Skip to main content

Thioredoxin-1 PEGylation as an In Vitro Method for Drug Target Identification

  • Protocol
  • First Online:
Book cover Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1990))

  • 728 Accesses

Abstract

Redox signaling in the cell, which is essential for cell physiology, involves proteins with free sulfhydryl groups (−SH). Among them, the thioredoxin system plays the most significant role. Many conditions associated with cell malignancies feature the higher expression of thioredoxin, making it an attractive target for new therapeutic drug development. Here we present a simple in vitro model of testing the interaction between thioredoxin and the putative drug. This method is relatively inexpensive and gives the Investigator a first screen of the drug properties, which can be essential for further experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A et al (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36:377–393

    Article  CAS  Google Scholar 

  2. Kirkinezos I, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Cell Dev Biol 12:449–457

    Article  CAS  Google Scholar 

  3. Majima HJ, Indo HP, Nakanishi I et al (2016) Chasing great paths of Helmut Sies “oxidative stress”. Arch Biochem Biophys 595:54–60

    Article  CAS  Google Scholar 

  4. Yin F, Sancheti H, Patil I et al (2016) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med 16:30216–30217

    Google Scholar 

  5. Wright E Jr, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: role of fasting and postprandial glycaemia. Int J Clin Pract 60:308–314

    Article  CAS  Google Scholar 

  6. De Marchi E, Baldassari F, Bononi A et al (2013) Oxidative stress in cardiovascular disease and obesity: role of p66 Shc and protein C. Oxid Med Cell Longer

    Google Scholar 

  7. Klaunig JE, Kamendulis LM, Hovecar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109

    Article  CAS  Google Scholar 

  8. Li W, Kong AN (2008) Molecular mechanism of Nrf2-mediated antioxidant response. Mol Carcinog 47:91–104

    Google Scholar 

  9. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  CAS  Google Scholar 

  10. Forman HJ, Fukuto JM, Torres M (2000) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as a second messenger. Am J Physiol Cell Physiol 287:C246–C256

    Article  Google Scholar 

  11. Adimora NJ, Jones DP, Kemp ML (2010) A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide response. Antioxid Redox Signal 13:731–743

    Article  CAS  Google Scholar 

  12. Hashemy SI, Holmgren A (2008) Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283:21890–21898

    Article  CAS  Google Scholar 

  13. Eklund H, Gleason FK, Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins 11(13):13–28

    Article  CAS  Google Scholar 

  14. Chivers PT, Prehoda KE, Volkman BF et al (1997) Microscopic pK(a) values of Escherichia coli thioredoxin. Biochemistry 36(15):14985–11499

    Article  CAS  Google Scholar 

  15. Messens J, Van Molle I, Vanhaesebrouck P et al (2004) How thioredoxin can reduce a buried disulphide bonds. J Mol Biol 339(16):527–537

    Article  CAS  Google Scholar 

  16. Das KC, Das CK (2000) Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochem Biophys Res Commun 277(17):443–447

    Article  CAS  Google Scholar 

  17. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45(18):549–561

    Article  CAS  Google Scholar 

  18. Depuydt M, Leonard SE, Vertommen D et al (2009) A periplasmic reducing systems protects single cysteine residues from oxidation. Science 20(19):1109–1111

    Article  Google Scholar 

  19. Lu J, Holmgren A (2014) Thiredoxin superfamily in oxidative protein folding. Antioxid Redox Signal 21(20):457–470

    Article  CAS  Google Scholar 

  20. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239(21):3436–3444

    CAS  PubMed  Google Scholar 

  21. Matthews JR, Wakasugi N, Virelizier JL (1992) Thioredoxin regulates the DNA binding activity of NF-κB by reduction of disulfide bond involving cysteine 62. Nucleic Acid Res 20(22):3821–3830

    Article  CAS  Google Scholar 

  22. Saitoh M, Nishitoh H, Fujii M (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK). EMBO J 17(23):2596–2606

    Article  CAS  Google Scholar 

  23. Zhang D, Ahao N, Ma B et al (2016) Procaspase-9 induces its cleavage by transnitrosilating XIAP via thioredoxin system during cerebral ischemia-reperfusion in rats. Sci Rep 6

    Google Scholar 

  24. Matsui M, Oshima M, Oshima H et al (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(25):179–185

    Article  CAS  Google Scholar 

  25. Nonn L, Williams RR, Erickson RP et al (2003) The absence of thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic development in homozygous mice. Mol Cell Biol 23(26):916–922

    Article  CAS  Google Scholar 

  26. Fontaine SD, Reid R, Robinson L et al (2015) Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem 26(27):145–152

    Article  CAS  Google Scholar 

  27. Skalska J, Brookes PS, Nadtochiy S et al (2009) Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. Plos One 4(28):8115–8127

    Article  Google Scholar 

  28. Shafer D, Inaman JK, Lees A (2000) Reaction of Tris(2-carboxyethyl)phosphine (TCEP) with maleimide and α-halocyl groups: anomalous elution of TCEP by gel filtration. Anal Biochem 282(29):161–164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Skalska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skalska, J. (2019). Thioredoxin-1 PEGylation as an In Vitro Method for Drug Target Identification. In: Hancock, J., Conway, M. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology, vol 1990. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9463-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9463-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9461-8

  • Online ISBN: 978-1-4939-9463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics