Skip to main content

Lipase, Phospholipase, and Esterase Biosensors (Review)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1835))

Abstract

A biosensor is a device composed by a biological recognition element and a transducer that delivers selective information about a specific analyte. Technological and scientific advances in the area of biology, bioengineering, catalysts, electrochemistry, nanomaterials, microelectronics, and microfluidics have improved the design and performance of better biosensors. Enzymatic biosensors based on lipases, esterases, and phospholipases are valuable analytical apparatus which have been applied in food industry, oleochemical industry, biodegradable polymers, environmental science, and overall the medical area as diagnostic tools to detect cholesterol and triglyceride levels in blood samples. This chapter reviews recent developments and applications of lipase-, esterase-, and phospholipase-based biosensors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  PubMed  CAS  Google Scholar 

  2. Mohanty SP (2006) Biosensors: a tutorial review. IEEE Potentials 25:35–40

    Article  Google Scholar 

  3. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6:153–159

    Article  Google Scholar 

  4. Biechele P, Busse C, Solle D et al (2015) Sensor systems for bioprocess monitoring. Eng Life Sci 15:469–488

    Article  CAS  Google Scholar 

  5. Ferreira LS, De Souza MB, Trierweiler JO et al (2003) Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comput Chem Eng 27:1165–1173

    Article  CAS  Google Scholar 

  6. Farina D, Zinellu M, Fanari M et al (2017) Development of a biosensor telemetry system for monitoring fermentation in craft breweries. Food Chem 218:479–486

    Article  PubMed  CAS  Google Scholar 

  7. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209

    Article  PubMed  CAS  Google Scholar 

  8. Durrieu C, Chouteau C, Barthet L et al (2004) A bi-enzymatic whole-cell algal biosensor for monitoring waste water pollutants. Anal Lett 37:1589–1599

    Article  CAS  Google Scholar 

  9. Tan L, Schirmer K (2017) Cell culture-based biosensing techniques for detecting toxicity in water. Curr Opin Biotechnol 45:59–68

    Article  PubMed  CAS  Google Scholar 

  10. Rogers K (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541

    Article  CAS  Google Scholar 

  11. Jaffrezic-Renault N (2001) New trends in biosensors for organophosphorus pesticides. Sensors 1:60–74

    Article  Google Scholar 

  12. Rodriguez-Mozaz S, Maria-Pilar M, Lopez de Alda M, Barceló D (2004) Biosensors for environmental applications: Future development trends. Pure Appl Chem 76:723–752

    Article  CAS  Google Scholar 

  13. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  PubMed  CAS  Google Scholar 

  14. Serna C, Zetty A, Ayala A (2009) Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chil J Agric Res 69:270–280

    Google Scholar 

  15. Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639

    Article  CAS  Google Scholar 

  16. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  CAS  Google Scholar 

  17. Poltronieri P, Mezzolla V, Primiceri E, Maruccio G (2014) Biosensors for the detection of food pathogens. Foods 3:511–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tegos GP (2013) Biodefense: trends and challenges in combating biological warfare agents. Virulence 4:740–744

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fei J, Wu Y, Ji X et al (2003) An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode. Anal Sci 19:1259–1263

    Article  PubMed  CAS  Google Scholar 

  20. Pizzariello A, Stredanský M, Stredanská S, Miertuš S (2001) Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 54:763–772

    Article  PubMed  CAS  Google Scholar 

  21. Je-Kyun P, Hee-Jin Y, Kang S et al (1999) Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase. Anal Chim Acta 390:83–91

    Article  Google Scholar 

  22. Murugaiyan SB, Ramasamy R, Gopal N, Kuzhandaivelu V (2014) Biosensors in clinical chemistry: an overview. Adv Biomed Res 3:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Singh R, Mukherjee M, Sumana G et al (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem 197:385–404

    Article  CAS  Google Scholar 

  24. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  PubMed  CAS  Google Scholar 

  25. He Q, Lei H, Luo S et al (2017) Liquid crystal biosensor for detecting ischemia modified albumin. Res Chem Intermed 43:353–360

    Article  CAS  Google Scholar 

  26. Castillo J, Gáspár S, Leth S et al (2004) Biosensors for life quality- design, development and applications. Sensors Actuat B Chem 102:179–194

    Article  CAS  Google Scholar 

  27. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    Article  PubMed  CAS  Google Scholar 

  28. Lopes DB, Fraga LP, Fleuri LF, Macedo GA (2011) Lipase and esterase: to what extent can this classification be applied accurately? Ciência e Tecnol Aliment 31:603–613

    Article  Google Scholar 

  29. Ali Y, Verger R, Abousalham A (2012) Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. In: Sandoval G (ed) Lipases phospholipases methods protocols. Humana Press, Totowa, NJ, pp 31–51

    Chapter  Google Scholar 

  30. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  31. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169

    Article  PubMed  CAS  Google Scholar 

  32. De Maria L, Vind J, Oxenbøll KM et al (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  PubMed  CAS  Google Scholar 

  33. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  34. Market_Reports (2017) Biosensors market by application (POC, home diagnostics, research labs, biodefense, environmental monitoring, Food & Beverages Industry), technology, product (wearable and non-wearable), and geography – global forecast to 2022. In: Markets&Markets. http://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html. Accessed 1 Oct 2017

  35. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  PubMed  Google Scholar 

  36. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84:1–12

    Article  Google Scholar 

  37. Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423

    Article  PubMed  CAS  Google Scholar 

  38. Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors – an overview. Anal Bioanal Chem 372:664–682

    Article  PubMed  CAS  Google Scholar 

  39. Notingher I (2007) Raman spectroscopy cell-based biosensors. Sensors 7:1343–1358

    Article  CAS  Google Scholar 

  40. Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sensors Actuators B Chem 229:110–130

    Article  CAS  Google Scholar 

  41. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol 4:1–9

    Article  Google Scholar 

  42. Vo-Dinh T, Cullum B (2008) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    Article  Google Scholar 

  43. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  PubMed  CAS  Google Scholar 

  44. Pohanka M (2017) The piezoelectric biosensors: principles and applications, a review. Int J Electrochem Sci 12:496–506

    Article  CAS  Google Scholar 

  45. Alloush HM, Lewis RJ, Salisbury VC (2006) Bacterial bioluminescent biosensors: applications in food and environmental monitoring. Anal Lett 39:1517–1526

    Article  CAS  Google Scholar 

  46. Yogeswaran U, Shen-Ming C (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Article  PubMed  CAS  Google Scholar 

  47. Pohanka M, Skládal P (2008) Electrochemical biosensors – principles and applications. Methods 6:57–64

    CAS  Google Scholar 

  48. Dzyadevych SV, Arkhypova VN, Soldatkin AP et al (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29:171–180

    Article  Google Scholar 

  49. Pisoschi AM (2016) Potentiometric biosensors: concept and analytical applications-an editorial. Biochem Anal Biochem 5:19–20

    Google Scholar 

  50. Buck RP, Lindner E (1994) Recommendations for nomenclature of ionselective electrodes. Pure Appl Chem 66:2527–2536

    Article  CAS  Google Scholar 

  51. Khanna VK (2007) Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistor. Ind J Pure Appl Phys 45:345–353

    CAS  Google Scholar 

  52. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20:1113–1126

    Article  PubMed  CAS  Google Scholar 

  53. Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97:219–226

    Article  PubMed  CAS  Google Scholar 

  54. Grieshaber D, Mackenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors -sensor principles and architectures. Sensors 8:1400–1458

    Article  PubMed  CAS  Google Scholar 

  55. González-Rumayor V, García-Iglesias E, Ruíz-Gálan O, Gago-Cabezas L (2005) Aplicaciones de biosensores en la industria agroalimentaria. CEIM Dir. Gen. Universidades e Investig. Colección Vigil, Tecnológica, Madrid

    Google Scholar 

  56. Weetall HH (1996) Biosensor technology What? Where? When? and Why? Biosens Bioelectron 11:1–4

    Article  Google Scholar 

  57. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  PubMed  CAS  Google Scholar 

  58. Mulchandani A (1998) Principles of enzyme biosensors. Enzyme Microb Biosens 6:3–14

    Article  CAS  Google Scholar 

  59. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4:425–432

    Article  PubMed  Google Scholar 

  60. Kissinger PT (2005) Biosensors – a perspective. Biosens Bioelectron 20:2512–2516

    Article  PubMed  CAS  Google Scholar 

  61. Yakovleva M, Bhand S, Danielsson B (2013) The enzyme thermistor-A realistic biosensor concept. A critical review. Anal Chim Acta 766:1–12

    Article  PubMed  CAS  Google Scholar 

  62. Vijayalakshmi A, Tarunashree Y, Baruwati B et al (2008) Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. Biosens Bioelectron 23:1708–1714

    Article  PubMed  CAS  Google Scholar 

  63. Dzyadevych SV, Soldatkin AP, Korpan YI et al (2003) Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal Bioanal Chem 377:496–506

    Article  PubMed  CAS  Google Scholar 

  64. Dzyadevych SV, Soldatkin AP, El’skaya AV et al (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568:248–258

    Article  PubMed  CAS  Google Scholar 

  65. Choi MMF (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148:107–132

    Article  CAS  Google Scholar 

  66. Das P, Das M, Chinnadayyala SR et al (2016) Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 79:386–397

    Article  PubMed  CAS  Google Scholar 

  67. Zhao Z, Jiang H (2010) Enzyme-based electrochemical biosensors. In: Biosensors. INTECH, pp 1–22

    Google Scholar 

  68. Dsouza SF (1999) Immobilized enzymes in bioprocess. Curr Sci India 77:69–79

    CAS  Google Scholar 

  69. Arya SK, Datta M, Malhotra BD (2008) Recent advances in cholesterol biosensor. Biosens Bioelectron 23:1083–1100

    Article  PubMed  CAS  Google Scholar 

  70. Silva Nunes G, Marty J-L (2006) Immobilization of enzymes on electrodes. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, NJ, pp 239–250

    Chapter  Google Scholar 

  71. Zhang S, Wright G, Yang Y (2000) Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron 15:273–282

    Article  PubMed  CAS  Google Scholar 

  72. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  PubMed  CAS  Google Scholar 

  73. Jianrong C, Yuqing M, Nongyue H et al (2004) Nanotechnology and biosensors. Biotechnol Adv 22:505–518

    Article  PubMed  CAS  Google Scholar 

  74. Li H, Liu S, Dai Z et al (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Article  PubMed  CAS  Google Scholar 

  75. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123:1195–1205

    Article  CAS  Google Scholar 

  76. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC - Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  77. Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    Article  PubMed  CAS  Google Scholar 

  78. Kuila T, Bose S, Khanra P et al (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  PubMed  CAS  Google Scholar 

  79. Georgia-Paraskevi N, Siontorou C, Nikolelis D et al (2017) Biosensors based on lipid modified graphene microelectrodes. C 3:9

    Google Scholar 

  80. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083

    Article  CAS  Google Scholar 

  81. Saxena U, Das AB (2016) Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosens Bioelectron 75:196–205

    Article  PubMed  CAS  Google Scholar 

  82. Casas-Godoy L, Duquesne S, Bordes F et al (2012) Lipases: an overview. In: Sandoval G (ed) Lipases phospholipases methods protocols. Humana Press, Totowa, NJ, pp 3–30

    Chapter  Google Scholar 

  83. Petry S, Baringhaus K, Schoenafinger K et al (2004) High-throughput screening of hormone-sensitive lipase and subsequent computer-assisted compound optimization. In: Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Wiley-VCH, Weinheim, pp 121–137

    Google Scholar 

  84. Deeth H, Touch V (2000) Methods for detecting lipase activity in milk and milk products. Aust J Dairy Technol 55:153–168

    CAS  Google Scholar 

  85. Wahler D, Jean-Louis R (2001) Novel methods for biocatalyst screening. Curr Opin Chem Biol 5:152–158

    Article  PubMed  CAS  Google Scholar 

  86. Starodub NF (2006) Biosensors for the evaluation of lipase activity. J Mol Catal B Enzym 40:155–160

    Article  CAS  Google Scholar 

  87. Ge K, Liu D, Chen K, Nie L, Yao S (1995) Assay of pancreatic lipase with the surface acoustic wave sensor system. Anal Biochem 226:207–211

    Article  PubMed  CAS  Google Scholar 

  88. Wei W, Wang R, Nie L, Yao S (1997) Rapid determination of dimethoate with a surface acoustic wave impedance sensor system. Anal Lett 30:2641–2653

    Article  CAS  Google Scholar 

  89. Ben Rejeb I, Arduini F, Amine A et al (2007) Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Anal Chim Acta 594:1–8

    Article  PubMed  CAS  Google Scholar 

  90. Okazaki M, Komoriya N, Tomoike H et al (1998) Quantitative detection method of triglycerides in serum lipoproteins and serum-free glycerol by high-performance liquid chromatography. J Chromatogr B Biomed Appl 709:179–187

    Article  CAS  Google Scholar 

  91. Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9:69–85

    Article  CAS  Google Scholar 

  92. Wladyslaw T, Pijanowska D (2007) Microsystems in biochemical diagnosis. Biocybern Biomed Eng 27:33–43

    Google Scholar 

  93. Pijanowska DG, Baraniecka A, Wiater R et al (2001) The pH-detection of triglycerides. Sensors Actuators B Chem 78:263–266

    Article  CAS  Google Scholar 

  94. Reddy RRK, Chadha A, Bhattacharya E (2001) Porous silicon based potentiometric triglyceride biosensor. Biosens Bioelectron 16:313–317

    Article  PubMed  CAS  Google Scholar 

  95. Laurinavicius V, Kurtinaitiene B, Gureviciene V et al (1996) Amperometric glyceride biosensor. Anal Chim Acta 330:159–166

    Article  CAS  Google Scholar 

  96. Wu LC, Cheng CM (2005) Flow-injection enzymatic analysis for glycerol and triacylglycerol. Anal Biochem 346:234–240

    Article  PubMed  CAS  Google Scholar 

  97. Narang J, Minakshi BM, Pundir CS (2010) Determination of serum triglyceride by enzyme electrode using covalently immobilized enzyme on egg shell membrane. Int J Biol Macromol 47:691–695

    Article  PubMed  CAS  Google Scholar 

  98. Dhand C, Solanki PR, Datta M, Malhotra BD (2010) Polyaniline/single-walled carbon nanotubes composite based triglyceride biosensor. Electroanalysis 22:2683–2693

    Article  CAS  Google Scholar 

  99. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17–24

    Article  Google Scholar 

  100. Ganjali MR, Faridbod F, Nasli-Esfahani E et al (2010) FFT continuous cyclic voltammetry triglyceride dual enzyme biosensor based on MWCNTs-CeO2 nanoparticles. Int J Electrochem Sci 5:1422–1433

    CAS  Google Scholar 

  101. Hsu SY, Bartling B, Wang C et al (2010) Enzymatic determination of diglyceride using an iridium nano-particle based single use, disposable biosensor. Sensors 10:5758–5773

    Article  PubMed  CAS  Google Scholar 

  102. Fernandez RE, Hareesh V, Bhattacharya E, Chadha A (2009) Comparison of a potentiometric and a micromechanical triglyceride biosensor. Biosens Bioelectron 24:1276–1280

    Article  PubMed  CAS  Google Scholar 

  103. Charpentier L, El Murr N (1995) Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Anal Chim Acta 318:89–93

    Article  CAS  Google Scholar 

  104. Pliego J, Mateos JC, Rodriguez J et al (2015) Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors 15:2798–2811

    Article  PubMed  CAS  Google Scholar 

  105. Huang XR, Li YZ, Yang GL, Liu LL (2001) A novel method for fabrication of a glass-electrode-based lipase sensor. Chinese Chem Lett 12:453–456

    CAS  Google Scholar 

  106. Minakshi, Pundir CS (2008) Construction of an amperometric enzymic sensor for triglyceride determination. Sensors Actuators B Chem 133:251–255

    Article  CAS  Google Scholar 

  107. Dhand C, Solanki PR, Sood KN et al (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486

    Article  CAS  Google Scholar 

  108. Solanki PR, Dhand C, Kaushik A et al (2009) Nanostructured cerium oxide film for triglyceride sensor. Sensors Actuators B Chem 141:551–556

    Article  CAS  Google Scholar 

  109. Pundir CS, Sandeep Singh B, Narang J (2010) Construction of an amperometric triglyceride biosensor using PVA membrane bound enzymes. Clin Biochem 43:467–472

    Article  PubMed  CAS  Google Scholar 

  110. Phongphut A, Sriprachuabwong C, Wisitsoraat A et al (2013) A disposable amperometric biosensor based on inkjet-printed au/PEDOT-PSS nanocomposite for triglyceride determination. Sensors Actuators B Chem 178:501–507

    Article  CAS  Google Scholar 

  111. Jeong CY, Han YD, Yoon JH, Yoon HC (2014) Bioelectrocatalytic sensor for triglycerides in human skin sebum based on enzymatic cascade reaction of lipase, glycerol kinase and glycerophosphate oxidase. J Biotechnol 175:7–14

    Article  PubMed  CAS  Google Scholar 

  112. Yücel A, Özcan HM, Sağıroğlu A (2016) A new multienzyme-type biosensor for triglyceride determination. Prep Biochem Biotechnol 46:78–84

    Article  PubMed  CAS  Google Scholar 

  113. Solanki S, Pandey CM, Soni A et al (2016) An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. Microchim Acta 183:167–176

    Article  CAS  Google Scholar 

  114. Pundir CS, Aggarwal V (2017) Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase. Anal Biochem 517:56–63

    Article  PubMed  CAS  Google Scholar 

  115. Narwal V, Pundir CS (2017) An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzym Microb Technol 100:11–16

    Article  CAS  Google Scholar 

  116. Bodade A, Taiwade M, Chaudhari G (2017) Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. J Appl Pharm Res 5:30–39

    Google Scholar 

  117. Zhu M, Yang Z, Cheng Y et al (2017) Development of triglyceride biosensor based on the polydopamine-gold nanocomposite. Int J Electrochem Sci 12:6863–6873

    Article  CAS  Google Scholar 

  118. Mondal K, Ali MA, Singh C et al (2017) Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors Actuators B Chem 246:202–214

    Article  CAS  Google Scholar 

  119. Xu T, Chi B, Chu M et al (2018) Hemocompatible ɛ-polylysine-heparin microparticles: a platform for detecting triglycerides in whole blood. Biosens Bioelectron 99:571–577

    Article  PubMed  CAS  Google Scholar 

  120. Chen Y, Xiao L, Liu Y et al (2014) A lipase-based electrochemical biosensor for target DNA. Microchim Acta 181:615–621

    Article  CAS  Google Scholar 

  121. Reddy KG, Madhavi G, Swamy BEK et al (2013) Electrochemical investigations of lipase enzyme activity inhibition by methyl parathion pesticide: voltammetric studies. J Mol Liq 180:26–30

    Article  CAS  Google Scholar 

  122. Situmorang M, Alexander PW, Hibbert DB (1999) Flow injection potentiometry for enzymatic assay of cholesterol with a tungsten electrode sensor. Talanta 49:639–649

    Article  PubMed  CAS  Google Scholar 

  123. Foster R, Cassidy J, O’Donoghue E (2000) Electrochemical diagnostic strip device for total cholesterol and its subfractions. Electroanalysis 12:716–721

    Article  CAS  Google Scholar 

  124. Malik V, Pundir C (2002) Determination of total cholesterol in serum by cholesterol esterase and cholesterol oxidase immobilized and co-immobilized on to arylamine glass. Pakistan J Biol Sci 35:191–197

    CAS  Google Scholar 

  125. Martin SP, Lamb DJ, Lynch JM, Reddy SM (2003) Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor. Anal Chim Acta 487:91–100

    Article  CAS  Google Scholar 

  126. Suman, Pundir CS (2003) Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase onto alkylamine glass beads for measurement of total cholesterol in serum. Curr Appl Phys 3:129–133

    Article  Google Scholar 

  127. Basu AK, Chattopadhyay P, Roychoudhuri U, Chakraborty R (2007) Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry 70:375–379

    Article  PubMed  CAS  Google Scholar 

  128. Hooda V, Gahlaut A, Kumar H, Pundir CS (2009) Biosensor based on enzyme coupled PVC reaction cell for electrochemical measurement of serum total cholesterol. Sensors Actuators B Chem 136:235–241

    Article  CAS  Google Scholar 

  129. Wei-Chung S, Mei-Chun Y, Meng-Shan L (2009) Development of disposable lipid biosensor for the determination of total cholesterol. Biosens Bioelectron 24:1679–1684

    Article  CAS  Google Scholar 

  130. Yoneyama Y, Yonemori Y, Murata M et al (2009) Wireless biosensor system for real-time cholesterol monitoring in fish “Nile tilapia”. Talanta 80:909–915

    Article  PubMed  CAS  Google Scholar 

  131. Safavi A, Farjami F (2011) Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552

    Article  PubMed  CAS  Google Scholar 

  132. Fang C, He J, Chen Z (2011) A disposable amperometric biosensor for determining total cholesterol in whole blood. Sensors Actuators B Chem 155:545–550

    Article  CAS  Google Scholar 

  133. Vidal JC, Garcia-Ruiz E, Espuelas J et al (2003) Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determination of cholesterol. Anal Bioanal Chem 377:273–280

    Article  PubMed  CAS  Google Scholar 

  134. Singh S, Chaubey A, Malhotra BD (2004) Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Anal Chim Acta 502:229–234

    Article  CAS  Google Scholar 

  135. Salinas E, Rivero V, Torriero AAJ et al (2006) Multienzymatic-rotating biosensor for total cholesterol determination in a FIA system. Talanta 70:244–250

    Article  PubMed  CAS  Google Scholar 

  136. Singh S, Solanki PR, Pandey MK, Malhotra BD (2006) Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sensors Actuators B Chem 115:534–541

    Article  CAS  Google Scholar 

  137. Singh S, Solanski PR, Pandey M, Malhotra B (2006) Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal Chim Acta 568:126–132

    Article  PubMed  CAS  Google Scholar 

  138. Aravamudhan S, Ramgir NS, Bhansali S (2007) Electrochemical biosensor for targeted detection in blood using aligned Au nanowires. Sensors Actuators B Chem 127:29–35

    Article  CAS  Google Scholar 

  139. Singh S, Singhal R, Malhotra BD (2007) Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor. Anal Chim Acta 582:335–343

    Article  PubMed  CAS  Google Scholar 

  140. Dey RS, Raj CR (2010) Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J Phys Chem C 114:21427–21433

    Article  CAS  Google Scholar 

  141. Ahmadalinezhad A, Chen A (2011) High-performance electrochemical biosensor for the detection of total cholesterol. Biosens Bioelectron 26:4508–4513

    Article  PubMed  CAS  Google Scholar 

  142. Manjunatha R, Shivappa Suresh G, Savio Melo J et al (2012) An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 99:302–309

    Article  PubMed  CAS  Google Scholar 

  143. Singh K, Chauhan R, Solanki PR, Basu T (2013) Development of impedimetric biosensor for total cholesterol estimation based on polypyrrole and platinum nanoparticle multi layer nanocomposite. Int J Org Chem 3:262–274

    Article  CAS  Google Scholar 

  144. Feng B, Liu Y (2015) A disposable cholesterol enzyme biosensor based on ferrocene-capped gold nanoparticle modified screen-printed carbon electrode. Int J Electrochem Sci 10:4770–4778

    CAS  Google Scholar 

  145. Dhyani H, Ali MA, Pal SP et al (2015) Mediator-free biosensor using chitosan capped CdS quantum dots for detection of total cholesterol. RSC Adv 5:45928–45934

    Article  CAS  Google Scholar 

  146. Aggarwal V, Malik J, Prashant A et al (2016) Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase. Anal Biochem 500:6–11

    Article  PubMed  CAS  Google Scholar 

  147. Lata K, Dhull V, Hooda V (2016) Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in serum. Biochem Res Int 2016:1–11

    Article  CAS  Google Scholar 

  148. Huang Y, Cui L, Xue Y et al (2017) Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mater Sci Eng C 77:1–8

    Article  CAS  Google Scholar 

  149. Rahman MM, Xiao-Bo L, Kim J et al (2014) A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors Actuators B Chem 202:536–542

    Article  CAS  Google Scholar 

  150. Munir S, Khan M, Soo-Young P (2015) Bienzyme liquid-crystal-based cholesterol biosensor. Sensors Actuators B Chem 220:508–515

    Article  CAS  Google Scholar 

  151. Xu S, Wang Y, Zhou D et al (2016) A novel chemiluminescence sensor for sensitive detection of cholesterol based on the peroxidase-like activity of copper nanoclusters. Sci Rep 6:1–7

    Article  CAS  Google Scholar 

  152. Xu L, Hou Y, Zhang M et al (2016) A novel electrochemical biosensor for detection of cholesterol. Russ J Electrochem 52:239–244

    Article  CAS  Google Scholar 

  153. Tang S, Zhao Q, Tu Y (2016) A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode. Sensors Actuators B Chem 237:416–422

    Article  CAS  Google Scholar 

  154. Dervisevic M, Çevik E, Şenel M et al (2016) Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J Electroanal Chem 776:18–24

    Article  CAS  Google Scholar 

  155. Umar A, Ahmad R, Kumar R et al (2016) Bi2O2CO3 nanoplates: fabrication and characterization of highly sensitive and selective cholesterol biosensor. J Alloys Compd 683:433–438

    Article  CAS  Google Scholar 

  156. Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensors Actuators B Chem 233:100–106

    Article  CAS  Google Scholar 

  157. Xu Z, Cheng X, Tan J, Gan X (2016) Fabrication of multiwalled carbon nanotube – polyaniline/platinum nanocomposite films toward improved performance for a cholesterol amperometric biosensor. Biotechnol Appl Biochem 63:757–764

    Article  PubMed  CAS  Google Scholar 

  158. Huang J, Liu Y, Zhang P et al (2017) A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose. Biochem Eng J 125:123–128

    Article  CAS  Google Scholar 

  159. Martín M, Salazar P, Álvarez R et al (2017) Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition. Sensors Actuators B Chem 240:37–45

    Article  CAS  Google Scholar 

  160. Hassanzadeh J, Khataee A (2018) Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta 178:992–1000

    Article  PubMed  CAS  Google Scholar 

  161. Hok-Hay S, van der Meer IM, Hofman A et al (2005) Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam study. Circulation 111:570–575

    Article  CAS  Google Scholar 

  162. Vrbova E, Kroupovs I, Novotna Z (1993) Determination of phospholipase D activity with a choline biosensor. Anal Chim Acta 280:43–48

    Article  CAS  Google Scholar 

  163. Marazuela MD, Moreno-Bondi MC (1998) Determination of choline-containing phospholipids in serum with a fiber-optic biosensor. Anal Chim Acta 374:19–29

    Article  CAS  Google Scholar 

  164. Razola SS, Pochet S, Grosfils K, Kauffmann JM (2002) Amperometric determination of choline released from rat submandibular gland acinar cells using a choline oxidase biosensor. Biosens Bioelectron 18:185–191

    Article  Google Scholar 

  165. Yang M, Yang Y, Yang Y et al (2004) Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Anal Biochem 334:127–134

    Article  PubMed  CAS  Google Scholar 

  166. Pati S, Palmisano F, Quinto M, Zambonin PG (2005) Quantitation of major choline fractions in milk and dietary supplements using a phospholipase D bioreactor coupled to a choline amperometric biosensor. J Agric Food Chem 53:6974–6979

    Article  PubMed  CAS  Google Scholar 

  167. End P, Gout I, Fry MJ et al (1993) A biosensor approach to probe the structure and function of the p85a subunit of the phosphatidylinositol 3-kinase complex. J Biol Chem 268:10066–10075

    PubMed  CAS  Google Scholar 

  168. Mirsky VM, Mass M, Krause C, Wolfbeis OS (1998) Capacitive approach to determine phospholipase A(2) activity toward artificial and natural substrates. Anal Chem 70:3674–3678

    Article  PubMed  CAS  Google Scholar 

  169. Uesugi Y, Arima J, Iwabuchi M, Hatanaka T (2007) Sensor of phospholipids in Streptomyces phospholipase D. FEBS J 274:2672–2681

    Article  PubMed  CAS  Google Scholar 

  170. Wei-Yin L, Chung-Chiun L, Wang C (2008) Detection of lipoprotein-associated phospholipase A2 using a nano-iridium particle catalyst-based biosensor. Sensors Actuators B Chem 134:993–999

    Article  CAS  Google Scholar 

  171. Hartono D, Lai SL, Yang KL, Yung LYL (2009) A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors. Biosens Bioelectron 24:2289–2293

    Article  PubMed  CAS  Google Scholar 

  172. Aili D, Mager M, Roche D, Stevens MM (2011) Hybrid nanoparticle-liposome detection of phospholipase activity. Nano Lett 11:1401–1405

    Article  PubMed  CAS  Google Scholar 

  173. Wichmann O, Gelb MH, Schultz C (2007) Probing phospholipase A2 with fluorescent phospholipid substrates. Chem Bio Chem 8:1555–1569

    Article  PubMed  CAS  Google Scholar 

  174. Nishioka T, Frohman MA, Matsuda M, Kiyokawa E (2010) Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Forster Resonance Energy Transfer (FRET) biosensor. J Biol Chem 285:35979–35987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Mirsky VM, Krause C, Heckmann KD (1996) Capacitive sensor for lipolytic enzymes. Thin Solid Films 284–285:939–941

    Article  Google Scholar 

  176. Rauch P, Ferri EN, Girotti S et al (1997) A chemiluminescent flow sensing device for determination of choline and phospholipase D activity in biological samples. Anal Biochem 245:133–140

    Article  PubMed  CAS  Google Scholar 

  177. Panfili G, Manzi P, Compagnone D et al (2000) Rapid assay of choline in foods using microwave hydrolysis and a choline biosensor. J Agric Food Chem 48:3403–3407

    Article  PubMed  CAS  Google Scholar 

  178. Pati S, Quinto M, Palmisano F, Zambonin PG (2004) Determination of choline in milk, milk powder, and soy lecithin hydrolysates by flow injection analysis and amperometric detection with a choline oxidase based biosensor. J Agric Food Chem 52:4638–4642

    Article  PubMed  CAS  Google Scholar 

  179. Song Z, Huang JD, Wu BY et al (2006) Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sensors Actuators B Chem 115:626–633

    Article  CAS  Google Scholar 

  180. Shi H, Yang Y, Huang J et al (2006) Amperometric choline biosensors prepared by layer-by-layer deposition of choline oxidase on the Prussian blue-modified platinum electrode. Talanta 70:852–858

    Article  PubMed  CAS  Google Scholar 

  181. Liu SJ, Wen Q, Tang LJ, Jiang JH (2012) Phospholipid-graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity. Anal Chem 84:5944–5950

    Article  PubMed  CAS  Google Scholar 

  182. Pal S, Sharma MK, Danielsson B et al (2014) A miniaturized nanobiosensor for choline analysis. Biosens Bioelectron 54:558–564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Herrera-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sandoval, G., Herrera-López, E.J. (2018). Lipase, Phospholipase, and Esterase Biosensors (Review). In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics