Skip to main content

Diagnosis of Systemic Fungal Diseases

  • Chapter
  • First Online:
Principles and Practice of Transplant Infectious Diseases

Abstract

Invasive fungal infections (IFI) are a major cause of morbidity and mortality in transplant recipients. The most common IFI are candidiasis, aspergillosis, pneumocystosis, cryptococcosis, mucormycosis, and endemic mycoses. Clinical presentations are generally non-specific, and fungal etiologies are often suspected when immunocompromised patients present with respiratory symptoms and/or undifferentiated fever that do not respond to empiric antibacterial therapy. Moreover, early treatment can be lifesaving. Consequently, diagnosis is a cornerstone for management of such patients, and rapid, accurate, and safe diagnostic techniques are critically important. Multiple diagnostic tools are available to clinicians. In addition to microscopy and culture, serodiagnosis and nucleic acid amplification techniques are emerging. Traditional and nontraditional methods are complementary, and judicious selection of tests in a given clinical setting is essential. This chapter reviews the diagnostic methods used in medical mycology and provides guidance to clinicians and laboratorians dealing with IFI in the transplant population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeo SF, Wong B. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev. 2002;15(3):465–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wheat LJ. Antigen detection, serology, and molecular diagnosis of invasive mycoses in the immunocompromised host. Transpl Infect Dis. 2006;8(3):128–39.

    Article  CAS  PubMed  Google Scholar 

  3. Lau A, Chen S, Sleiman S, Sorrell T. Current status and future perspectives on molecular and serological methods in diagnostic mycology. Future Microbiol. 2009;4(9):1185–222.

    Article  CAS  PubMed  Google Scholar 

  4. Hussein MR. Mucocutaneous Splendore-Hoeppli phenomenon. J Cutan Pathol. 2008;35(11):979–88.

    Article  PubMed  Google Scholar 

  5. Schuetz AN, Cohen C. Aspergillus immunohistochemistry of culture-proven fungal tissue isolates shows high cross-reactivity. Appl Immunohistochem Mol Morphol. 2009;17(6):524–9.

    Article  PubMed  Google Scholar 

  6. Kobayashi M, Urata T, Ikezoe T, Hakoda E, Uemura Y, Sonobe H, et al. Simple detection of the 5S ribosomal RNA of pneumocystis carinii using in situ hybridisation. J Clin Pathol. 1996;49(9):712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kobayashi M, Sonobe H, Ikezoe T, Hakoda E, Ohtsuki Y, Taguchi H. In situ detection of aspergillus 18S ribosomal RNA in invasive pulmonary aspergillosis. Intern Med. 1999;38(7):563–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rickerts V, Khot PD, Myerson D, Ko DL, Lambrecht E, Fredricks DN. Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis. 2011;11:202.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Munoz-Cadavid C, Rudd S, Zaki SR, Patel M, Moser SA, Brandt ME, et al. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J Clin Microbiol. 2010;48(6):2147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salehi E, Hedayati MT, Zoll J, Rafati H, Ghasemi M, Doroudinia A, et al. Discrimination of aspergillosis, mucormycosis, fusariosis, and scedosporiosis in formalin-fixed paraffin-embedded tissue specimens by use of multiple real-time quantitative PCR assays. J Clin Microbiol. 2016;54(11):2798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rickerts V. Identification of fungal pathogens in formalin-fixed, paraffin-embedded tissue samples by molecular methods. Fungal Biol. 2016;120(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  12. Shea YR, Witebsky FG, Walsh TJ. Specimen selection, collection and transport. In: Hazen KC, Howell SA, Garcia LS, editors. Mycology and antifungal susceptibility testing, clinical microbiology procedures handbook. Volume 2. Washington, DC: ASM Press; 2010.

    Google Scholar 

  13. LaRocco M. Processing specimens for fungal cultures. In: Hazen KC, Howell SA, Garcia LS, editors. Mycology and antifungal susceptibility testing, clinical microbiology procedures handbook. Volume 2. Washington, DC: ASM Press; 2010.

    Google Scholar 

  14. CLSI. Principles and procedures for detection of fungi in clinical specimens -direct examination and culture; approved guidelines. CLSI Document M54-A. Wayne, PA: Clinical and Laboratory Standards Institute 2012.

    Google Scholar 

  15. Scognamiglio T, Zinchuk R, Gumpeni P, Larone DH. Comparison of inhibitory mold agar to Sabouraud dextrose agar as a primary medium for isolation of fungi. J Clin Microbiol. 2010;48(5):1924–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cockerill FR 3rd, Reed GS, Hughes JG, Torgerson CA, Vetter EA, Harmsen WS, et al. Clinical comparison of BACTEC 9240 plus aerobic/F resin bottles and the isolator aerobic culture system for detection of bloodstream infections. J Clin Microbiol. 1997;35(6):1469–72.

    PubMed  PubMed Central  Google Scholar 

  17. Waite RT, Woods GL. Evaluation of BACTEC MYCO/F lytic medium for recovery of mycobacteria and fungi from blood. J Clin Microbiol. 1998;36(5):1176–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Larone DH. Medically important fungi. A guide to identification. Fifth ed. Washington, DC: ASM Press; 2011.

    Google Scholar 

  19. Padhye AA, Smith G, Standard PG, McLaughlin D, Kaufman L. Comparative evaluation of chemiluminescent DNA probe assays and exoantigen tests for rapid identification of Blastomyces dermatitidis and Coccidioides immitis. J Clin Microbiol. 1994;32(4):867–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, Dannaoui E, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol. 2009;47(4):877–84.

    Article  CAS  PubMed  Google Scholar 

  21. Sanguinetti M, Posteraro B. Identification of molds by matrix-assisted laser desorption ionizationt-time of flight mass spectrometry. J Clin Microbiol. 2017;55(2):369–79.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cassagne C, Ranque S, Normand AC, Fourquet P, Thiebault S, Planard C, et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2011;6(12):e28425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buchan BW, Ledeboer NA. Advances in the identification of clinical yeast isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:1359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Posteraro B, Efremov L, Leoncini E, Amore R, Posteraro P, Ricciardi W, et al. Are the conventional commercial yeast identification methods still helpful in the era of new clinical microbiology diagnostics? A meta-analysis of their accuracy. J Clin Microbiol. 2015;53(8):2439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biosafety in Microbiological and Biomedical Laboratories, 5th Edition. U.S. Department of Health and Human Services, Public Health Service, Center for Disease Control and Prevention, National Institutes of Health; HHS Publication No. (CDC) 21-1112; Revised December 2009.

    Google Scholar 

  26. Singh K. Laboratory-acquired infections. Clin Infect Dis. 2009;49(1):142–7.

    Article  PubMed  Google Scholar 

  27. Van Burik JA, Myerson D, Schreckhise RW, Bowden RA. Panfungal PCR assay for detection of fungal infection in human blood specimens. J Clin Microbiol. 1998;36(5):1169–75.

    PubMed  PubMed Central  Google Scholar 

  28. Alanio A, Garcia-Hermoso D, Mercier-Delarue S, Lanternier F, Gits-Muselli M, Menotti J, et al. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry. Clin Microbiol Infect. 2015;21(6):594.e1–5.

    Article  CAS  Google Scholar 

  29. Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, Toleno DM, et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol. 2013;51(3):959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shin JH, Ranken R, Sefers SE, Lovari R, Quinn CD, Meng S, et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol. 2013;51(1):136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. White PL, Hibbitts SJ, Perry MD, Green J, Stirling E, Woodford L, et al. Evaluation of a commercially developed semiautomated PCR-surface-enhanced raman scattering assay for diagnosis of invasive fungal disease. J Clin Microbiol. 2014;52(10):3536–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5(182):182ra54.

    Article  PubMed  CAS  Google Scholar 

  33. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  PubMed  Google Scholar 

  34. White PL, Wingard JR, Bretagne S, Loffler J, Patterson TF, Slavin MA, et al. Aspergillus polymerase chain reaction: systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis. 2015;61(8):1293–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neofytos D, Horn D, Anaissie E, Steinbach W, Olyaei A, Fishman J, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  37. Neofytos D, Fishman JA, Horn D, Anaissie E, Chang CH, Olyaei A, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12(3):220–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091–100.

    Article  PubMed  Google Scholar 

  39. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11.

    Article  PubMed  Google Scholar 

  40. Steinbach WJ, Marr KA, Anaissie EJ, Azie N, Quan SP, Meier-Kriesche HU, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect. 2012;65(5):453–64.

    Article  PubMed  Google Scholar 

  41. Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to aspergillus spp. Med Mycol. 2005;43(Suppl 1):S207–38.

    Article  PubMed  Google Scholar 

  42. Forslow U, Remberger M, Nordlander A, Mattsson J. The clinical importance of bronchoalveolar lavage in allogeneic SCT patients with pneumonia. Bone Marrow Transplant. 2010;45(5):945–50.

    Article  CAS  PubMed  Google Scholar 

  43. Shannon VR, Andersson BS, Lei X, Champlin RE, Kontoyiannis DP. Utility of early versus late fiberoptic bronchoscopy in the evaluation of new pulmonary infiltrates following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45(4):647–55.

    Article  CAS  PubMed  Google Scholar 

  44. Hofmeister CC, Czerlanis C, Forsythe S, Stiff PJ. Retrospective utility of bronchoscopy after hematopoietic stem cell transplant. Bone Marrow Transplant. 2006;38(10):693–8.

    Article  CAS  PubMed  Google Scholar 

  45. Maertens J, Theunissen K, Verhoef G, Verschakelen J, Lagrou K, Verbeken E, et al. Galactomannan and computed tomography-based preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: a prospective feasibility study. Clin Infect Dis. 2005;41(9):1242–50.

    Article  CAS  PubMed  Google Scholar 

  46. Hebart H, Klingspor L, Klingebiel T, Loeffler J, Tollemar J, Ljungman P, et al. A prospective randomized controlled trial comparing PCR-based and empirical treatment with liposomal amphotericin B in patients after allo-SCT. Bone Marrow Transplant. 2009;43(7):553–61.

    Article  CAS  PubMed  Google Scholar 

  47. Cordonnier C, Pautas C, Maury S, Vekhoff A, Farhat H, Suarez F, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48(8):1042–51.

    Article  CAS  PubMed  Google Scholar 

  48. Tan BH, Low JG, Chlebicka NL, Kurup A, Cheah FK, Lin RT, et al. Galactomannan-guided preemptive vs. empirical antifungals in the persistently febrile neutropenic patient: a prospective randomized study. Int J Infect Dis. 2011;15(5):e350–6.

    Article  CAS  PubMed  Google Scholar 

  49. Aguado JM, Vazquez L, Fernandez-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, et al. Serum galactomannan versus a combination of galactomannan and polymerase chain reaction-based aspergillus DNA detection for early therapy of invasive aspergillosis in high-risk hematological patients: a randomized controlled trial. Clin Infect Dis. 2015;60(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  50. Arvanitis M, Anagnostou T, Mylonakis E. Galactomannan and polymerase chain reaction-based screening for invasive aspergillosis among high-risk hematology patients: a diagnostic meta-analysis. Clin Infect Dis. 2015;61(8):1263–72.

    Article  CAS  PubMed  Google Scholar 

  51. Duarte RF, Sanchez-Ortega I, Cuesta I, Arnan M, Patino B, Fernandez de Sevilla A, et al. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis. 2014;59(12):1696–702.

    Article  CAS  PubMed  Google Scholar 

  52. Springer J, Lackner M, Nachbaur D, Girschikofsky M, Risslegger B, Mutschlechner W, et al. Prospective multicentre PCR-based aspergillus DNA screening in high-risk patients with and without primary antifungal mould prophylaxis. Clin Microbiol Infect. 2016;22(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hosseini-Moghaddam SM, Chaparro C, Luong ML, Azad S, Singer LG, Mazzulli T, et al. The effectiveness of culture-directed preemptive anti-aspergillus treatment in lung transplant recipients at one year after transplant. Transplantation. 2015;99(11):2387–93.

    Article  CAS  PubMed  Google Scholar 

  54. Seligsohn R, Rippon JW, Lerner SA. Aspergillus terreus osteomyelitis. Arch Intern Med. 1977;137(7):918–20.

    Article  CAS  PubMed  Google Scholar 

  55. Walsh TJ, Petraitis V, Petraitiene R, Field-Ridley A, Sutton D, Ghannoum M, et al. Experimental pulmonary aspergillosis due to aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis. 2003;188(2):305–19.

    Article  CAS  PubMed  Google Scholar 

  56. Tarrand JJ, Han XY, Kontoyiannis DP, May GS. Aspergillus hyphae in infected tissue: evidence of physiologic adaptation and effect on culture recovery. J Clin Microbiol. 2005;43(1):382–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kontoyiannis DP, Sumoza D, Tarrand J, Bodey GP, Storey R, Raad II. Significance of aspergillemia in patients with cancer: a 10-year study. Clin Infect Dis. 2000;31(1):188–9.

    Article  CAS  PubMed  Google Scholar 

  58. Simoneau E, Kelly M, Labbe AC, Roy J, Laverdiere M. What is the clinical significance of positive blood cultures with aspergillus sp in hematopoietic stem cell transplant recipients? A 23 year experience. Bone Marrow Transplant. 2005;35(3):303–6.

    Article  CAS  PubMed  Google Scholar 

  59. Callister ME, Griffiths MJ, Nicholson AG, Leonard A, Johnson EM, Polkey MI, et al. A fatal case of disseminated aspergillosis caused by a non-sporulating strain of aspergillus fumigatus. J Clin Pathol. 2004;57(9):991–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balajee SA, Lindsley MD, Iqbal N, Ito J, Pappas PG, Brandt ME. Nonsporulating clinical isolate identified as Petromyces alliaceus (anamorph aspergillus alliaceus) by morphological and sequence-based methods. J Clin Microbiol. 2007;45(8):2701–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang C, Kong Q, Cai Z, Liu F, Chen P, Song J, et al. The newly nonsporulated characterization of an aspergillus fumigatus isolate from an immunocompetent patient and its clinic indication. Fungal Genet Biol. 2015;81:250–60.

    Article  CAS  PubMed  Google Scholar 

  62. Dufresne PJ, Moonjely SS, Ozaki K, Tremblay C, Laverdiere M, Dufresne SF. High frequency of pathogenic aspergillus species among nonsporulating moulds from respiratory tract samples. Med Mycol. 2017;55(2):233–6.

    Article  PubMed  Google Scholar 

  63. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CH, et al. Phylogeny, identification and nomenclature of the genus aspergillus. Stud Mycol. 2014;78:141–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balajee SA, Weaver M, Imhof A, Gribskov J, Marr KA. Aspergillus fumigatus variant with decreased susceptibility to multiple antifungals. Antimicrob Agents Chemother. 2004;48(4):1197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008;52(4):1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sugui JA, Vinh DC, Nardone G, Shea YR, Chang YC, Zelazny AM, et al. Neosartorya udagawae (aspergillus udagawae), an emerging agent of aspergillosis: how different is it from aspergillus fumigatus? J Clin Microbiol. 2010;48(1):220–8.

    Article  CAS  PubMed  Google Scholar 

  67. Vinh DC, Shea YR, Sugui JA, Parrilla-Castellar ER, Freeman AF, Campbell JW, et al. Invasive aspergillosis due to Neosartorya udagawae. Clin Infect Dis. 2009;49(1):102–11.

    Article  PubMed  Google Scholar 

  68. Staab JF, Balajee SA, Marr KA. Aspergillus section Fumigati typing by PCR-restriction fragment polymorphism. J Clin Microbiol. 2009;47(7):2079–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, et al. Molecular identification of aspergillus species collected for the transplant-associated infection surveillance network. J Clin Microbiol. 2009;47(10):3138–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Etienne KA, Gade L, Lockhart SR, Diekema DJ, Messer SA, Pfaller MA, et al. Screening of a large global aspergillus fumigatus species complex collection by using a species-specific microsphere-based Luminex assay. J Clin Microbiol. 2009;47(12):4171–2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stynen D, Goris A, Sarfati J, Latge JP. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis. J Clin Microbiol. 1995;33(2):497–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Machetti M, Feasi M, Mordini N, Van Lint MT, Bacigalupo A, Latge JP, et al. Comparison of an enzyme immunoassay and a latex agglutination system for the diagnosis of invasive aspergillosis in bone marrow transplant recipients. Bone Marrow Transplant. 1998;21(9):917–21.

    Article  CAS  PubMed  Google Scholar 

  73. Mennink-Kersten MA, Donnelly JP, Verweij PE. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect Dis. 2004;4(6):349–57.

    Article  CAS  PubMed  Google Scholar 

  74. Marr KA, Balajee SA, McLaughlin L, Tabouret M, Bentsen C, Walsh TJ. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis. 2004;190(3):641–9.

    Article  CAS  PubMed  Google Scholar 

  75. Leeflang MM, Debets-Ossenkopp YJ, Visser CE, Scholten RJ, Hooft L, Bijlmer HA, et al. Galactomannan detection for invasive aspergillosis in immunocompromized patients. Cochrane Database Syst Rev. 2008;4:CD007394.

    Google Scholar 

  76. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42(10):1417–27.

    Article  CAS  PubMed  Google Scholar 

  77. Stynen D, Sarfati J, Goris A, Prevost MC, Lesourd M, Kamphuis H, et al. Rat monoclonal antibodies against aspergillus galactomannan. Infect Immun. 1992;60(6):2237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tortorano AM, Esposto MC, Prigitano A, Grancini A, Ossi C, Cavanna C, et al. Cross-reactivity of Fusarium spp. in the aspergillus galactomannan enzyme-linked immunosorbent assay. J Clin Microbiol. 2012;50(3):1051–3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Riviere S, Denis B, Bougnoux ME, Lanternier F, Lecuit M, Lortholary O. Serum aspergillus galactomannan for the management of disseminated histoplasmosis in AIDS. Am J Trop Med Hyg. 2012;87(2):303–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vergidis P, Walker RC, Kaul DR, Kauffman CA, Freifeld AG, Slagle DC, et al. False-positive aspergillus galactomannan assay in solid organ transplant recipients with histoplasmosis. Transpl Infect Dis. 2012;14(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  81. Adam O, Auperin A, Wilquin F, Bourhis JH, Gachot B, Chachaty E. Treatment with piperacillin-tazobactam and false-positive aspergillus galactomannan antigen test results for patients with hematological malignancies. Clin Infect Dis. 2004;38(6):917–20.

    Article  PubMed  Google Scholar 

  82. Maertens J, Theunissen K, Verhoef G, Van Eldere J. False-positive aspergillus galactomannan antigen test results. Clin Infect Dis. 2004;39(2):289–90.

    Article  PubMed  Google Scholar 

  83. Singh N, Obman A, Husain S, Aspinall S, Mietzner S, Stout JE. Reactivity of platelia aspergillus galactomannan antigen with piperacillin-tazobactam: clinical implications based on achievable concentrations in serum. Antimicrob Agents Chemother. 2004;48(6):1989–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Viscoli C, Machetti M, Cappellano P, Bucci B, Bruzzi P, Van Lint MT, et al. False-positive galactomannan platelia aspergillus test results for patients receiving piperacillin-tazobactam. Clin Infect Dis. 2004;38(6):913–6.

    Article  PubMed  Google Scholar 

  85. Walsh TJ, Shoham S, Petraitiene R, Sein T, Schaufele R, Kelaher A, et al. Detection of galactomannan antigenemia in patients receiving piperacillin-tazobactam and correlations between in vitro, in vivo, and clinical properties of the drug-antigen interaction. J Clin Microbiol. 2004;42(10):4744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Machetti M, Furfaro E, Viscoli C. Galactomannan in piperacillin-tazobactam: how much and to what extent? Antimicrob Agents Chemother. 2005;49(9):3984–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Metan G. The interaction between piperacillin-tazobactam and aspergillus galactomannan antigenemia assay: is the story over? Infection. 2013;41(1):293–4.

    Article  CAS  PubMed  Google Scholar 

  88. Vergidis P, Razonable RR, Wheat LJ, Estes L, Caliendo AM, Baden LR, et al. Reduction in false-positive aspergillus serum galactomannan enzyme immunoassay results associated with use of piperacillin-tazobactam in the United States. J Clin Microbiol. 2014;52(6):2199–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ko JH, Peck KR, Lee WJ, Lee JY, Cho SY, Ha YE, et al. Generic piperacillin/tazobactam is not associated with galactomannan false-positivity in adult patients with cancer: a case-control study. Eur J Clin Microbiol Infect Dis. 2015;34(7):1437–41.

    Article  CAS  PubMed  Google Scholar 

  90. Klont RR, Mennink-Kersten MA, Verweij PE. Utility of aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis. 2004;39(10):1467–74.

    Article  PubMed  Google Scholar 

  91. Guo YL, Chen YQ, Wang K, Qin SM, Wu C, Kong JL. Accuracy of BAL galactomannan in diagnosing invasive aspergillosis: a bivariate metaanalysis and systematic review. Chest. 2010;138(4):817–24.

    Article  PubMed  Google Scholar 

  92. Zou M, Tang L, Zhao S, Zhao Z, Chen L, Chen P, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS One. 2012;7(8):e43347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Affolter K, Tamm M, Jahn K, Halter J, Passweg J, Hirsch HH, et al. Galactomannan in bronchoalveolar lavage for diagnosing invasive fungal disease. Am J Respir Crit Care Med. 2014;190(3):309–17.

    CAS  PubMed  Google Scholar 

  94. Bergeron A, Porcher R, Menotti J, Poirot JL, Chagnon K, Vekhoff A, et al. Prospective evaluation of clinical and biological markers to predict the outcome of invasive pulmonary aspergillosis in hematological patients. J Clin Microbiol. 2012;50(3):823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Neofytos D, Railkar R, Mullane KM, Fredricks DN, Granwehr B, Marr KA, et al. Correlation between circulating fungal biomarkers and clinical outcome in invasive aspergillosis. PLoS One. 2015;10(6):e0129022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Thornton CR. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol. 2008;15(7):1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiederhold NP, Thornton CR, Najvar LK, Kirkpatrick WR, Bocanegra R, Patterson TF. Comparison of lateral flow technology and galactomannan and (1->3)-beta-D-glucan assays for detection of invasive pulmonary aspergillosis. Clin Vaccine Immunol. 2009;16(12):1844–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hoenigl M, Prattes J, Spiess B, Wagner J, Prueller F, Raggam RB, et al. Performance of galactomannan, beta-d-glucan, aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol. 2014;52(6):2039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Willinger B, Lackner M, Lass-Florl C, Prattes J, Posch V, Selitsch B, et al. Bronchoalveolar lavage lateral-flow device test for invasive pulmonary aspergillosis in solid organ transplant patients: a semiprospective multicenter study. Transplantation. 2014;98(8):898–902.

    Article  PubMed  Google Scholar 

  100. Dufresne SF, Datta K, Li X, Dadachova E, Staab JF, Patterson TF, et al. Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS One. 2012;7(8):e42736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. Beta-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.

    Article  CAS  PubMed  Google Scholar 

  102. Onishi A, Sugiyama D, Kogata Y, Saegusa J, Sugimoto T, Kawano S, et al. Diagnostic accuracy of serum 1,3-beta-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol. 2012;50(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alexander BD, Smith PB, Davis RD, Perfect JR, Reller LB. The (1,3){beta}-D-glucan test as an aid to early diagnosis of invasive fungal infections following lung transplantation. J Clin Microbiol. 2010;48(11):4083–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Akamatsu N, Sugawara Y, Kaneko J, Tamura S, Makuuchi M. Preemptive treatment of fungal infection based on plasma (1 --> 3)beta-D-glucan levels after liver transplantation. Infection. 2007;35(5):346–51.

    Article  CAS  PubMed  Google Scholar 

  105. Duffner U, Abdel-Mageed A, Dahl K, Fogg G, Hester J. Serum (1 --> 3)-beta-D-glucan levels (Fungitell assay) is not useful as a screening test for recipients of an allogeneic HSCT while on immunoglobulin replacement. Bone Marrow Transplant. 2012;47(1):151–2.

    Article  CAS  PubMed  Google Scholar 

  106. Sarfati J, Monod M, Recco P, Sulahian A, Pinel C, Candolfi E, et al. Recombinant antigens as diagnostic markers for aspergillosis. Diagn Microbiol Infect Dis. 2006;55(4):279–91.

    Article  CAS  PubMed  Google Scholar 

  107. Du C, Wingard JR, Cheng S, Nguyen MH, Clancy CJ. Serum IgG responses against aspergillus proteins before hematopoietic stem cell transplantation or chemotherapy identify patients who develop invasive aspergillosis. Biol Blood Marrow Transplant. 2012;18(12):1927–34.

    Article  CAS  PubMed  Google Scholar 

  108. Erdmann JH, Graf B, Blau IW, Fischer F, Timm G, Hemmati P, et al. Anti-aspergillus immunoglobulin-G testing in serum of hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2016;18(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  109. Hebart H, Loffler J, Meisner C, Serey F, Schmidt D, Bohme A, et al. Early detection of aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J Infect Dis. 2000;181(5):1713–9.

    Article  CAS  PubMed  Google Scholar 

  110. Hebart H, Loffler J, Reitze H, Engel A, Schumacher U, Klingebiel T, et al. Prospective screening by a panfungal polymerase chain reaction assay in patients at risk for fungal infections: implications for the management of febrile neutropenia. Br J Haematol. 2000;111(2):635–40.

    Article  CAS  PubMed  Google Scholar 

  111. Kawazu M, Kanda Y, Nannya Y, Aoki K, Kurokawa M, Chiba S, et al. Prospective comparison of the diagnostic potential of real-time PCR, double-sandwich enzyme-linked immunosorbent assay for galactomannan, and a (1-->3)-beta-D-glucan test in weekly screening for invasive aspergillosis in patients with hematological disorders. J Clin Microbiol. 2004;42(6):2733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Buchheidt D, Hummel M, Schleiermacher D, Spiess B, Schwerdtfeger R, Cornely OA, et al. Prospective clinical evaluation of a LightCycler-mediated polymerase chain reaction assay, a nested-PCR assay and a galactomannan enzyme-linked immunosorbent assay for detection of invasive aspergillosis in neutropenic cancer patients and haematological stem cell transplant recipients. Br J Haematol. 2004;125(2):196–202.

    Article  CAS  PubMed  Google Scholar 

  113. Suarez F, Lortholary O, Buland S, Rubio MT, Ghez D, Mahe V, et al. Detection of circulating aspergillus fumigatus DNA by real-time PCR assay of large serum volumes improves early diagnosis of invasive aspergillosis in high-risk adult patients under hematologic surveillance. J Clin Microbiol. 2008;46(11):3772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Florent M, Katsahian S, Vekhoff A, Levy V, Rio B, Marie JP, et al. Prospective evaluation of a polymerase chain reaction-ELISA targeted to aspergillus fumigatus and aspergillus flavus for the early diagnosis of invasive aspergillosis in patients with hematological malignancies. J Infect Dis. 2006;193(5):741–7.

    Article  CAS  PubMed  Google Scholar 

  115. Halliday C, Hoile R, Sorrell T, James G, Yadav S, Shaw P, et al. Role of prospective screening of blood for invasive aspergillosis by polymerase chain reaction in febrile neutropenic recipients of haematopoietic stem cell transplants and patients with acute leukaemia. Br J Haematol. 2006;132(4):478–86.

    PubMed  Google Scholar 

  116. Blennow O, Remberger M, Klingspor L, Omazic B, Fransson K, Ljungman P, et al. Randomized PCR-based therapy and risk factors for invasive fungal infection following reduced-intensity conditioning and hematopoietic SCT. Bone Marrow Transplant. 2010;45(12):1710–8.

    Article  CAS  PubMed  Google Scholar 

  117. White PL, Perry MD, Loeffler J, Melchers W, Klingspor L, Bretagne S, et al. Critical stages of extracting DNA from aspergillus fumigatus in whole-blood specimens. J Clin Microbiol. 2010;48(10):3753–5.

    Article  PubMed  PubMed Central  Google Scholar 

  118. White PL, Mengoli C, Bretagne S, Cuenca-Estrella M, Finnstrom N, Klingspor L, et al. Evaluation of aspergillus PCR protocols for testing serum specimens. J Clin Microbiol. 2011;49(11):3842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johnson GL, Bibby DF, Wong S, Agrawal SG, Bustin SA. A MIQE-compliant real-time PCR assay for aspergillus detection. PLoS One. 2012;7(7):e40022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. White PL, Barnes RA, Springer J, Klingspor L, Cuenca-Estrella M, Morton CO, et al. Clinical performance of aspergillus PCR for testing serum and plasma: a study by the European aspergillus PCR initiative. J Clin Microbiol. 2015;53(9):2832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Steinmann J, Buer J, Rath PM, Paul A, Saner F. Invasive aspergillosis in two liver transplant recipients: diagnosis by SeptiFast. Transpl Infect Dis. 2009;11(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  122. von Lilienfeld-Toal M, Lehmann LE, Raadts AD, Hahn-Ast C, Orlopp KS, Marklein G, et al. Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia. J Clin Microbiol. 2009;47(8):2405–10.

    Article  CAS  Google Scholar 

  123. Lamoth F, Jaton K, Prod'hom G, Senn L, Bille J, Calandra T, et al. Multiplex blood PCR in combination with blood cultures for improvement of microbiological documentation of infection in febrile neutropenia. J Clin Microbiol. 2010;48(10):3510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Steinmann J, Buer J, Rath PM. Detection of aspergillus fumigatus in blood samples from critically ill patients in intensive care units by use of the SeptiFast assay. J Clin Microbiol. 2016;54(7):1918–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Torelli R, Sanguinetti M, Moody A, Pagano L, Caira M, De Carolis E, et al. Diagnosis of invasive aspergillosis by a commercial real-time PCR assay for aspergillus DNA in bronchoalveolar lavage fluid samples from high-risk patients compared to a galactomannan enzyme immunoassay. J Clin Microbiol. 2011;49(12):4273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Orsi CF, Bettua C, Pini P, Venturelli C, La Regina A, Morace G, et al. Detection of pneumocystis jirovecii and aspergillus spp. DNa in bronchoalveolar lavage fluids by commercial real-time PCr assays: comparison with conventional diagnostic tests. New Microbiol. 2015;38(1):75–84.

    PubMed  Google Scholar 

  127. White PL, Perry MD, Moody A, Follett SA, Morgan G, Barnes RA. Evaluation of analytical and preliminary clinical performance of Myconostica MycAssay aspergillus when testing serum specimens for diagnosis of invasive Aspergillosis. J Clin Microbiol. 2011;49(6):2169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Danylo A, Courtemanche C, Pelletier R, Boudreault AA. Performance of MycAssay aspergillus DNA real-time PCR assay compared with the galactomannan detection assay for the diagnosis of invasive aspergillosis from serum samples. Med Mycol. 2014;52(6):577–83.

    Article  CAS  PubMed  Google Scholar 

  129. Pini P, Bettua C, Orsi CF, Venturelli C, Faglioni L, Forghieri F, et al. Clinical performance of a commercial real-time PCR assay for aspergillus DNA detection in serum samples from high-risk patients: comparison with a galactomannan enzyme immunoassay. Eur J Clin Microbiol Infect Dis. 2015;34(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  130. Lass-Florl C, Follett SA, Moody A, Denning DW. Detection of aspergillus in lung and other tissue samples using the MycAssay aspergillus real-time PCR kit. Can J Microbiol. 2011;57(9):765–8.

    Article  CAS  PubMed  Google Scholar 

  131. Chong GL, van de Sande WW, Dingemans GJ, Gaajetaan GR, Vonk AG, Hayette MP, et al. Validation of a new aspergillus real-time PCR assay for direct detection of aspergillus and azole resistance of aspergillus fumigatus on bronchoalveolar lavage fluid. J Clin Microbiol. 2015;53(3):868–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. White PL, Posso RB, Barnes RA. Analytical and clinical evaluation of the PathoNostics AsperGenius Assay for detection of invasive Aspergillosis and resistance to azole antifungal drugs during testing of serum samples. J Clin Microbiol. 2015;53(7):2115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chong GM, van der Beek MT, von dem Borne PA, Boelens J, Steel E, Kampinga GA, et al. PCR-based detection of aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay(R) in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71(12):3528–35.

    Article  CAS  PubMed  Google Scholar 

  134. Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR, et al. Invasive non-aspergillus mold infections in transplant recipients, United States, 2001-2006. Emerg Infect Dis. 2011;17(10):1855–64.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Azie N, Neofytos D, Pfaller M, Meier-Kriesche HU, Quan SP, Horn D. The PATH (Prospective Antifungal Therapy) Alliance(R) registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis. 2012;73(4):293–300.

    Article  PubMed  Google Scholar 

  136. Nucci M. Emerging moulds: Fusarium, Scedosporium and Zygomycetes in transplant recipients. Curr Opin Infect Dis. 2003;16(6):607–12.

    Article  PubMed  Google Scholar 

  137. Lionakis MS, Bodey GP, Tarrand JJ, Raad II, Kontoyiannis DP. The significance of blood cultures positive for emerging saprophytic moulds in cancer patients. Clin Microbiol Infect. 2004;10(10):922–5.

    Article  CAS  PubMed  Google Scholar 

  138. Lionakis MS, Kontoyiannis DP. The significance of isolation of saprophytic molds from the lower respiratory tract in patients with cancer. Cancer. 2004;100(1):165–72.

    Article  PubMed  Google Scholar 

  139. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Zanetti E, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood. 2011;118(20):5416–9.

    Article  CAS  PubMed  Google Scholar 

  140. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56:e95–101.

    Article  CAS  PubMed  Google Scholar 

  141. Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–92.

    Article  PubMed  Google Scholar 

  142. Marr KA, Bowden RA. Fungal infections in patients undergoing blood and marrow transplantation. Transpl Infect Dis. 1999;1(4):237–46.

    Article  CAS  PubMed  Google Scholar 

  143. Bille J, Stockman L, Roberts GD, Horstmeier CD, Ilstrup DM. Evaluation of a lysis-centrifugation system for recovery of yeasts and filamentous fungi from blood. J Clin Microbiol. 1983;18(3):469–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Guerra-Romero L, Edson RS, Cockerill FR 3rd, Horstmeier CD, Roberts GD. Comparison of Du Pont isolator and Roche Septi-Chek for detection of fungemia. J Clin Microbiol. 1987;25(9):1623–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cockerill FR 3rd, Torgerson CA, Reed GS, Vetter EA, Weaver AL, Dale JC, et al. Clinical comparison of difco ESP, Wampole isolator, and Becton Dickinson Septi-Chek aerobic blood culturing systems. J Clin Microbiol. 1996;34(1):20–4.

    PubMed  PubMed Central  Google Scholar 

  146. Hellinger WC, Cawley JJ, Alvarez S, Hogan SF, Harmsen WS, Ilstrup DM, et al. Clinical comparison of the isolator and BacT/alert aerobic blood culture systems. J Clin Microbiol. 1995;33(7):1787–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lyon R, Woods G. Comparison of the BacT/alert and isolator blood culture systems for recovery of fungi. Am J Clin Pathol. 1995;103(5):660–2.

    Article  CAS  PubMed  Google Scholar 

  148. Fuller DD, Davis TE Jr, Denys GA, York MK. Evaluation of BACTEC MYCO/F Lytic medium for recovery of mycobacteria, fungi, and bacteria from blood. J Clin Microbiol. 2001;39(8):2933–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vetter E, Torgerson C, Feuker A, Hughes J, Harmsen S, Schleck C, et al. Comparison of the BACTEC MYCO/F Lytic bottle to the isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the Isolator tube for recovery of bacteria, mycobacteria, and fungi from blood. J Clin Microbiol. 2001;39(12):4380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Essman TF, Flynn HW Jr, Smiddy WE, Brod RD, Murray TG, Davis JL, et al. Treatment outcomes in a 10-year study of endogenous fungal endophthalmitis. Ophthalmic Surg Lasers. 1997;28(3):185–94.

    CAS  PubMed  Google Scholar 

  151. Thaler M, Pastakia B, Shawker TH, O'Leary T, Pizzo PA. Hepatic candidiasis in cancer patients: the evolving picture of the syndrome. Ann Intern Med. 1988;108(1):88–100.

    Article  CAS  PubMed  Google Scholar 

  152. Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol. 2008;46(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  153. Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of the yeast traffic light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol. 2012;50(4):1446–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stone NR, Gorton RL, Barker K, Ramnarain P, Kibbler CC. Evaluation of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive blood cultures and assessment of clinical impact. J Clin Microbiol. 2013;51(4):1301–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Deak E, Charlton CL, Bobenchik AM, Miller SA, Pollett S, McHardy IH, et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis. 2015;81(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  156. Levesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, et al. A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015;10(12):e0144878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 2017;36:807–12.

    Article  CAS  PubMed  Google Scholar 

  158. Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, Ruggeri A, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50(1):176–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Usami M, Ohata A, Horiuchi T, Nagasawa K, Wakabayashi T, Tanaka S. Positive (1-->3)-beta-D-glucan in blood components and release of (1-->3)-beta-D-glucan from depth-type membrane filters for blood processing. Transfusion. 2002;42(9):1189–95.

    Article  CAS  PubMed  Google Scholar 

  160. Pickering JW, Sant HW, Bowles CA, Roberts WL, Woods GL. Evaluation of a (1->3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2005;43(12):5957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Prattes J, Schilcher G, Krause R. Reliability of serum 1,3-beta-D-glucan assay in patients undergoing renal replacement therapy: a review of the literature. Mycoses. 2015;58(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  162. Ostrosky-Zeichner L, Shoham S, Vazquez J, Reboli A, Betts R, Barron MA, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58(9):1219–26.

    Article  CAS  PubMed  Google Scholar 

  163. Hanson KE, Pfeiffer CD, Lease ED, Balch AH, Zaas AK, Perfect JR, et al. Beta-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One. 2012;7(8):e42282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Knitsch W, Vincent JL, Utzolino S, Francois B, Dinya T, Dimopoulos G, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61(11):1671–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rimek D, Singh J, Kappe R. Cross-reactivity of the PLATELIA CANDIDA antigen detection enzyme immunoassay with fungal antigen extracts. J Clin Microbiol. 2003;41(7):3395–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ellis M, Al-Ramadi B, Bernsen R, Kristensen J, Alizadeh H, Hedstrom U. Prospective evaluation of mannan and anti-mannan antibodies for diagnosis of invasive Candida infections in patients with neutropenic fever. J Med Microbiol. 2009;58(Pt 5):606–15.

    Article  CAS  PubMed  Google Scholar 

  167. Lunel FM, Mennink-Kersten MA, Ruegebrink D, van der Lee HA, Donnelly JP, Blijlevens NM, et al. Value of Candida serum markers in patients with invasive candidiasis after myeloablative chemotherapy. Diagn Microbiol Infect Dis. 2009;64(4):408–15.

    Article  PubMed  CAS  Google Scholar 

  168. Mikulska M, Calandra T, Sanguinetti M, Poulain D, Viscoli C. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on infections in leukemia. Crit Care. 2010;14(6):R222.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lunel FM, Donnelly JP, van der Lee HA, Blijlevens NM, Verweij PE. Performance of the new Platelia Candida Plus assays for the diagnosis of invasive Candida infection in patients undergoing myeloablative therapy. Med Mycol. 2011;49(8):848–55.

    Article  PubMed  CAS  Google Scholar 

  170. Nihtinen A, Anttila VJ, Richardson M, Ruutu T, Juvonen E, Meri T, et al. Factors influencing the performance level of Candida mannan antigen testing in allogeneic stem cell transplant recipients not receiving fluconazole prophylaxis. Transpl Infect Dis. 2011;13(3):266–72.

    Article  CAS  PubMed  Google Scholar 

  171. Leon C, Ruiz-Santana S, Saavedra P, Castro C, Ubeda A, Loza A, et al. Value of beta-D-glucan and Candida albicans germ tube antibody for discriminating between Candida colonization and invasive candidiasis in patients with severe abdominal conditions. Intensive Care Med. 2012;38(8):1315–25.

    Article  CAS  PubMed  Google Scholar 

  172. Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol. 2011;49(2):665–70.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Mauro MV, Cavalcanti P, Perugini D, Noto A, Sperli D, Giraldi C. Diagnostic utility of LightCycler SeptiFast and procalcitonin assays in the diagnosis of bloodstream infection in immunocompromised patients. Diagn Microbiol Infect Dis. 2012;73(4):308–11.

    Article  CAS  PubMed  Google Scholar 

  174. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  175. Bilir SP, Ferrufino CP, Pfaller MA, Munakata J. The economic impact of rapid Candida species identification by T2Candida among high-risk patients. Future Microbiol. 2015;10(7):1133–44.

    Article  CAS  PubMed  Google Scholar 

  176. Walker B, Powers-Fletcher MV, Schmidt RL, Hanson KE. Cost-effectiveness analysis of multiplex PCR with magnetic resonance detection versus empiric or blood culture-directed therapy for management of suspected candidemia. J Clin Microbiol. 2016;54(3):718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere. 2017;2(1):e00357–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mendpara SD, Ustun C, Kallab AM, Mazzella FM, Bilodeau PA, Jillella AP. Cryptococcal meningitis following autologous stem cell transplantation in a patient with multiple myeloma. Bone Marrow Transplant. 2002;30(4):259–60.

    Article  CAS  PubMed  Google Scholar 

  179. Warkentien T, Crum-Cianflone NF. An update on Cryptococcus among HIV-infected patients. Int J STD AIDS. 2010;21(10):679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sun HY, Wagener MM, Singh N. Cryptococcosis in solid-organ, hematopoietic stem cell, and tissue transplant recipients: evidence-based evolving trends. Clin Infect Dis. 2009;48(11):1566–76.

    Article  PubMed  Google Scholar 

  181. Davis JA, Horn DL, Marr KA, Fishman JA. Central nervous system involvement in cryptococcal infection in individuals after solid organ transplantation or with AIDS. Transpl Infect Dis. 2009;11(5):432–7.

    Article  CAS  PubMed  Google Scholar 

  182. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  Google Scholar 

  183. Singh N, Forrest G. Cryptococcosis in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S192–8.

    Article  PubMed  Google Scholar 

  184. Liao CH, Chi CY, Wang YJ, Tseng SW, Chou CH, Ho CM, et al. Different presentations and outcomes between HIV-infected and HIV-uninfected patients with Cryptococcal meningitis. J Microbiol Immunol Infect. 2012;45(4):296–304.

    Article  PubMed  Google Scholar 

  185. Severo CB, Pinto GL, Sotilli J, Garcia MR, Gazzoni AF, Oliveira FM, et al. Cryptococcuria as manifestation of disseminated cryptococcosis: Staib agar as a selective identification medium. Mycoses. 2011;54(6):e760–6.

    Article  CAS  PubMed  Google Scholar 

  186. Kiertiburanakul S, Sungkanuparph S, Buabut B, Pracharktam R. Cryptococcuria as a manifestation of disseminated cryptococcosis and isolated urinary tract infection. Jpn J Infect Dis. 2004;57(5):203–5.

    PubMed  Google Scholar 

  187. Klein KR, Hall L, Deml SM, Rysavy JM, Wohlfiel SL, Wengenack NL. Identification of Cryptococcus gattii by use of L-canavanine glycine bromothymol blue medium and DNA sequencing. J Clin Microbiol. 2009;47(11):3669–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. McTaggart L, Richardson SE, Seah C, Hoang L, Fothergill A, Zhang SX. Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing. J Clin Microbiol. 2011;49(7):2522–7.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol. 2012;50(7):2472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(8):3050–3.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Enache-Angoulvant A, Chandenier J, Symoens F, Lacube P, Bolognini J, Douchet C, et al. Molecular identification of Cryptococcus neoformans serotypes. J Clin Microbiol. 2007;45(4):1261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bovers M, Diaz MR, Hagen F, Spanjaard L, Duim B, Visser CE, et al. Identification of genotypically diverse Cryptococcus neoformans and Cryptococcus gattii isolates by Luminex xMAP technology. J Clin Microbiol. 2007;45(6):1874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bloomfield N, Gordon MA, Elmendorf DF Jr. Detection of Cryptococcus neoformans antigen in body fluids by latex particle agglutination. Proc Soc Exp Biol Med. 1963;114:64–7.

    Article  CAS  PubMed  Google Scholar 

  194. Scott EN, Muchmore HG, Felton FG. Comparison of enzyme immunoassay and latex agglutination methods for detection of Cryptococcus neoformans antigen. Am J Clin Pathol. 1980;73(6):790–4.

    Article  CAS  PubMed  Google Scholar 

  195. Gade W, Hinnefeld SW, Babcock LS, Gilligan P, Kelly W, Wait K, et al. Comparison of the PREMIER cryptococcal antigen enzyme immunoassay and the latex agglutination assay for detection of cryptococcal antigens. J Clin Microbiol. 1991;29(8):1616–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Temstet A, Roux P, Poirot JL, Ronin O, Dromer F. Evaluation of a monoclonal antibody-based latex agglutination test for diagnosis of cryptococcosis: comparison with two tests using polyclonal antibodies. J Clin Microbiol. 1992;30(10):2544–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Sekhon AS, Garg AK, Kaufman L, Kobayashi GS, Hamir Z, Jalbert M, et al. Evaluation of a commercial enzyme immunoassay for the detection of cryptococcal antigen. Mycoses. 1993;36(1–2):31–4.

    CAS  PubMed  Google Scholar 

  198. Frank UK, Nishimura SL, Li NC, Sugai K, Yajko DM, Hadley WK, et al. Evaluation of an enzyme immunoassay for detection of cryptococcal capsular polysaccharide antigen in serum and cerebrospinal fluid. J Clin Microbiol. 1993;31(1):97–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Jaye DL, Waites KB, Parker B, Bragg SL, Moser SA. Comparison of two rapid latex agglutination tests for detection of cryptococcal capsular polysaccharide. Am J Clin Pathol. 1998;109(5):634–41.

    Article  CAS  PubMed  Google Scholar 

  200. Lindsley MD, Mekha N, Baggett HC, Surinthong Y, Autthateinchai R, Sawatwong P, et al. Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis. Clin Infect Dis. 2011;53(4):321–5.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tanner DC, Weinstein MP, Fedorciw B, Joho KL, Thorpe JJ, Reller L. Comparison of commercial kits for detection of cryptococcal antigen. J Clin Microbiol. 1994;32(7):1680–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Lyman CA, Devi SJ, Nathanson J, Frasch CE, Pizzo PA, Walsh TJ. Detection and quantitation of the glucuronoxylomannan-like polysaccharide antigen from clinical and nonclinical isolates of Trichosporon beigelii and implications for pathogenicity. J Clin Microbiol. 1995;33(1):126–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Taelman H, Bogaerts J, Batungwanayo J, Van de Perre P, Lucas S, Allen S. Failure of the cryptococcal serum antigen test to detect primary pulmonary cryptococcosis in patients infected with human immunodeficiency virus. Clin Infect Dis. 1994;18(1):119–20.

    Article  CAS  PubMed  Google Scholar 

  204. Singh N, Alexander BD, Lortholary O, Dromer F, Gupta KL, John GT, et al. Pulmonary cryptococcosis in solid organ transplant recipients: clinical relevance of serum cryptococcal antigen. Clin Infect Dis. 2008;46(2):e12–8.

    Article  PubMed  Google Scholar 

  205. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53(10):1019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Binnicker MJ, Jespersen DJ, Bestrom JE, Rollins LO. Comparison of four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol. 2012;19(12):1988–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20(1):52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Veron V, Simon S, Blanchet D, Aznar C. Real-time polymerase chain reaction detection of Cryptococcus neoformans and Cryptococcus gattii in human samples. Diagn Microbiol Infect Dis. 2009;65(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  209. Gago S, Esteban C, Valero C, Zaragoza O, Puig de la Bellacasa J, Buitrago MJ. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia. J Clin Microbiol. 2014;52(4):1168–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Bartlett MS, Smith JW. Pneumocystis carinii, an opportunist in immunocompromised patients. Clin Microbiol Rev. 1991;4(2):137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bartlett JA, Hulette C. Central nervous system pneumocystosis in a patient with AIDS. Clin Infect Dis. 1997;25(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  212. Schildgen V, Mai S, Khalfaoui S, Lusebrink J, Pieper M, Tillmann RL, et al. Pneumocystis jirovecii can be productively cultured in differentiated CuFi-8 airway cells. MBio. 2014;5(3):e01186–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Nato F, Contini C, Zamora-Zavala C, Viscardi P, Delia S, Mojon M, et al. Production and characterization of monoclonal antibodies to human Pneumocystis carinii for the diagnosis of P. carinii pneumonia. Eur J Med. 1992;1(3):132–8.

    CAS  PubMed  Google Scholar 

  214. Stager CE, Fraire AE, Kim HS, Estrada R, Davis JR, Greenberg D, et al. Modification of the fungi-fluor and the genetic systems fluorescent antibody methods for detection of Pneumocystis carinii in bronchoalveolar lavage specimens. Arch Pathol Lab Med. 1995;119(2):142–7.

    CAS  PubMed  Google Scholar 

  215. Procop GW, Haddad S, Quinn J, Wilson ML, Henshaw NG, Reller LB, et al. Detection of Pneumocystis jiroveci in respiratory specimens by four staining methods. J Clin Microbiol. 2004;42(7):3333–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fortun J, Navas E, Marti-Belda P, Montilla P, Hermida JM, Perez-Elias MJ, et al. Pneumocystis carinii pneumonia in HIV-infected patients: diagnostic yield of induced sputum and immunofluorescent stain with monoclonal antibodies. Eur Respir J. 1992;5(6):665–9.

    CAS  PubMed  Google Scholar 

  217. Cruciani M, Marcati P, Malena M, Bosco O, Serpelloni G, Mengoli C. Meta-analysis of diagnostic procedures for Pneumocystis carinii pneumonia in HIV-1-infected patients. Eur Respir J. 2002;20(4):982–9.

    Article  CAS  PubMed  Google Scholar 

  218. Silva RM, Bazzo ML, Borges AA. Induced sputum versus bronchoalveolar lavage in the diagnosis of pneumocystis jiroveci pneumonia in human immunodeficiency virus-positive patients. Braz J Infect Dis. 2007;11(6):549–53.

    Article  PubMed  Google Scholar 

  219. Wang Y, Doucette S, Qian Q, Kirby JE. Yield of primary and repeat induced sputum testing for Pneumocystis jiroveci in human immunodeficiency virus-positive and -negative patients. Arch Pathol Lab Med. 2007;131(10):1582–4.

    PubMed  Google Scholar 

  220. Aderaye G, Woldeamanuel Y, Asrat D, Lebbad M, Beser J, Worku A, et al. Evaluation of Toluidine Blue O staining for the diagnosis of Pneumocystis jiroveci in expectorated sputum sample and bronchoalveolar lavage from HIV-infected patients in a tertiary care referral center in Ethiopia. Infection. 2008;36(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  221. Jiancheng W, Minjun H, Yi-jun A, Lan S, Zengzhu G, Jianrong S, et al. Screening Pneumocystis carinii pneumonia in non-HIV-infected immunocompromised patients using polymerase chain reaction. Diagn Microbiol Infect Dis. 2009;64(4):396–401.

    Article  PubMed  CAS  Google Scholar 

  222. McTaggart LR, Wengenack NL, Richardson SE. Validation of the MycAssay Pneumocystis kit for detection of Pneumocystis jirovecii in bronchoalveolar lavage specimens by comparison to a laboratory standard of direct immunofluorescence microscopy, real-time PCR, or conventional PCR. J Clin Microbiol. 2012;50(6):1856–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Damiani C, Le Gal S, Da Costa C, Virmaux M, Nevez G, Totet A. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-beta-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization. J Clin Microbiol. 2013;51(10):3380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Robert-Gangneux F, Belaz S, Revest M, Tattevin P, Jouneau S, Decaux O, et al. Diagnosis of Pneumocystis jirovecii pneumonia in immunocompromised patients by real-time PCR: a 4-year prospective study. J Clin Microbiol. 2014;52(9):3370–6.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Limper AH, Offord KP, Smith TF, Martin WJ 2nd. Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am Rev Respir Dis. 1989;140(5):1204–9.

    Article  CAS  PubMed  Google Scholar 

  226. de Boer MG, Gelinck LB, van Zelst BD, van de Sande WW, Willems LN, van Dissel JT, et al. Beta-D-glucan and S-adenosylmethionine serum levels for the diagnosis of Pneumocystis pneumonia in HIV-negative patients: a prospective study. J Infect. 2011;62(1):93–100.

    Article  PubMed  Google Scholar 

  227. Costa JM, Botterel F, Cabaret O, Foulet F, Cordonnier C, Bretagne S. Association between circulating DNA, serum (1->3)-beta-D-glucan, and pulmonary fungal burden in Pneumocystis pneumonia. Clin Infect Dis. 2012;55(2):e5–8.

    Article  CAS  PubMed  Google Scholar 

  228. Karageorgopoulos DE, Qu JM, Korbila IP, Zhu YG, Vasileiou VA, Falagas ME. Accuracy of beta-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: a meta-analysis. Clin Microbiol Infect. 2013;19(1):39–49.

    Google Scholar 

  229. Sasso M, Chastang-Dumas E, Bastide S, Alonso S, Lechiche C, Bourgeois N, et al. Performances of four real-time PCR assays for diagnosis of Pneumocystis jirovecii pneumonia. J Clin Microbiol. 2016;54(3):625–30.

    Article  PubMed  CAS  Google Scholar 

  230. Montesinos I, Brancart F, Schepers K, Jacobs F, Denis O, Delforge ML. Comparison of 2 real-time PCR assays for diagnosis of Pneumocystis jirovecii pneumonia in human immunodeficiency virus (HIV) and non-HIV immunocompromised patients. Diagn Microbiol Infect Dis. 2015;82(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  231. Montesinos I, Delforge ML, Ajjaham F, Brancart F, Hites M, Jacobs F, et al. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations. Diagn Microbiol Infect Dis. 2017;87(1):32–6.

    Article  CAS  PubMed  Google Scholar 

  232. Hauser PM, Bille J, Lass-Florl C, Geltner C, Feldmesser M, Levi M, et al. Multicenter, prospective clinical evaluation of respiratory samples from subjects at risk for Pneumocystis jirovecii infection by use of a commercial real-time PCR assay. J Clin Microbiol. 2011;49(5):1872–8.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Ribes JA, Limper AH, Espy MJ, Smith TF. PCR detection of Pneumocystis carinii in bronchoalveolar lavage specimens: analysis of sensitivity and specificity. J Clin Microbiol. 1997;35(4):830–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Alanio A, Desoubeaux G, Sarfati C, Hamane S, Bergeron A, Azoulay E, et al. Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clin Microbiol Infect. 2011;17(10):1531–7.

    Article  CAS  PubMed  Google Scholar 

  235. Botterel F, Cabaret O, Foulet F, Cordonnier C, Costa JM, Bretagne S. Clinical significance of quantifying Pneumocystis jirovecii DNA by using real-time PCR in bronchoalveolar lavage fluid from immunocompromised patients. J Clin Microbiol. 2012;50(2):227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. To KK, Wong SC, Xu T, Poon RW, Mok KY, Chan JF, et al. Use of nasopharyngeal aspirate for diagnosis of pneumocystis pneumonia. J Clin Microbiol. 2013;51(5):1570–4.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Guigue N, Alanio A, Menotti J, Castro ND, Hamane S, Peyrony O, et al. Utility of adding Pneumocystis jirovecii DNA detection in nasopharyngeal aspirates in immunocompromised adult patients with febrile pneumonia. Med Mycol. 2015;53(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  238. Kauffman CA. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev. 2007;20(1):115–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Freifeld AG, Wheat LJ, Kaul DR. Histoplasmosis in solid organ transplant recipients: early diagnosis and treatment. Curr Opin Organ Transplant. 2009;14(6):601–5.

    Article  PubMed  Google Scholar 

  240. Jha V, Sree Krishna V, Varma N, Varma S, Chakrabarti A, Kohli HS, et al. Disseminated histoplasmosis 19 years after renal transplantation. Clin Nephrol. 1999;51(6):373–8.

    CAS  PubMed  Google Scholar 

  241. Dufresne SF, Leblanc RE, Zhang SX, Marr KA, Neofytos D. Histoplasmosis and subcutaneous nodules in a kidney transplant recipient: erythema nodosum versus fungal panniculitis. Transpl Infect Dis. 2013;15:E58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kurtin PJ, McKinsey DS, Gupta MR, Driks M. Histoplasmosis in patients with acquired immunodeficiency syndrome. Hematologic and bone marrow manifestations. Am J Clin Pathol. 1990;93(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  243. Padhye AA, Smith G, McLaughlin D, Standard PG, Kaufman L. Comparative evaluation of a chemiluminescent DNA probe and an exoantigen test for rapid identification of Histoplasma capsulatum. J Clin Microbiol. 1992;30(12):3108–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Martagon-Villamil J, Shrestha N, Sholtis M, Isada CM, Hall GS, Bryne T, et al. Identification of Histoplasma capsulatum from culture extracts by real-time PCR. J Clin Microbiol. 2003;41(3):1295–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Assi M, Martin S, Wheat LJ, Hage C, Freifeld A, Avery R, et al. Histoplasmosis after solid organ transplant. Clin Infect Dis. 2013;57(11):1542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Connolly PA, Durkin MM, Lemonte AM, Hackett EJ, Wheat LJ. Detection of histoplasma antigen by a quantitative enzyme immunoassay. Clin Vaccine Immunol. 2007;14(12):1587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wheat LJ, Kohler RB, Tewari RP. Diagnosis of disseminated histoplasmosis by detection of Histoplasma capsulatum antigen in serum and urine specimens. N Engl J Med. 1986;314(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  248. Durkin MM, Connolly PA, Wheat LJ. Comparison of radioimmunoassay and enzyme-linked immunoassay methods for detection of Histoplasma capsulatum var. capsulatum antigen. J Clin Microbiol. 1997;35(9):2252–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Wheat LJ, Connolly P, Durkin M, Book BK, Pescovitz MD. Elimination of false-positive Histoplasma antigenemia caused by human anti-rabbit antibodies in the second-generation Histoplasma antigen assay. Transpl Infect Dis. 2006;8(4):219–21.

    Article  CAS  PubMed  Google Scholar 

  250. Swartzentruber S, LeMonte A, Witt J, Fuller D, Davis T, Hage C, et al. Improved detection of Histoplasma antigenemia following dissociation of immune complexes. Clin Vaccine Immunol. 2009;16(3):320–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Cuellar-Rodriguez J, Avery RK, Lard M, Budev M, Gordon SM, Shrestha NK, et al. Histoplasmosis in solid organ transplant recipients: 10 years of experience at a large transplant center in an endemic area. Clin Infect Dis. 2009;49(5):710–6.

    Article  CAS  PubMed  Google Scholar 

  252. Hage C, Kleiman MB, Wheat LJ. Histoplasmosis in solid organ transplant recipients. Clin Infect Dis. 2010;50(1):122–3; author reply 3–4.

    Article  PubMed  Google Scholar 

  253. Hage CA, Ribes JA, Wengenack NL, Baddour LM, Assi M, McKinsey DS, et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin Infect Dis. 2011;53(5):448–54.

    Article  PubMed  Google Scholar 

  254. Grim SA, Proia L, Miller R, Alhyraba M, Costas-Chavarri A, Oberholzer J, et al. A multicenter study of histoplasmosis and blastomycosis after solid organ transplantation. Transpl Infect Dis. 2012;14(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  255. Theel ES. Reply to “low-positive histoplasma antigen results in the MVista assay should not be assumed to be false positive”. J Clin Microbiol. 2014;52(12):4446.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Hage CA, Wheat LJ. Low-positive histoplasma antigen results in the MVista assay should not be assumed to be false positive. J Clin Microbiol. 2014;52(12):4445.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Theel ES, Ramanan P. Clinical significance of low-positive histoplasma urine antigen results. J Clin Microbiol. 2014;52(9):3444–6.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Hage CA, Davis TE, Fuller D, Egan L, Witt JR 3rd, Wheat LJ, et al. Diagnosis of histoplasmosis by antigen detection in BAL fluid. Chest. 2010;137(3):623–8.

    Article  CAS  PubMed  Google Scholar 

  259. Cloud JL, Bauman SK, Neary BP, Ludwig KG, Ashwood ER. Performance characteristics of a polyclonal enzyme immunoassay for the quantitation of Histoplasma antigen in human urine samples. Am J Clin Pathol. 2007;128(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  260. Wheat LJ. Invalid comparison of the IMMY Histoplasma antigen assay with the “gold standard”. Am J Clin Pathol. 2008;129(4):661–3; author reply 3–5.

    PubMed  Google Scholar 

  261. LeMonte A, Egan L, Connolly P, Durkin M, Wheat LJ. Evaluation of the IMMY ALPHA Histoplasma antigen enzyme immunoassay for diagnosis of histoplasmosis marked by antigenuria. Clin Vaccine Immunol. 2007;14(6):802–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cloud JL, Bauman SK, Pelfrey JM, Ashwood ER. Biased report on the IMMY ALPHA Histoplasma antigen enzyme immunoassay for diagnosis of histoplasmosis. Clin Vaccine Immunol. 2007;14(10):1389–90; author reply 90–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. McKinsey DS, McKinsey JP, Northcutt N, Sarria JC. Interlaboratory discrepancy of antigenuria results in 2 patients with AIDS and histoplasmosis. Diagn Microbiol Infect Dis. 2009;63(1):111–4.

    Article  PubMed  Google Scholar 

  264. Cloud JL, Hanson KE, Bauman SK, Ashwood ER. Extent of interlaboratory discrepancies for polyclonal Histoplasma antigen enzyme immunoassay cannot be determined without a large split-sample study. Diagn Microbiol Infect Dis. 2010;66(2):233–4.

    Article  PubMed  Google Scholar 

  265. McKinsey DS, McKinsey J, Northcutt N, Sarria J. Extent of Interlaboratory discrepancies for polyclonal Histoplasma antigen enzyme imunoassay (EIA) cannot be determined without a large split-sample study (reply). Diagn Microbiol Infect Dis. 2010;66(3):339–40.

    Article  CAS  PubMed  Google Scholar 

  266. Theel ES, Harring JA, Dababneh AS, Rollins LO, Bestrom JE, Jespersen DJ. Reevaluation of commercial reagents for detection of Histoplasma capsulatum antigen in urine. J Clin Microbiol. 2015;53(4):1198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Theel ES, Jespersen DJ, Harring J, Mandrekar J, Binnicker MJ. Evaluation of an enzyme immunoassay for detection of Histoplasma capsulatum antigen from urine specimens. J Clin Microbiol. 2013;51(11):3555–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhang C, Lei GS, Lee CH, Hage CA. Evaluation of two new enzyme immunoassay reagents for diagnosis of histoplasmosis in a cohort of clinically characterized patients. Med Mycol. 2015;53(8):868–73.

    Article  CAS  PubMed  Google Scholar 

  269. Wheat LJ, Hackett E, Durkin M, Connolly P, Petraitiene R, Walsh TJ, et al. Histoplasmosis-associated cross-reactivity in the BioRad Platelia Aspergillus enzyme immunoassay. Clin Vaccine Immunol. 2007;14(5):638–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ranque S, Pelletier R, Michel-Nguyen A, Dromer F. Platelia aspergillus assay for diagnosis of disseminated histoplasmosis. Eur J Clin Microbiol Infect Dis. 2007;26(12):941–3.

    Article  CAS  PubMed  Google Scholar 

  271. Girouard G, Lachance C, Pelletier R. Observations on (1-3)-beta-D-glucan detection as a diagnostic tool in endemic mycosis caused by Histoplasma or Blastomyces. J Med Microbiol. 2007;56(Pt 7):1001–2.

    Article  CAS  PubMed  Google Scholar 

  272. Egan L, Connolly P, Wheat LJ, Fuller D, Dais TE, Knox KS, et al. Histoplasmosis as a cause for a positive Fungitell (1 --> 3)-beta-D-glucan test. Med Mycol. 2008;46(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  273. Bracca A, Tosello ME, Girardini JE, Amigot SL, Gomez C, Serra E. Molecular detection of Histoplasma capsulatum var. capsulatum in human clinical samples. J Clin Microbiol. 2003;41(4):1753–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ohno H, Tanabe K, Umeyama T, Kaneko Y, Yamagoe S, Miyazaki Y. Application of nested PCR for diagnosis of histoplasmosis. J Infect Chemother. 2013;19(5):999–1003.

    Article  CAS  PubMed  Google Scholar 

  275. Simon S, Veron V, Boukhari R, Blanchet D, Aznar C. Detection of Histoplasma capsulatum DNA in human samples by real-time polymerase chain reaction. Diagn Microbiol Infect Dis. 2010;66(3):268–73.

    Article  CAS  PubMed  Google Scholar 

  276. Munoz C, Gomez BL, Tobon A, Arango K, Restrepo A, Correa MM, et al. Validation and clinical application of a molecular method for identification of Histoplasma capsulatum in human specimens in Colombia, South America. Clin Vaccine Immunol. 2010;17(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  277. Qualtieri J, Stratton CW, Head DR, Tang YW. PCR detection of Histoplasma capsulatum var. capsulatum in whole blood of a renal transplant patient with disseminated histoplasmosis. Ann Clin Lab Sci. 2009;39(4):409–12.

    CAS  PubMed  Google Scholar 

  278. Muraosa Y, Toyotome T, Yahiro M, Watanabe A, Shikanai-Yasuda MA, Kamei K. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR. Med Mycol. 2016;54(4):433–8.

    Article  CAS  PubMed  Google Scholar 

  279. Saubolle MA, McKellar PP, Sussland D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  280. Blair JE. Coccidioidomycosis in patients who have undergone transplantation. Ann N Y Acad Sci. 2007;1111:365–76.

    Article  PubMed  Google Scholar 

  281. Galgiani JN, Ampel NM, Blair JE, Catanzaro A, Geertsma F, Hoover SE, et al. Executive summary: 2016 Infectious Diseases Society of America (IDSA) clinical practice guideline for the treatment of coccidioidomycosis. Clin Infect Dis. 2016;63(6):717–22.

    Article  PubMed  Google Scholar 

  282. Mendoza N, Noel P, Blair JE. Diagnosis, treatment, and outcomes of coccidioidomycosis in allogeneic stem cell transplantation. Transpl Infect Dis. 2015;17(3):380–8.

    Article  CAS  PubMed  Google Scholar 

  283. Saubolle MA. Laboratory aspects in the diagnosis of coccidioidomycosis. Ann N Y Acad Sci. 2007;1111:301–14.

    Article  PubMed  Google Scholar 

  284. Brandt ME, Gomez BL, Warnock DW. Histoplasma, Blastomyces, Coccidioides, and other dimorphic fungi causing systemic mycoses. In: Versalovic J, editor. Manual of clinical microbiology. 2. 10th ed. Washington, DC: ASM Press; 2011. p. 1902–18.

    Google Scholar 

  285. Rempe S, Sachdev MS, Bhakta R, Pineda-Roman M, Vaz A, Carlson RW. Coccidioides immitis fungemia: clinical features and survival in 33 adult patients. Heart Lung. 2007;36(1):64–71.

    Article  PubMed  Google Scholar 

  286. Keckich DW, Blair JE, Vikram HR. Coccidioides fungemia in six patients, with a review of the literature. Mycopathologia. 2010;170(2):107–15.

    Article  PubMed  Google Scholar 

  287. Sheff KW, York ER, Driebe EM, Barker BM, Rounsley SD, Waddell VG, et al. Development of a rapid, cost-effective TaqMan Real-Time PCR Assay for identification and differentiation of Coccidioides immitis and Coccidioides posadasii. Med Mycol. 2010;48(3):466–9.

    Article  CAS  PubMed  Google Scholar 

  288. Warnock DW. Coccidioides species as potential agents of bioterrorism. Future Microbiol. 2007;2(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  289. Pappagianis D, Zimmer BL. Serology of coccidioidomycosis. Clin Microbiol Rev. 1990;3(3):247–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kaufman L, Sekhon AS, Moledina N, Jalbert M, Pappagianis D. Comparative evaluation of commercial Premier EIA and microimmunodiffusion and complement fixation tests for Coccidioides immitis antibodies. J Clin Microbiol. 1995;33(3):618–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Martins TB, Jaskowski TD, Mouritsen CL, Hill HR. Comparison of commercially available enzyme immunoassay with traditional serological tests for detection of antibodies to Coccidioides immitis. J Clin Microbiol. 1995;33(4):940–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Zartarian M, Peterson EM, de la Maza LM. Detection of antibodies to Coccidioides immitis by enzyme immunoassay. Am J Clin Pathol. 1997;107(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  293. Lindsley MD, Ahn Y, McCotter O, Gade L, Hurst SF, Brandt ME, et al. Evaluation of the specificity of two enzyme immunoassays for Coccidioidomycosis by using Sera from a region of Endemicity and a region of Nonendemicity. Clin Vaccine Immunol. 2015;22(10):1090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Malo J, Holbrook E, Zangeneh T, Strawter C, Oren E, Robey I, et al. Enhanced antibody detection and diagnosis of Coccidioidomycosis with the MiraVista IgG and IgM detection enzyme immunoassay. J Clin Microbiol. 2017;55(3):893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Durkin M, Connolly P, Kuberski T, Myers R, Kubak BM, Bruckner D, et al. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin Infect Dis. 2008;47(8):e69–73.

    Article  PubMed  Google Scholar 

  296. Durkin M, Estok L, Hospenthal D, Crum-Cianflone N, Swartzentruber S, Hackett E, et al. Detection of Coccidioides antigenemia following dissociation of immune complexes. Clin Vaccine Immunol. 2009;16(10):1453–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Binnicker MJ, Buckwalter SP, Eisberner JJ, Stewart RA, McCullough AE, Wohlfiel SL, et al. Detection of Coccidioides species in clinical specimens by real-time PCR. J Clin Microbiol. 2007;45(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  298. de Aguiar CR, Nogueira Brilhante RS, Gadelha Rocha MF, Araujo Moura FE, Pires de Camargo Z, Costa Sidrim JJ. Rapid diagnosis of coccidioidomycosis by nested PCR assay of sputum. Clin Microbiol Infect. 2007;13(4):449–51.

    Article  Google Scholar 

  299. Vucicevic D, Blair JE, Binnicker MJ, McCullough AE, Kusne S, Vikram HR, et al. The utility of Coccidioides polymerase chain reaction testing in the clinical setting. Mycopathologia. 2010;170(5):345–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Institute of Health grant K24 (AI085118, to K.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Frédéric Dufresne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dufresne, S.F., Marr, K.A., Shoham, S. (2019). Diagnosis of Systemic Fungal Diseases. In: Safdar, A. (eds) Principles and Practice of Transplant Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9034-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9034-4_48

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9032-0

  • Online ISBN: 978-1-4939-9034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics