (1998) Bcl-2 prolongs cell survival after Baxinduced release of cytochrome c. Nature 391 (6666), 496–499.

    Article  PubMed  CAS  Google Scholar 

  24. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95 (9), 4997–5002.

    Article  PubMed  CAS  Google Scholar 

  25. Salvesen, G. S. and Renatus, M. (2002) Apoptosome: the seven-spoked death machine. Dev. Cell 2 (3), 256–257.

    Article  PubMed  CAS  Google Scholar 

  26. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94 (4), 481–490.

    Article  PubMed  CAS  Google Scholar 

  27. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94 (4), 491–501.

    Article  PubMed  CAS  Google Scholar 

  28. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290.

    Article  PubMed  CAS  Google Scholar 

  29. Bakhshi, A., Jensen, J. P., Goldman, P., Wright, J. J., McBride, O. W., Epstein, A. L., and Korsmeyer, S. J. (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41 (3), 899–906.

    Article  PubMed  CAS  Google Scholar 

  30. Tsujimoto, Y., Yunis, J., Onorato-Showe, L., Erikson, J., Nowell, P. C., and Croce, C. M. (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224 (4656), 1403–1406.

    Article  PubMed  CAS  Google Scholar 

  31. Chinnaiyan, A. M., O’Rourke, K., Lane, B. R., and Dixit, V. M. (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death [see comments]. Science 275 (5303), 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  32. Spector, M. S., Desnoyers, S., Hoeppner, D. J., and Hengartner, M. O. (1997) Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385 (6617), 653–656.

    Article  PubMed  CAS  Google Scholar 

  33. Wu, D., Wallen, H. D., and Nunez, G. (1997) Interaction and regulation of subcellular localization of CED-4 by CED9. Science 275 (5303), 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  34. Pan, G., O’Rourke, K., and Dixit, V. M. (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J. Biol. Chem. 273 (10), 5841–5845.

    Article  PubMed  CAS  Google Scholar 

  35. Hu, Y., Benedict, M. A., Wu, D., Inohara, N., and Nunez, G. (1998) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1- dependent caspase-9 activation. Proc. Natl. Acad. Sci. USA 95 (8), 4386–4391.

    Article  PubMed  CAS  Google Scholar 

  36. Conradt, B. and Horvitz, H. R. (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93 (4), 519–529.

    Article  PubMed  CAS  Google Scholar 

  37. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S., et al. (1996) X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381 (6580), 335–341.

    Article  PubMed  CAS  Google Scholar 

  38. Minn, A. J., Velez, P., Schendel, S. L., Liang, H., Muchmore, S. W., Fesik, S. W., et al. (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385 (6614), 353–357.

    Article  PubMed  CAS  Google Scholar 

  39. Schendel, S. L., Xie, Z., Montal, M. O., Matsuyama, S., Montal, M., and Reed, J. C. (1997) Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. USA 94 (10), 5113–5118.

    Article  PubMed  CAS  Google Scholar 

  40. Schlesinger, P. H., Gross, A., Yin, X. M., Yamamoto, K., Saito, M., Waksman, G., and Korsmeyer, S. J. (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl. Acad. Sci. USA 94 (21), 11357–11362.

    Article  PubMed  CAS  Google Scholar 

  41. Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399 (6735), 483–487.

    Article  PubMed  CAS  Google Scholar 

  42. Deveraux, Q. L. and Reed, J. C. (1999) IAP family proteins—suppressors of apoptosis. Genes Dev. 13 (3), 239–252.

    Article  PubMed  CAS  Google Scholar 

  43. Sun, C., Cai, M., Gunasekera, A. H., Meadows, R. P., Wang, H., Chen, J., et al. (1999) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401 (6755), 818–822.

    Article  PubMed  CAS  Google Scholar 

  44. Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., et al. (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379 (6563), 349–353.

    Article  PubMed  CAS  Google Scholar 

  45. Deveraux, Q. L., Leo, E., Stennicke, H. R., Welsh, K., Salvesen, G. S., and Reed, J. C. (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18 (19), 5242–5251.

    Article  PubMed  CAS  Google Scholar 

  46. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16 (23), 6914–6925.

    Article  PubMed  CAS  Google Scholar 

  47. Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102 (1), 33–42.

    Article  PubMed  CAS  Google Scholar 

  48. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102 (1), 43–53.

    Article  PubMed  CAS  Google Scholar 

  49. Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Datta, P., Alnemri, E. S., Shi, Y., and Dataa, P. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104 (5), 769–780.

    Article  PubMed  CAS  Google Scholar 

  50. Huang, Y., Park, Y. C., Rich, R. L., Segal, D., Myszka, D. G., and Wu, H. (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104 (5), 781–790.

    PubMed  CAS  Google Scholar 

  51. Riedl, S. J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S. W., et al. (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104 (5), 791–800.

    Article  PubMed  CAS  Google Scholar 

  52. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T., and Thompson, C. B. (2001) Characterization of XIAP-deficient mice. Mol. Cell Biol. 21 (10), 3604–3608.

    Article  PubMed  CAS  Google Scholar 

  53. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., et al. (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282 (5392), 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  54. Mannick, J. B., Hausladen, A., Liu, L., Hess, D. T., Zeng, M., Miao, Q. X., et al. (1999) Fas-induced caspase denitrosylation. Science 284 (5414), 651–654.

    Article  PubMed  CAS  Google Scholar 

  55. Mannick, J. B., Schonhoff, C., Papeta, N., Ghafourifar, P., Szibor, M., Fang, K., and Gaston, B. (2001) S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154 (6), 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  56. Chandler, J. M., Cohen, G. M., and MacFarlane, M. (1998) Different subcellular distribution of caspase-3 and caspase7 following Fas-induced apoptosis in mouse liver. J. Biol. Chem. 273 (18), 10815–10818.

    Article  PubMed  CAS  Google Scholar 

  57. Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., Peterson, E. P., Casciola-Rosen, L. A., and Rosen, A. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140 (6), 1485–1495.

    Article  PubMed  CAS  Google Scholar 

  58. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., et al. (1999) Mitochondrial release of caspases-2 and -9 during the apoptotic process. J. Exp. Med. 189 (2), 381–394.

    Article  PubMed  CAS  Google Scholar 

  59. Martinou, J. C., Dubois-Dauphin, M., Staple, J. K., Rodriguez, I., Frankowski, H., Missotten, M., et al. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13 (4), 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  60. Veis, D. J., Sorenson, C. M., Shutter, J. R., and Korsmeyer, S. J. (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75 (2), 229–240.

    Article  PubMed  CAS  Google Scholar 

  61. Nakayama, K., Nakayama, K.-i., Negishi, I., Kuida, K., Sawa, H., and Loh, D. Y. (1994) Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc. Natl. Acad. Sci. USA 91 (9), 3700–3704.

    Article  PubMed  CAS  Google Scholar 

  62. Nakayama, K.-i., Nakayama, K., Negishi, I., Kuida, K., Shinkai, Y., Louie, M. C., Fields, L. E., et al. (1993) Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261 (5128), 1584–1588.

    Article  PubMed  CAS  Google Scholar 

  63. Motoyama, N., Wang, F., Roth, K. A., Sawa, H., Nakayama, K., Negishi, I., et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267 (5203), 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  64. Chao, D. T., Linette, G. P., Boise, L. H., White, L. S., Thompson, C. B., and Korsmeyer, S. J. (1995) Bcl-XL and Bcl2 repress a common pathway of cell death. J. Exp. Med. 182 (3), 821–828.

    Article  PubMed  CAS  Google Scholar 

  65. Print, C. G., Loveland, K. L., Gibson, L., Meehan, T., Stylianou, A., Wreford, N., et al. (1998) Apoptosis regulator bclw is essential for spermatogenesis but appears otherwise redundant. Proc. Natl. Acad. Sci. USA 95 (21), 12424–12431.

    Article  PubMed  CAS  Google Scholar 

  66. Ross, A. J., Waymire, K. G., Moss, J. E., Parlow, A. F., Skinner, M. K., Russell, L. D., and MacGregor, G. R. (1998) Testicular degeneration in Bclw-deficient mice. Nat. Genet. 18 (3), 251–256.

    Article  PubMed  CAS  Google Scholar 

  67. Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K., and Korsmeyer, S. J. (2000) Mcl-1 deficiency results in periimplantation embryonic lethality. Genes Dev. 14 (1), 23–27.

    PubMed  CAS  Google Scholar 

  68. Zhou, P., Qian, L., Bieszczad, C. K., Noelle, R., Binder, M., Levy, N. B., and Craig, R. W. (1998) Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 92 (9), 3226–3239.

    PubMed  CAS  Google Scholar 

  69. Hamasaki, A., Sendo, F., Nakayama, K., Ishida, N., Negishi, I., and Hatakeyama, S. (1998) Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J. Exp. Med. 188 (11), 1985–1992.

    Article  PubMed  CAS  Google Scholar 

  70. Deckwerth, T. L., Elliott, J. L., Knudson, C. M., Johnson, E. M., Jr., Snider, W. D., and Korsmeyer, S. J. (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17 (3), 401–411.

    Article  PubMed  CAS  Google Scholar 

  71. White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J., and Snider, W. D. (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18 (4), 1428–1439.

    PubMed  CAS  Google Scholar 

  72. Shindler, K. S., Latham, C. B., and Roth, K. A. (1997) Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J. Neurosci. 17 (9), 3112–3119.

    PubMed  CAS  Google Scholar 

  73. Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A., and Korsmeyer, S. J. (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270 (5233), 96–99.

    Article  PubMed  CAS  Google Scholar 

  74. Perez, G. I., Robles, R., Knudson, C. M., Flaws, J. A., Korsmeyer, S. J., and Tilly, J. L. (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat. Genet. 21 (2), 200–203.

    Article  PubMed  CAS  Google Scholar 

  75. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292 (5517), 727–730.

    Article  PubMed  CAS  Google Scholar 

  76. Bouillet, P., Metcalf, D., Huang, D. C., Tarlinton, D. M., Kay, T. W., Kontgen, F., et al. (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286 (5445), 1735–1738.

    Article  PubMed  CAS  Google Scholar 

  77. Bouillet, P., Purton, J. F., Godfrey, D. I., Zhang, L. C., Coultas, L., Puthalakath, H., et al. (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415 (6874), 922–926.

    Article  PubMed  CAS  Google Scholar 

  78. Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400 (6747), 886–891.

    Article  PubMed  CAS  Google Scholar 

  79. Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384 (6607), 368–372

    Article  PubMed  CAS  Google Scholar 

  80. Kuida, K., Haydar, T. F., Kuan, C. Y., Gu, Y., Taya, C., Karasuyama, H., et al. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94 (3), 325–337.

    Article  PubMed  CAS  Google Scholar 

  81. Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., et al. (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94 (3), 339–352.

    Article  PubMed  CAS  Google Scholar 

  82. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A., and Gruss, P. (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94 (6), 727–737.

    Article  PubMed  CAS  Google Scholar 

  83. Yoshida, H., Kong, Y. Y., Yoshida, R., Elia, A. J., Hakem, A., Hakem, R., et al. (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94 (6), 739–750.

    Article  PubMed  CAS  Google Scholar 

  84. Roth, K. A., Kuan, C., Haydar, T. F., D’Sa-Eipper, C., Shindler, K. S., Zheng, T. S., et al. (2000) Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97 (1), 466–471.

    Article  PubMed  CAS  Google Scholar 

  85. Zheng, T. S., Schlosser, S. F., Dao, T., Hingorani, R., Crispe, I. N., Boyer, J. L., and Flavell, R. A. (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95 (23), 13618–13623.

    Article  PubMed  CAS  Google Scholar 

  86. Zheng, T. S., Hunot, S., Kuida, K., Momoi, T., Srinivasan, A., Nicholson, D. W., et al. (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. 6 (11), 1241–1247.

    Article  PubMed  CAS  Google Scholar 

  87. Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian, A., Kagi, D., et al. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12 (6), 806–819.

    Article  PubMed  CAS  Google Scholar 

  88. Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., et al. (1998) Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9 (2), 267–276.

    Article  PubMed  CAS  Google Scholar 

  89. Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. J., Shahinian, A., et al. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279 (5358), 1954–1958.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang, J., Cado, D., Chen, A., Kabra, N. H., and Winoto, A. (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392 (6673), 296–300.

    Article  PubMed  CAS  Google Scholar 

  91. Yeh, W. C., Itie, A., Elia, A. J., Ng, M., Shu, H. B., Wakeham, A., Mirtsos, C., et al. (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12 (6), 633–642.

    Article  PubMed  CAS  Google Scholar 

  92. Van de Craen, M., Vandenabeele, P., Declercq, W., Van den Brande, I., Van Loo, G., Molemans, F., et al. (1997) Characterization of seven murine caspase family members. FEBS Lett. 403 (1), 61–69.

    Article  PubMed  Google Scholar 

  93. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-ß. Nature 403 (6765), 98–103.

    Article  PubMed  CAS  Google Scholar 

  94. Nakagawa, T. and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150 (4), 887–894.

    Article  PubMed  CAS  Google Scholar 

  95. Mattson, M. P., Gary, D. S., Chan, S. L., and Duan, W. (2001) Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer’s disease. Biochem. Soc. Symp. 67, 151–162.

    PubMed  CAS  Google Scholar 

  96. Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., et al. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101 (4), 389–399.

    Article  PubMed  CAS  Google Scholar 

  97. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397 (6718), 441–446.

    Article  PubMed  CAS  Google Scholar 

  98. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., et al. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410 (6828), 549–554.

    Article  PubMed  CAS  Google Scholar 

  99. Coucouvanis, E. and Martin, G. R. (1995) Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83 (2), 279–287.

    Article  PubMed  CAS  Google Scholar 

  100. Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1ß converting enzyme. Science 267 (5206), 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  101. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., et al. (1995) Mice deficient in IL-1ß-converting enzyme are defective in production of mature IL-1ß and resistant to endotoxic shock. Cell 80 (3), 401–411.

    Article  PubMed  CAS  Google Scholar 

  102. Bergeron, L., Perez, G. I., Macdonald, G., Shi, L., Sun, Y., Jurisicova, A., et al. (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12 (9), 1304–1314.

    Article  PubMed  CAS  Google Scholar 

  103. Wang, S., Miura, M., Jung, Y. K., Zhu, H., Li, E., and Yuan, J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92 (4), 501–509.

    Article  PubMed  CAS  Google Scholar 

  104. Ma, A., Pena, J. C., Chang, B., Margosian, E., Davidson, L., Alt, F. W., and Thompson, C. B. (1995) Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA 92 (11), 4763–4767.

    Article  PubMed  CAS  Google Scholar 

  105. Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., et al. (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6 (6), 1389–1399.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuan, CY., Kuida, K. (2003). Cell Death in Mammalian Development. In: Yin, XM., Dong, Z. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-361-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-361-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5172-7

  • Online ISBN: 978-1-59259-361-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics