Skip to main content

Quantifying Cellular Cholesterol Efflux

  • Protocol
  • First Online:
Lipid-Activated Nuclear Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1951))

Abstract

Measuring cholesterol efflux involves the tracking of cholesterol movement out of cells. Cholesterol efflux is an essential mechanism to maintain cellular cholesterol homeostasis, and this process is largely regulated via the LXR transcription factors and their regulated genes, the ATP-binding cassette (ABC) cholesterol transporters ABCA1 and ABCG1. Typically, efflux assays are performed utilizing radiolabeled cholesterol tracers to label intracellular cholesterol pools, and these assays may be tailored to quantify the efflux of exogenously delivered cholesterol or alternatively the efflux of newly synthesized (endogenous) cholesterol, in different cell types (macrophages, hepatocytes). Cholesterol efflux may also be customized to quantify cholesterol flux out of the cell to various exogenous cholesterol acceptors, such as apolipoprotein A-I, high-density lipoprotein, or methyl-beta-cyclodextrin, depending on the purpose of the experiment. Here, we provide comprehensive protocols to quantify the net flux of cholesterol out of cells and recommendations on how this assay may be tailored as a function of the experimental question at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7(1):53–58. https://doi.org/10.1038/83348

    Article  CAS  PubMed  Google Scholar 

  2. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131. https://doi.org/10.1172/jci15593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18(5):461–467. https://doi.org/10.1016/j.gde.2008.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shibata N, Glass CK (2010) Macrophages, oxysterols and atherosclerosis. Circ J 74(10):2045–2051

    Article  CAS  PubMed  Google Scholar 

  5. Zelcer N, Hong C, Boyadjian R, Tontonoz P (2009) LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL receptor. Science 325(5936):100–104. https://doi.org/10.1126/science.1168974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C (2010) microRNAs and cholesterol metabolism. Trends Endocrinol Metab 21(12):699–706. https://doi.org/10.1016/j.tem.2010.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher EA, Rayner KJ, Pezacki JP, Tabas I, Moore KJ (2017) microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol 37(6):1058–1067. https://doi.org/10.1161/ATVBAHA.116.308916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A 104(16):6511–6518. https://doi.org/10.1073/pnas.0700899104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL (2004) Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell 15(2):259–268. https://doi.org/10.1016/j.molcel.2004.06.019

    Article  CAS  PubMed  Google Scholar 

  10. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RG (1979) Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol 82(3):597–613

    Article  CAS  PubMed  Google Scholar 

  11. McGookey DJ, Anderson RG (1983) Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97(4):1156–1168

    Article  CAS  PubMed  Google Scholar 

  12. Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255(19):9344–9352

    CAS  PubMed  Google Scholar 

  13. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13(6):655–667. https://doi.org/10.1016/j.cmet.2011.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32(3):575–581. https://doi.org/10.1161/ATVBAHA.111.240705

    Article  CAS  PubMed  Google Scholar 

  15. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113(21):2548–2555. https://doi.org/10.1161/circulationaha.104.475715

    Article  PubMed  Google Scholar 

  17. Wang MD, Franklin V, Marcel YL (2007) In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired. Arterioscler Thromb Vasc Biol 27(8):1837–1842. https://doi.org/10.1161/atvbaha.107.146068

    Article  CAS  PubMed  Google Scholar 

  18. Assmann G, Gotto AM Jr (2004) HDL cholesterol and protective factors in atherosclerosis. Circulation 109(23 Suppl 1):III8–II14. https://doi.org/10.1161/01.cir.0000131512.50667.46

    Article  PubMed  Google Scholar 

  19. Tang C, Oram JF (2009) The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta 1791(7):563–572. https://doi.org/10.1016/j.bbalip.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  20. Denis M, Landry YD, Zha X (2008) ATP-binding cassette A1-mediated lipidation of apolipoprotein a-I occurs at the plasma membrane and not in the endocytic compartments. J Biol Chem 283(23):16178–16186. https://doi.org/10.1074/jbc.M709597200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S, Brewer HB Jr (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276(29):27584–27590. https://doi.org/10.1074/jbc.M103264200

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276(47):43564–43569. https://doi.org/10.1074/jbc.M107938200

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Wang N, Tall AR (2005) A PEST deletion mutant of ABCA1 shows impaired internalization and defective cholesterol efflux from late endosomes. J Biol Chem 280(32):29277–29281. https://doi.org/10.1074/jbc.M505566200

    Article  CAS  PubMed  Google Scholar 

  24. Phillips MC, Johnson WJ, Rothblat GH (1987) Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 906(2):223–276

    Article  CAS  PubMed  Google Scholar 

  25. Rothblat GH, Phillips MC (2010) High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 21(3):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, Frank J, Francone OL, Edwards PA (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1(2):121–131. https://doi.org/10.1016/j.cmet.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  27. Vaughan AM, Oram JF (2005) ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem 280(34):30150–30157. https://doi.org/10.1074/jbc.M505368200

    Article  CAS  PubMed  Google Scholar 

  28. Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 101(26):9774–9779. https://doi.org/10.1073/pnas.0403506101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zimmer S, Grebe A, Bakke SS, Bode N, Halvorsen B, Ulas T, Skjelland M, De Nardo D, Labzin LI, Kerksiek A, Hempel C, Heneka MT, Hawxhurst V, Fitzgerald ML, Trebicka J, Bjorkhem I, Gustafsson JA, Westerterp M, Tall AR, Wright SD, Espevik T, Schultze JL, Nickenig G, Lutjohann D, Latz E (2016) Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med 8(333):333ra350. https://doi.org/10.1126/scitranslmed.aad6100

    Article  CAS  Google Scholar 

  30. Wang MD, Kiss RS, Franklin V, McBride HM, Whitman SC, Marcel YL (2007) Different cellular traffic of LDL-cholesterol and acetylated LDL-cholesterol leads to distinct reverse cholesterol transport pathways. J Lipid Res 48(3):633–645. https://doi.org/10.1194/jlr.M600470-JLR200

    Article  CAS  PubMed  Google Scholar 

  31. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38(11):2264–2272

    CAS  PubMed  Google Scholar 

  32. Chapman MJ, Goldstein S, Lagrange D, Laplaud PM (1981) A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res 22(2):339–358

    CAS  PubMed  Google Scholar 

  33. Aviram M (1983) Plasma lipoprotein separation by discontinuous density gradient ultracentrifugation in hyperlipoproteinemic patients. Biochem Med 30(1):111–118

    Article  CAS  PubMed  Google Scholar 

  34. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 76(1):333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14(8):812–820. https://doi.org/10.1038/ni.2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277(51):49982–49988. https://doi.org/10.1074/jbc.M209649200

    Article  CAS  PubMed  Google Scholar 

  37. Otero-Vinas M, Llorente-Cortes V, Pena E, Padro T, Badimon L (2007) Aggregated low density lipoproteins decrease metalloproteinase-9 expression and activity in human coronary smooth muscle cells. Atherosclerosis 194(2):326–333. https://doi.org/10.1016/j.atherosclerosis.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  38. Bergeron J, Frank PG, Emmanuel F, Latta M, Zhao Y, Sparks DL, Rassart E, Denefle P, Marcel YL (1997) Characterization of human apolipoprotein A-I expressed in Escherichia coli. Biochim Biophys Acta 1344(2):139–152

    Article  CAS  PubMed  Google Scholar 

  39. Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210

    Article  CAS  PubMed  Google Scholar 

  40. Kiss RS, McManus DC, Franklin V, Tan WL, McKenzie A, Chimini G, Marcel YL (2003) The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and -independent pathways. J Biol Chem 278(12):10119–10127. https://doi.org/10.1074/jbc.M300137200

    Article  CAS  PubMed  Google Scholar 

  41. Rosenbaum AI, Maxfield FR (2011) Niemann-pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 116(5):789–795. https://doi.org/10.1111/j.1471-4159.2010.06976.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sankaranarayanan S, de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, Weibel GL, Rothblat GH (2010) Importance of macrophage cholesterol content on the flux of cholesterol mass. J Lipid Res 51(11):3243–3249. https://doi.org/10.1194/jlr.M008441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cunnick J, Kaur P, Cho Y, Groffen J, Heisterkamp N (2006) Use of bone marrow-derived macrophages to model murine innate immune responses. J Immunol Methods 311(1–2):96–105. https://doi.org/10.1016/j.jim.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  44. Wustner D, Mondal M, Tabas I, Maxfield FR (2005) Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 6(5):396–412. https://doi.org/10.1111/j.1600-0854.2005.00285.x

    Article  CAS  PubMed  Google Scholar 

  45. Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, Rothblat GH (2011) A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res 52(12):2332–2340. https://doi.org/10.1194/jlr.D018051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Ouimet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Robichaud, S., Ouimet, M. (2019). Quantifying Cellular Cholesterol Efflux. In: Gage, M., Pineda-Torra, I. (eds) Lipid-Activated Nuclear Receptors. Methods in Molecular Biology, vol 1951. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9130-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9130-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9129-7

  • Online ISBN: 978-1-4939-9130-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics