Skip to main content

Organization of the Spinal Locomotor Network in Neonatal Rat

  • Chapter
Neurobiology of Spinal Cord Injury

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Among the various models used for studying the generation of rhythmic motor behaviors (1),the locomotor system in all its various forms (walking, flight, swimming, etc.), has been the favorite. From studies on mammalian spinal cord at the beginning of the century (2,3),it has been postulated that the central nervous system has the endogenous capability of generating rhythmic motor activities (for an extensive review, see ref. 4). The generation of these complex motor patterns does not require sensory feedback, as shown in many in vitro preparations of isolated nervous systems or in decerebrated/spinal curarized animals in which a fictive motor pattern can be elicited. Moreover, in the last 30 years, convergent information from many invertebrate and vertebrate preparations has unambiguously confirmed the idea that defined neuronal networks organize motor behaviors and has led to the concept of a central pattern generator (CPG) (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delcomyn, F. (1980) Neural basis of rhythmic behavior in animals. Science 210, 492–498.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, T. G. (1911) The intrinsic factors in the act of progression in mammal. Proc. Soc. B. 84 308–319.

    Article  Google Scholar 

  3. Brown, T. G. (1914) On the nature of the fundamental activity of the nervous centres, together with an analysis of the conditioning of rhythmic activity in progression, and a theory of evolution of function in the nervous system. J. Physiol. (Lond.) 48, 18.

    CAS  Google Scholar 

  4. Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish, in Handbook of physiology. The nervous system II ( Brookhart, J. M. and Mountcastle, V. B, eds.), American Physiological Society, Bethesda, MD, pp. 1179–1236.

    Google Scholar 

  5. Stein, P. S. G., Grillner, S., Selverston, A. I., and Stuart, D. G., eds (1997) Neurons, networks, and motor behavior. Bradford Book. MIT Press, Cambridge.

    Google Scholar 

  6. Grillner, S. and Matsushima, T. (1991) The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms. Neuron 7, 1–15.

    Article  PubMed  CAS  Google Scholar 

  7. Roberts, A., Soffe, S. R., and Perrins, R. (1997) Spinal networks controlling swimming in hatching Xenopus tadpoles, in Neurons, networks, and motor behavior. Bradford Book. ( Stein, P. S. G., Grillner, S., Selverston, A., and Stuart, D. G., eds.), MIT Press, Cambridge, pp. 83–89.

    Google Scholar 

  8. Monteau, R. and Hilaire, G. (1991) Spinal respiratory motoneurons. Prog. Neurobiol. 37, 83–144.

    Article  PubMed  CAS  Google Scholar 

  9. Aoki, M., Mori, S., Kawahara, K., Watanabe, H., and Ebata, N. (1980) Generation of spontaneous respiratory rhythm in high spinal cats. Brain Res. 202, 51–63.

    PubMed  CAS  Google Scholar 

  10. Viala, D. and Freton, E. (1980) Demonstration of generators of the locomotor and respiration rhythms in the cervico-thoracic spinal cord of rabbits. C.R. Acad. Sci. 291, 573–576.

    CAS  Google Scholar 

  11. Viala, D. and Vidal, D. (1978) Evidence for distinct spinal locomotion generators supplying respectively fore-and hindlimbs in the rabbit. Brain Res. 155, 182–186.

    Article  PubMed  CAS  Google Scholar 

  12. Miller, S. and van der Meché, F. G. A. (1976) Coordinated stepping of all four limbs in the high spinal cat. Brain Res. 109, 395–398.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, J. C., Feldman, J. L., and Schmidt, B. J (1988) Neural mechanisms generating locomotion studied in mammalian brain stem-spinal cord in vitro. FASEB J. 2, 2283–2288.

    CAS  Google Scholar 

  14. Devolvé, I., Bem, T., and Cabelguen, J-M. (1997) Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl. J. Neurophysiol. 78, 638–650.

    Google Scholar 

  15. Ritter, D. (1995) Epaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system. J. Exp. Biol. 198, 2477–2490.

    PubMed  Google Scholar 

  16. Thorstensson, A., Carlson, H., Zomlefer, M. R., and Nilsson, J. (1982) Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol. Scand. 116, 13–20.

    Article  PubMed  CAS  Google Scholar 

  17. English, A. W. (1980) The functions of the lumbar spine during stepping in the cat. J. Morphol. 165, 55–66.

    Article  Google Scholar 

  18. Geisler, H. C., Westerga, J., and Gramsbergen, A. (1996) The function of the long back muscles during postural development in the rat. Behan Brain Res. 80, 211–215.

    Article  CAS  Google Scholar 

  19. Koehler, W. J., Schomburg, E. D., and Steffens, H. (1984) Phasic modulation of trunk muscle efferents during fictive spinal locomotion in cats. J. Physiol. 353, 187–197.

    PubMed  CAS  Google Scholar 

  20. Viala, D. and Freton, E. (1983) Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions. Exp. Brain Res. 49, 247–256.

    Article  PubMed  CAS  Google Scholar 

  21. Kawahara, K., Nakazono, Y., Yamauchi, Y., and Miyamoto Y. (1989) Coupling between respiratory and locomotor rhythms during fictive locomotion in decerebrate cats. Neurosci. Lett. 103, 326–332.

    Article  PubMed  CAS  Google Scholar 

  22. Romanes, G. J. (1964) The motor pools of the spinal cord. Prog. Brain Res. 11, 93–119.

    Article  PubMed  CAS  Google Scholar 

  23. Cazalets, J. -R., Menard, I., Cremieux, J., and Clarac, F. (1990) Variability as a characteristic of immature motor systems: an electromyographic study of swimming in the newborn rat. Behay. Brain Res. 40, 215–225.

    Article  CAS  Google Scholar 

  24. Geisler, H. C., Westerga, J., and Gramsbergen, A. (1993) Development of posture in the rat. Acta Neurobiol. Exp. 53, 517–523.

    CAS  Google Scholar 

  25. Fady, J. -C., Jamon, M., and Clarac, F. (1998) Early olfactory-induced rhythmic limb activity in the newborn rat. Dey. Brain Res. 108, 111–123.

    Article  CAS  Google Scholar 

  26. Bekoff, A. and Trainer, W. (1979) The development of interlimb coordination during swimming in postnatal rats. J. Exp. Biol. 83, 1–11.

    PubMed  CAS  Google Scholar 

  27. Menard, I., Crémieux, J., and Cazalets, J. R. (1991) Evolution non-linéaire de la fréquence des mouvements de nage pendant l’ontogenèse chez le rat. C. R. Acad. Sci. Paris 312, 233–240.

    PubMed  CAS  Google Scholar 

  28. Van Hartesveldt, C., Sickles, A. E., Porter, J. D., and Stehouwer, D. J. (1991) LDOPA-induced air-stepping in developing rats. Dev. Brain Res. 58, 251–255.

    Article  Google Scholar 

  29. Cazalets, J. -R., Sqalli-Houssaini Y., and Clarac, F. (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J. Physiol. (Lond.) 455 187–204.

    Google Scholar 

  30. Sqalli-Houssaini, Y., Cazalets, J.-R., Martini, F., and Clarac, F. (1993) Induction of fictive locomotion by sulphur-containing amino acids in an in vitro newborn rat preparation. Eur. J. Neurosci. 5, 1226–1232.

    Article  Google Scholar 

  31. Cazalets, J.-R. Borde, M., and Clarac, F. (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15 4943–4951.

    PubMed  CAS  Google Scholar 

  32. Cohen, A. H. and Gans C. (1975) Muscle activity in rat locomotion: movement analysis and electromyography of the flexors and extensors of the elbow. J. Morphol. 146, 177–196.

    Article  PubMed  CAS  Google Scholar 

  33. Gruner, J. A. and Altman, J. (1980) Swimming in the rat: analysis of locomotor performance in comparison to stepping. Exp. Brain Res. 40, 374–382.

    PubMed  CAS  Google Scholar 

  34. Nicolopoulos-Stournaras, S. and Iles, J. F. (1984) Hindlimb muscle activity during locomotion in the rat (Rattus norvegicus) (Rodentia:Muridae). J. Zool. Lond. 203, 427–440.

    Article  Google Scholar 

  35. Goudard, I., Orsal, D., and Cabelguen, J.-M. (1992) An electromyographic study of the hindlimb locomotor movements in the acute thalamic rat. Eur. J. Neurosci. 4, 1130–1139.

    Google Scholar 

  36. Westerga, J. and Gramsbergen, A. (1993) Changes in the electromyogram of two major hindlimb muscles during locomotor development in the rat. Exp. Brain Res. 92, 479–488

    Article  PubMed  CAS  Google Scholar 

  37. Kiehn, O. and Kjaerulff, O. (1996) Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol. 75, 1472–1482.

    PubMed  CAS  Google Scholar 

  38. Nicolopoulos-Stournaras, S. and Iles, J. F. (1983) Motor neuron columns in the lumbar spinal cord of the rat. J. Comp. Neural. 217, 75–85.

    Article  CAS  Google Scholar 

  39. Landmesser, L. (1977) The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 284, 371–389.

    Google Scholar 

  40. Kudo, N. and Yamada, T. (1987) N-Methyl-D, L-aspartate-induced locomotor activity in a spinal cord-hindlimb muscles preparation of the newborn rat studied in vitro. Neurosci. Lett. 75, 43–48.

    Article  CAS  Google Scholar 

  41. Smith, J. C. and Feldman, J. L. (1987). In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J. Neurosci. Methods 21, 321–333.

    Article  PubMed  CAS  Google Scholar 

  42. Sqalli-Houssaini, Y., Cazalets, J. R., and Clarac, F. (1991) A cooling/heating system for use with in vitro preparations: study of temperature effects on newborn rat rhythmic activities. J. Neurosci. Methods 39, 131–139.

    Article  PubMed  CAS  Google Scholar 

  43. Sqalli-Houssaini, Y., Cazalets, J.-R., and Clarac, E (1993a) Oscillatory properties of the central pattern generator for locomotion in neonatal rats. J. Neurophysiol. 70, 803–813.

    PubMed  CAS  Google Scholar 

  44. Kjaerulff, O., Barajon, I., and Kiehn, O. (1994) Sulphorhodamine-labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J. Physiol. (Lond.) 478, 265–273.

    Google Scholar 

  45. Magnuson, D. S. K., Schramm, M. J., and MacLean, J. N. (1995) Long-duration, frequency-dependent motor responses evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord. Neurosci. Leu. 192, 97–100.

    Article  CAS  Google Scholar 

  46. Cowley, K. C. and Schmidt, B. J. (1997) Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord../. Neurophysiol. 77, 247–259.

    CAS  Google Scholar 

  47. Kremer, E. and Lev-Tov, A. (1997) Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J. Neurophysiol. 77, 1155–1170.

    PubMed  CAS  Google Scholar 

  48. Cowley, K. C. and Schmidt, B. J. (1994) A comparison of motor patterns induced by N-methyl-D-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci. Lett. 171, 147–150.

    Article  PubMed  CAS  Google Scholar 

  49. Barthe, J. Y. and Clarac, F. (1997) Modulation of the spinal network for locomotion by substance P in the neonatal rat. Exp. Brain Res. 115 485–492.

    Article  PubMed  CAS  Google Scholar 

  50. Keifer, J., Vyas, D., and Houk, J. C. (1992) Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J. Neurosci. 12, 3187–3199.

    PubMed  CAS  Google Scholar 

  51. Barajon, I. Gossard, J. P. Hultborn, H. (1992) Induction of fos expression by activity in the spinal rhythm generator for scratching. Brain Res. 588 168–172.

    Article  PubMed  CAS  Google Scholar 

  52. Carr, P. A., Huang, A., Noga, B. R., and Jordan, L. M. (1995) Cytochemical characteristics of cat spinal neurons activated during fictive locomotion. Brain Res. Bull. 37, 213–218.

    Article  PubMed  CAS  Google Scholar 

  53. Lev-Tov, A. and O’Donovan, M. J. (1995) Calcium imaging of motoneuron activity in the en-bloc spinal cord preparation of the neonatal rat. J. Neurophysiol. 74, 1324–1334.

    PubMed  CAS  Google Scholar 

  54. Grillner, S. and Zangger, P. (1979) On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261.

    Article  PubMed  CAS  Google Scholar 

  55. Deliagina, T. G, Orlovsky, G. N, and Pavlova, G. A. (1983) The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp. Brain Res. 53, 81–90.

    Article  PubMed  CAS  Google Scholar 

  56. Cowley, K. C., Schmidt, B. J. (1995) Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J. Neurophysiol. 74, 1109–1117.

    PubMed  CAS  Google Scholar 

  57. Cheng, J., Stein, R. B., Jovanovic, K., Yoshida, K., Bennett, D. J., and Han, Y. (1998) Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J. Neurosci. 18, 4295–4304.

    PubMed  CAS  Google Scholar 

  58. Ho, S. and O’Donovan, M. J (1993) Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo. J. Neurosci. 13, 1354–1371.

    PubMed  CAS  Google Scholar 

  59. Cazalets, J.-R., Borde, M., and Clarac, F. (1996) The synaptic drive from the loco-motor network to the motoneurons in newborn rat. J. Neurosci. 16, 298–306.

    PubMed  CAS  Google Scholar 

  60. Viala, D., Buisseret-Delmas, C., and Portal, J. J. (1988) An attempt to localize the lumbar locomotor generator in the rabbit using 2-deoxy-(14C) glucose autoradiography. Neurosci. Lett. 86, 139–143.

    Article  PubMed  CAS  Google Scholar 

  61. Kjaerulff, O., and Kiehn, O. (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794.

    PubMed  CAS  Google Scholar 

  62. Hochman, S., Jordan, L., and Schmidt, B. J. (1994) TTX-resistant NMDA receptor-mediated voltage oscillations in mammalian lumbar motoneurons.J Neurophysiol. 72, 2559–2562.

    PubMed  CAS  Google Scholar 

  63. McLean, J. N., Hochman, S., and Magnuson, D. S. K. (1995) Lamina VII neurons are rhythmically active during locomotor-like activity in the neonatal rat spinal cord. Neurosci. Lett. 197, 9–12.

    Article  Google Scholar 

  64. Magnuson, D. S. K. and Trinder, T. C. (1997) Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J. Neurophysiol. 77, 200–206.

    CAS  Google Scholar 

  65. Kiehn, O., Johnson, B., and Raastad, M. (1996) Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity. Neuroscience 75, 263–273.

    Article  PubMed  CAS  Google Scholar 

  66. Dubayle, D., and Viala, D. (1996) Localization of the spinal respiratory rhythm generator by an in vitro electrophysiological approach. Neuroreport 7, 1175–1180

    Article  PubMed  CAS  Google Scholar 

  67. Dubayle, D. and Viala, D. (1998) Effects of CO2 and pH on the spinal respiratory rhythm generator in vitro. Brain Res. Bull. 45, 83–87

    Article  CAS  Google Scholar 

  68. Cazalets, J.-R., Squalli-Houssaini, Y., and Clarac, F. (1994). GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J. Physiol. 474, 173–181.

    PubMed  CAS  Google Scholar 

  69. Bracci, E. (1996) Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J. Neurosci. 16, 7063–7076.

    PubMed  CAS  Google Scholar 

  70. Shapiro, Bi. Wang, C. M., and Narahashi, T. (1974) Effects of strychnine on ionic conductances of squid axon membrane. J. Pharmacol. Exp. Ther. 188 66–76.

    PubMed  CAS  Google Scholar 

  71. Dale, N. (1995) Experimentally derived model for the locomotor pattern generator in the Xenopus embryo. J. Physiol. 489, 489–510.

    PubMed  CAS  Google Scholar 

  72. Debarbieux, F., Brunton, J., and Charpak, S. (1998) Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. J. Neurophysiol. 79, 2911–2918.

    PubMed  CAS  Google Scholar 

  73. Cazalets, J. R., Bertrand, S., Sqalli-Houssaini, Y., and Clarac, F. (1998) GABA-ergic control of spinal locomotor networks in the neonatal rat. Ann. Acad. Sci. NY, 860, 168–180.

    CAS  Google Scholar 

  74. Russel, D. E. and Wallen, P. (1983) On the control of myotonal motoneurons during fictive swimming in the lamprey spinal cord in vitro. Acta Physiol. Scand. 117, 161–170.

    Article  Google Scholar 

  75. Orsal, D, Perret, C., and Cabelguen, J. M. (1986) Evidence of rhythmic inhibitory synaptic influences in hindlimb motoneurons during fictive locomotion in the thalamic cat. Exp. Brain Res. 64, 217–224.

    Article  PubMed  CAS  Google Scholar 

  76. Shefchik, S. J. and Jordan, L. M. (1985) Excitatory and inhibitory postsynaptic potentials in a-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 53, 1345–1355.

    Google Scholar 

  77. Kjaerulff, O. and Kiehn, O. (1997) Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network. J. Neurosci. 17, 9433–9447.

    PubMed  CAS  Google Scholar 

  78. Bonnot, A., Morin, D., and Viala, D. (1998) Genesis of spontaneous rhythmic motor patterns in the lumbosacral spinal cord of neonatal mouse. Dey. Brain Res., 108, 89–99.

    Article  CAS  Google Scholar 

  79. MacLean, J., Schmidt, J., and Hochman, S. (1997) NMDA receptor activation triggers voltage oscillations, plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur. J. Neurosci. 9, 2702–2711.

    Article  CAS  Google Scholar 

  80. Wheatley, M., Jovanovic K., Stein, R. B., and Lawson, V. (1994) The activity of interneurons during locomotion in the in vitro necturus spinal cord. J. Neurophysiol. 71, 2025–2032.

    PubMed  CAS  Google Scholar 

  81. Bertrand, S. and Cazalets, J.-R. (1998) Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro. J. Neurophysiol. 79, 342–351.

    PubMed  CAS  Google Scholar 

  82. Miller, S. and Scott, P. D. (1977) The spinal locomotor generator. Exp. Brain Res. 30, 387–403.

    Article  PubMed  CAS  Google Scholar 

  83. Bussel B., Roby-Brami A., Yakovleff A., and Bennis N. (1989) Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Res. Bull. 22, 53–56.

    Article  PubMed  CAS  Google Scholar 

  84. Feraboli-Lohnherr, D., Orsal, D., Yakovleff, A., Gimenez y Ribotta, M., and Privat, A. (1997) Recovery of locomotor activity in the adult chronic spinal rat after sublesional transplantation of embryonic nervous cells: specific role of serotonergic neurons. Exp. Brain Res. 113, 443–454.

    CAS  Google Scholar 

  85. Gimenez y Ribotta, M., Orsal, D., Feraboli-Lohnherr, D., and Privat, A. (1998) Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats. Ann. NY Acad. Sci., 860, 393–411.

    Article  Google Scholar 

  86. Cheng H., Cao Y., and Olson L. (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cazalets, JR. (2000). Organization of the Spinal Locomotor Network in Neonatal Rat. In: Kalb, R.G., Strittmatter, S.M. (eds) Neurobiology of Spinal Cord Injury. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-200-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-200-5_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-126-4

  • Online ISBN: 978-1-59259-200-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics