Skip to main content

Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics

  • Protocol
  • First Online:
Functional Genomics in Medicago truncatula

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1822))

Abstract

This decade introduced “omics” approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized “omics” strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these “omics” data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esau K (1965) Plant Anatomy, 2nd edn. John Wiley, New York

    Google Scholar 

  2. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  3. Pacheco-Villalobos D, Hardtke CS (2012) Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philos Trans R Soc Lond Ser B Biol Sci 367(1595):1552–1558. https://doi.org/10.1098/rstb.2011.0237

    Article  CAS  Google Scholar 

  4. Rellán-Álvarez R, Lobet G, Dinneny JR (2016) Environmental control of root system biology. Annu Rev Plant Biol 67:619–642

    Article  CAS  PubMed  Google Scholar 

  5. Gruber BD, Giehl RF, Friedel S et al (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163(1):161–179. https://doi.org/10.1104/pp.113.218453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Duan L, Dietrich D, Ng CH et al (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25(1):324–341. https://doi.org/10.1105/tpc.112.107227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roychoudhry S, Del Bianco M, Kieffer M et al (2013) Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr Biol 23(15):1497–1504. https://doi.org/10.1016/j.cub.2013.06.034

    Article  PubMed  CAS  Google Scholar 

  8. Tian H, De Smet I, Ding Z (2014) Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19(7):426–431. https://doi.org/10.1016/j.tplants.2014.01.007

    Article  PubMed  CAS  Google Scholar 

  9. Groot EP, Doyle JA, Nichol SA et al (2004) Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms. Int J Plant Sci 165:97–105

    Article  Google Scholar 

  10. Rost TL (2011) The organization of roots of dicotyledonous plants and the positions of control points. Ann Bot 107(7):1213–1222. https://doi.org/10.1093/aob/mcq229

    Article  PubMed  Google Scholar 

  11. Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89(6):908–920. https://doi.org/10.3732/ajb.89.6.908

    Article  PubMed  Google Scholar 

  12. Chapman K, Groot EP, Nichol SA et al (2002) Primary root growth and the pattern of root apical meristem organization are coupled. J Plant Growth Regul 21(4):287–295

    Article  CAS  Google Scholar 

  13. Hamamoto L, Hawes MC, Rost TL (2006) The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann Bot 97(5):917–923

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moreno-Risueno MA, Van Norman JM, Moreno A et al (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329(5997):1306–1311. https://doi.org/10.1126/science.1191937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Marhavý P, Montesinos JC, Abuzeineh A et al (2016) Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes Dev 30(4):471–483. https://doi.org/10.1101/gad.276964.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Casimiro I, Marchant A, Bhalerao RP et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13(4):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lucas M, Kenobi K, von Wangenheim D et al (2013) Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci U S A 110(13):5229–5234. https://doi.org/10.1073/pnas.1210807110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124(1):33–44

    PubMed  CAS  Google Scholar 

  19. Oláh B, Brière C, Bécard G (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44(2):195–207

    Article  CAS  PubMed  Google Scholar 

  20. Jung JK, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186. https://doi.org/10.3389/fpls.2013.00186 eCollection 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wachsman G, Sparks EE, Benfey PN (2015) Genes and networks regulating root anatomy and architecture. New Phytol 208(1):26–38

    Article  CAS  PubMed  Google Scholar 

  22. Slovak R, Ogura T, Satbhai SB et al (2016) Genetic control of root growth: from genes to networks. Ann Bot 117(1):9–24

    Article  CAS  PubMed  Google Scholar 

  23. Khan GA, Declerck M, Sorin C et al (2011) MicroRNAs as regulators of root development and architecture. Plant Mol Biol 77(1–2):47–58. https://doi.org/10.1007/s11103-011-9793-x Epub 2011 May 24

    Article  PubMed  CAS  Google Scholar 

  24. Couzigou JM, Combier JP (2016) Plant microRNAs: key regulators of root architecture and biotic interactions. New Phytol 212(1):22–35

    Article  CAS  PubMed  Google Scholar 

  25. Samad AFA, Sajad M, Nazaruddin N et al (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  26. Delay C, Imin N, Djordjevic MA (2013) Regulation of Arabidopsis root development by small signaling peptides. Front Plant Sci 4:352

    Article  PubMed  PubMed Central  Google Scholar 

  27. Araya T, von Wirén N, Takahashi H (2016) CLE peptide signaling and nitrogen interactions in plant root development. Plant Mol Biol 91(6):607–615. https://doi.org/10.1007/s11103-016-0472-9 Epub 2016 Mar 19

    Article  PubMed  CAS  Google Scholar 

  28. Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small-peptide signals that control root nodule number, development, and symbiosis. J Exp Bot 66(17):5171–5181

    Article  CAS  PubMed  Google Scholar 

  29. Hastwell AH, de Bang TC, Gresshoff PM et al (2017) CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis. Sci Rep 7(1):9384. https://doi.org/10.1038/s41598-017-09296-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nakayama T, Shinohara H, Tanaka M et al (2017) A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 355(6322):284–286. https://doi.org/10.1126/science.aai9057

    Article  PubMed  CAS  Google Scholar 

  31. Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66(4):1113–1121

    Article  CAS  PubMed  Google Scholar 

  32. Osipova M, Dolgikh E, Lutova L (2011) Peculiarities of meristem-specific WOX5 gene expression during nodule organogenesis in legumes. Russ J Dev Biol 42:226–237

    Article  CAS  Google Scholar 

  33. Franssen HJ, Xiao TT, Kulikova O et al (2015) Root developmental programs shape the Medicago truncatula nodule meristem. Development 142(17):2941–2950. https://doi.org/10.1242/dev.120774

    Article  PubMed  CAS  Google Scholar 

  34. Yanai O, Shani E, Dolezal K (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15(17):1566–1571

    Article  CAS  PubMed  Google Scholar 

  35. Bazin J, Khan GA, Combier JP et al (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74(6):920–934. https://doi.org/10.1111/tpj.12178

    Article  PubMed  CAS  Google Scholar 

  36. Wang JW, Wang LJ, Mao YB et al (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orman-Ligeza B, Parizot B, Gantet PP et al (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18(8):459–467. https://doi.org/10.1016/j.tplants.2013.04.010

    Article  PubMed  CAS  Google Scholar 

  38. Ubeda-Tomás S, Federici F, Casimiro I et al (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199. https://doi.org/10.1016/j.cub.2009.06.023 Epub 2009 Jul 2

    Article  PubMed  CAS  Google Scholar 

  39. Li D, Su Z, Dong J et al (2009) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10:517. https://doi.org/10.1186/1471-2164-10-517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liang Y, Harris JM (2005) Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. Am J Bot 92(10):1675–1683. https://doi.org/10.3732/ajb.92.10.1675

    Article  PubMed  CAS  Google Scholar 

  41. de Zélicourt A, Diet A, Marion J et al (2012) Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J 70(2):220–230. https://doi.org/10.1111/j.1365-313X.2011.04859.x Epub 2012 Jan 10

    Article  PubMed  CAS  Google Scholar 

  42. Duan L, Sebastian J, Dinneny JR (2015) Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 1242:105–122. https://doi.org/10.1007/978-1-4939-1902-4_10

    Article  PubMed  CAS  Google Scholar 

  43. Gao R, Austin RS, Amyot L et al (2016) Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genomics 17:658. https://doi.org/10.1186/s12864–016–3014-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boualem A, Laporte P, Jovanovic M et al (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54(5):876–887

    Article  CAS  PubMed  Google Scholar 

  45. Bustos-Sanmamed P, Mao G, Deng Y et al (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40(12):1208–1220

    Article  CAS  Google Scholar 

  46. Mao G, Turner M, Yu O et al (2013) miR393 and miR164 influence indeterminate but not determinate nodule development. Plant Signal Behav 8(10):e26753. https://doi.org/10.4161/psb.26753

    Article  PubMed Central  CAS  Google Scholar 

  47. Ng JL, Hassan S, Truong TT et al (2015) Flavonoids and Auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula Cytokinin perception mutant cre1. Plant Cell 27(8):2210–2226. https://doi.org/10.1105/tpc.15.00231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18(10):2680–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murray JD, Karas BJ, Sato S et al (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315(5808):101–104

    Article  CAS  PubMed  Google Scholar 

  50. Kuroha T, Tokunaga H, Kojima M et al (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21(10):3152–3169. https://doi.org/10.1105/tpc.109.068676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Heck C, Kuhn H, Heidt S et al (2016) Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr Biol 26(20):2770–2778. https://doi.org/10.1016/j.cub.2016.07.059 Epub 2016 Sep 15

    Article  PubMed  CAS  Google Scholar 

  52. Kim H, Park PJ, Hwang HJ et al (2006) Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Biosci Biotechnol Biochem 70(4):768–773

    Article  CAS  PubMed  Google Scholar 

  53. Roberts I, Smith S, Stes E et al (2016) CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot 67(16):4889–4899. https://doi.org/10.1093/jxb/erw231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Imin N, Mohd-Radzman NA, Ogilvie HA et al (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64(17):5395–5409. https://doi.org/10.1093/jxb/ert369

    Article  PubMed  CAS  Google Scholar 

  55. Mohd-Radzman NA, Laffont C, Ivanovici A et al (2016) Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol 171(4):2536–2548. https://doi.org/10.1104/pp.16.00113 Epub 2016 Jun 24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Saur IM, Oakes M, Djordjevic MA et al (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytol 190(4):865–874. https://doi.org/10.1111/j.1469-8137.2011.03738.x Epub 2011 Apr 20

    Article  PubMed  CAS  Google Scholar 

  57. Penmetsa RV, Frugoli JA, Smith LS et al (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131(3):998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schnabel E, Journet EP, de Carvalho-Niebel F et al (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58(6):809–822

    Article  CAS  PubMed  Google Scholar 

  59. Roudier F, Fedorova E, Lebris M et al (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol 131(3):1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heyman J, De Veylder L (2012) The anaphase-promoting complex/cyclosome in control of plant development. Mol Plant 5(6):1182–1194. https://doi.org/10.1093/mp/sss094

    Article  PubMed  CAS  Google Scholar 

  61. Yendrek CR, Lee YC, Morris V et al (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62(1):100–112. https://doi.org/10.1111/j.1365-313X.2010.04134.x Epub 2010 Jan 20

    Article  PubMed  CAS  Google Scholar 

  62. Kuppusamy KT, Ivashuta S, Bucciarelli B et al (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151(3):1155–1166. https://doi.org/10.1104/pp.109.143024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gonzalez AA, Agbévénou K, Herrbach V et al (2015) Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. Plant Signal Behav 10(1):e977741. https://doi.org/10.4161/15592324.2014.977741

    Article  PubMed  CAS  Google Scholar 

  64. Bagchi R, Salehin M, Adeyemo OS et al (2012) Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol 160(2):906–916. https://doi.org/10.1104/pp.112.196444 Epub 2012 Aug 2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Morère-Le Paven MC, Viau L et al (2011) Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot 62(15):5595–5605. https://doi.org/10.1093/jxb/err243 Epub 2011 Aug 23

    Article  PubMed  CAS  Google Scholar 

  66. Long R, Li M, Zhang T et al (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424. https://doi.org/10.3389/fpls.2016.00424 eCollection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mathesius U, Keijzers G, Natera SH et al (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1(11):1424–1440

    Article  CAS  PubMed  Google Scholar 

  68. Marx H, Minogue CE, Jayaraman D et al (2016) A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol 34:1198–1205. https://doi.org/10.1038/nbt.3681

    Article  PubMed  CAS  Google Scholar 

  69. Bestel-Corre G, Dumas-Gaudot E, Poinsot V et al (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23(1):122–137

    Article  CAS  PubMed  Google Scholar 

  70. Abdallah C, Valot B, Guillier C et al (2014) The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Proteome 108:354–368. https://doi.org/10.1016/j.jprot.2014.05.028

    Article  CAS  Google Scholar 

  71. Van Noorden GE, Kerim T, Goffard N et al (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144(2):1115–1131 Epub 2007 Apr 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Holmes P, Farquharson R, Hall PJ et al (2006) Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res 5(9):2309–2316

    Article  CAS  PubMed  Google Scholar 

  73. Valot B, Gianinazzi S, Eliane DG (2004) Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction. Phytochemistry 65(12):1721–1732

    Article  CAS  PubMed  Google Scholar 

  74. Lee J, Lei Z, Watson BS (2013) Sub-cellular proteomics of Medicago truncatula. Front Plant Sci 4:112. https://doi.org/10.3389/fpls.2013.00112 eCollection 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhang K, McKinlay C, Hocart CH et al (2006) The Medicago truncatula small protein proteome and peptidome. J Proteome Res 5:3355–3367

    Article  CAS  PubMed  Google Scholar 

  76. Watson BS, Asirvatham VS, Wang L (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131(3):1104–1123

    Article  PubMed  PubMed Central  Google Scholar 

  77. Benedito VA, Torres-Jerez I, Murray JD et al (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55(3):504–513. https://doi.org/10.1111/j.1365-313X.2008.03519.x

    Article  PubMed  CAS  Google Scholar 

  78. Du C, Li X, Chen J et al (2016) Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci U S A 113(51):E8326–E8334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ballif J, Endo S, Kotani M et al (2011) Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol Biochem 49(6):579–583. https://doi.org/10.1016/j.plaphy.2011.01.013

    Article  PubMed  CAS  Google Scholar 

  80. Schmutz J, Cannon SB, Schlueter J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  81. Sato S, Nakamura Y, Kaneko T (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15(4):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mochida K, Yoshida T, Sakurai T et al (2010) LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics 26(2):290–291. https://doi.org/10.1093/bioinformatics/btp645

    Article  PubMed  CAS  Google Scholar 

  84. Jin J, Zhang H, Kong L et al (2013) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue):D1182–D1187. https://doi.org/10.1093/nar/gkt1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kakar K, Wandrey M, Czechowski T (2008) A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 4:18. https://doi.org/10.1186/1746-4811-4-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Roux B, Rodde N, Jardinaud MF (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77(6):817–837. https://doi.org/10.1111/tpj.12442

    Article  PubMed  CAS  Google Scholar 

  87. Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10(4):348–358. https://doi.org/10.1016/j.chom.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  88. Cui H, Levesque MP, Vernoux T (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316(5823):421–425

    Article  CAS  PubMed  Google Scholar 

  89. Sozzani R, Cui H, Moreno-Risueno MA (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466(7302):128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106(4):1335–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Menand B, Yi K, Jouannic S et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316(5830):1477–1480

    Article  CAS  PubMed  Google Scholar 

  92. Kamiya M, Higashio SY, Isomoto A et al (2016) Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis. Development 143(21):4063–4072

    Article  CAS  PubMed  Google Scholar 

  93. Wang TZ, Liu M, Zhao MG (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131. https://doi.org/10.1186/s12870-015-0530-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16(4):1047–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Röhrig H, Schmidt J, Miklashevichs E et al (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99(4):1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Röhrig H, John M, Schmidt J (2004) Modification of soybean sucrose synthase by S-thiolation with ENOD40 peptide A. Biochem Biophys Res Commun 325(3):864–870

    Article  CAS  PubMed  Google Scholar 

  97. Lelandais-Brière C, Naya L, Sallet E et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21(9):2780–2796. https://doi.org/10.1105/tpc.109.068130

    Article  PubMed  PubMed Central  Google Scholar 

  98. Branscheid A, Devers EA, May P et al (2011) Distribution pattern of small RNA and degradome reads provides information on miRNA gene structure and regulation. Plant Signal Behav 6(10):1609–1611. https://doi.org/10.4161/psb.6.10.17305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Devers EA, Branscheid A, May P et al (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156(4):1990–2010. https://doi.org/10.1104/pp.111.172627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wang T, Chen L, Zhao M et al (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics 12:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen L, Wang T, Zhao M et al (2012) Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Plant Sci 184:14–19. https://doi.org/10.1016/j.plantsci.2011.11.007 Epub 2011 Nov 17

    Article  PubMed  CAS  Google Scholar 

  102. Chen L, Wang T, Zhao M et al (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386

    Article  CAS  PubMed  Google Scholar 

  103. Zhou ZS, Zeng SQ, Liu ZP et al (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

  104. Eyles RP, Williams PH, Ohms SJ (2013) microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. Planta 238(1):91–105. https://doi.org/10.1007/s00425-013-1871-7

    Article  PubMed  CAS  Google Scholar 

  105. Formey D, Sallet E, Lelandais-Brière C et al (2014) The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 15(9):457. https://doi.org/10.1186/s13059-014-0457-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Long RC, Li MN, Kang JM et al (2015) Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiol Plant 154(1):13–27. https://doi.org/10.1111/ppl.12266 Epub 2014 Oct 7

    Article  PubMed  CAS  Google Scholar 

  107. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu N, Niu QW, Ng KH et al (2015) The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J 83(4):673–685. https://doi.org/10.1111/tpj.12919

    Article  PubMed  CAS  Google Scholar 

  109. Xu M, Hu T, Zhao J (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12(8):e1006263. https://doi.org/10.1371/journal.pgen.1006263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Aung B, Gruber MY, Amyot L et al (2015) MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol J 13(6):779–790. https://doi.org/10.1111/pbi.12308 Epub 2014 Dec 23

    Article  PubMed  CAS  Google Scholar 

  111. Wang Y, Wang Z, Amyot L et al (2015) Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicas. Mol Gen Genomics 290(2):471–484

    Article  CAS  Google Scholar 

  112. Naya L, Khan GA, Sorin C (2010) Cleavage of a non-conserved target by a specific miR156 isoform in root apexes of Medicago truncatula. Plant Signal Behav 5(3):328–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Williams L, Grigg SP, Xie M et al (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132(16):3657–3668

    Article  CAS  PubMed  Google Scholar 

  114. Miyashima S, Koi S, Hashimoto T et al (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138(11):2303–2313

    Article  CAS  PubMed  Google Scholar 

  115. Singh A, Singh S, Panigrahi KC (2014) Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana. Plant Cell Rep 33(6):945–953. https://doi.org/10.1007/s00299-014-1573-z

    Article  PubMed  CAS  Google Scholar 

  116. Singh A, Roy S, Singh S (2017) Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep 7(1):3408. https://doi.org/10.1038/s41598-017-03632-w

    Article  PubMed  PubMed Central  Google Scholar 

  117. Van den Berg C, Willemsen V, Hendriks G et al (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390(6657):287–289

    Article  CAS  PubMed  Google Scholar 

  118. Sabatini S, Heidstra R, Wildwater M et al (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Drisch RC, Stahl Y (2015) Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. Front Plant Sci 6:505

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dello Ioio R, Linhares FS, Scacchi E et al (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17(8):678–682

    Article  CAS  Google Scholar 

  121. Sabatini S, Beis D, Wolkenfelt H et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99(5):463–472

    Article  CAS  PubMed  Google Scholar 

  122. Sarkar AK, Luijten M, Miyashima S et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811–814

    Article  CAS  PubMed  Google Scholar 

  123. Berckmans B, Simon R (2016) A feed-forward regulation sets cell fates in roots. Trends Plant Sci 21:373–375. https://doi.org/10.1016/j.tplants.2016.03.002

    Article  PubMed  CAS  Google Scholar 

  124. Aida M, Beis D, Heidstra R et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120

    Article  CAS  PubMed  Google Scholar 

  125. Osipova MA, Mortier V, Demchenko KN (2012) Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. Plant Physiol 158(3):1329–1341. https://doi.org/10.1104/pp.111.188078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Franssen HJ, Kulikova O, Willemsen V et al (2017) Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula. Plant Signal Behav 12(2):e1278102. https://doi.org/10.1080/15592324.2016.1278102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Liu D, Song Y, Chen Z et al (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236. https://doi.org/10.1111/j.1399-3054.2009.01229.x

    Article  PubMed  CAS  Google Scholar 

  128. Rodriguez RE, Mecchia MA, Debernardi JM et al (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112. https://doi.org/10.1242/dev.043067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Bao M, Bian H, Zha Y et al (2014) miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol 55(7):1343–1353

    Article  CAS  PubMed  Google Scholar 

  130. Rodriguez RE, Ercoli MF, Debernardi JM et al (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27(12):3354–3366. https://doi.org/10.1105/tpc.15.00452 Epub 2015 Dec 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Holmes P, Goffard N, Weiller GF et al (2008) Transcriptional profiling of Medicago truncatula meristematic root cells. BMC Plant Biol 8:21. https://doi.org/10.1186/1471-2229-8-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Passarinho P, Ketelaar T, Xing M et al (2008) BABYBOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68(3):225–237. https://doi.org/10.1007/s11103-008-9364-y Epub 2008 Jul 29

    Article  PubMed  CAS  Google Scholar 

  133. Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122:1589–1600

    PubMed  CAS  Google Scholar 

  134. Imin N, Nizamidin M, Wu T et al (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58(3):439–451

    Article  CAS  PubMed  Google Scholar 

  135. Limpens E, Moling S, Hooiveld G et al (2013) Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 8(5):e64377. https://doi.org/10.1371/journal.pone.0064377 Erratum in: PLoS One. 2014;9(1). 10.1371/annotation/d8bce646-4127-410a-b4dd-d2d2779a4745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Fukaki H, Tameda S, Masuda H et al (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    Article  CAS  PubMed  Google Scholar 

  137. Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wilmoth JC, Wang S, Tiwari SB et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    Article  CAS  PubMed  Google Scholar 

  139. Couzigou JM, Zhukov V, Mondy S et al (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24(11):4498–4510. https://doi.org/10.1105/tpc.112.103747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Couzigou JM, Magne K, Mondy S (2016) The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. New Phytol 209(1):228–240. https://doi.org/10.1111/nph.13634

    Article  PubMed  CAS  Google Scholar 

  141. Dello Ioio R, Nakamura K, Moubayidin L (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384. https://doi.org/10.1126/science.1164147

    Article  CAS  Google Scholar 

  142. Di Mambro R, De Ruvo M, Pacifici E (2017) Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci U S A 114(36):E7641–E7649. https://doi.org/10.1073/pnas.1705833114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sańko-Sawczenko I, Łotocka B, Czarnocka W (2016) Expression analysis of PIN genes in root tips and nodules of Medicago truncatula. Int J Mol Sci 17(8):E1197. https://doi.org/10.3390/ijms17081197

    Article  PubMed  CAS  Google Scholar 

  144. Huo X, Schnabel E, Hughes K et al (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25(2):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou C, Han L, Wang ZY (2011) Potential but limited redundant roles of MtPIN4, MtPIN5 and MtPIN10/SLM1 in the development of Medicago truncatula. Plant Signal Behav 6(11):1834–1836. https://doi.org/10.4161/psb.6.11.17508 Epub 2011 Nov 1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Herrbach V, Remblière C, Gough C et al (2014) Lateral root formation and patterning in Medicago truncatula. J Plant Physiol 171(3–4):301–310. https://doi.org/10.1016/j.jplph.2013.09.006

    Article  PubMed  CAS  Google Scholar 

  147. Op den Camp RH, De Mita S, Lillo A et al (2011) A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators. Plant Physiol 157(4):2013–2022. https://doi.org/10.1104/pp.111.187526

    Article  CAS  Google Scholar 

  148. Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69(4):437–449. https://doi.org/10.1007/s11103-008-9417-2

    Article  PubMed  CAS  Google Scholar 

  149. Du Y, Scheres B (2017) Lateral root formation and the multiple roles of auxin. J Exp Bot 69(2):155–167. https://doi.org/10.1093/jxb/erx223

    Article  Google Scholar 

  150. Bensmihen S (2015) Hormonal control of lateral root and nodule development in legumes. Plants (Basel) 4(3):523–547

    Article  CAS  PubMed Central  Google Scholar 

  151. Chen Q, Dai X, De-Paoli H et al (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Q, Liu Y, Maere S et al (2015) A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nat Commun 6:8821. https://doi.org/10.1038/ncomms9821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Scholte M, d'Erfurth I, Rippa S et al (2002) T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Mol Breed 10:203–215

    Article  CAS  Google Scholar 

  154. Laffont C, Blanchet S, Lapierre C et al (2010) The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. Plant Physiol 153(4):1597–1607. https://doi.org/10.1104/pp.110.156620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Goh T, Kasahara H, Mimura T et al (2012) Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc Lond Ser B Biol Sci 367(1595):1461–1468

    Article  CAS  Google Scholar 

  156. Shen C, Yue R, Yang Y et al (2014) Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection. PLoS One 9(9):e107495. https://doi.org/10.1371/journal.pone.0107495 eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Shen C, Yue R, Sun T (2015) Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Front Plant Sci 6:73. https://doi.org/10.3389/fpls.2015.00073 eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  158. Vidal EA, Araus V, Lu C et al (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:4477–4482

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ru P, Xu L, Ma H et al (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16(5):457–465

    Article  CAS  PubMed  Google Scholar 

  160. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5):1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fahlgren N, Montgomery TA, Howell MD et al (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16(9):939–944

    Article  CAS  PubMed  Google Scholar 

  162. Hobecker KV, Reynoso MA, Bustos-Sanmamed P et al (2017) The MicroRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol 174(4):2469–2486. https://doi.org/10.1104/pp.17.00464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Gutierrez L, Mongelard G, Floková K et al (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24(6):2515–2527. https://doi.org/10.1105/tpc.112.099119 Epub 2012 Jun 22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. D’Haeseleer K, Den Herder G, Laffont C et al (2011) Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. New Phytol 191:647–661

    Article  CAS  PubMed  Google Scholar 

  165. Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17(5):1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Laplaze L, Benkova E, Casimiro I et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19(12):3889–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zürcher E, Tavor-Deslex D, Lituiev D et al (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the Cytokinin signaling network in Planta. Plant Physiol 161(3):1066–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van Zeijl A, Liu W, Xiao TT et al (2015) The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol 15:260. https://doi.org/10.1186/s12870-015-0651-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Gamas P, Brault M, Jardinaud MF et al (2017) Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci 22(9):792–802. https://doi.org/10.1016/j.tplants.2017.06.012

    Article  PubMed  CAS  Google Scholar 

  170. Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 1(49):re11. https://doi.org/10.1126/scisignal.149re11 Review. Erratum in: Sci Signal. 2009 Jan 13;2(53):er1

    Article  PubMed  CAS  Google Scholar 

  171. Plet J, Wasson A, Ariel F et al (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65(4):622–633. https://doi.org/10.1111/j.1365-313X.2010.04447.x

    Article  PubMed  CAS  Google Scholar 

  172. Mortier V, Wasson A, Jaworek P et al (2014) Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. New Phytol 202(2):582–593. https://doi.org/10.1111/nph.12681

    Article  PubMed  CAS  Google Scholar 

  173. Jasinski S, Piazza P, Craft J et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15(17):1560–1565

    Article  CAS  PubMed  Google Scholar 

  174. Di Giacomo E, Sestili F, Iannelli MA et al (2008) Characterization of KNOX genes in Medicago truncatula. Plant Mol Biol 67(1–2):135–150. https://doi.org/10.1007/s11103-008-9307-7

    Article  PubMed  CAS  Google Scholar 

  175. Truernit E, Siemering KR, Hodge S et al (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Mol Biol 60(1):1–20

    Article  CAS  PubMed  Google Scholar 

  176. Mähönen AP, Bishopp A, Higuchi M et al (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311(5757):94–98

    Article  CAS  PubMed  Google Scholar 

  177. Moreira S, Bishopp A, Carvalho H et al (2013) AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One 8(2):e56370. https://doi.org/10.1371/journal.pone.0056370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Moreira S, Braga T, Carvalho H et al (2013) The Arabidopsis HP6 gene is expressed in Medicago truncatula lateral roots and root nodule primordia. Plant Signal Behav 8(8):e25262. https://doi.org/10.4161/psb.25262 Faut-il la mettre aussi?

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Ariel F, Diet A, Verdenaud M et al (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell 22(7):2171–2183. https://doi.org/10.1105/tpc.110.074823 Epub 2010 Jul 30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Liang Y, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304(1):297–307 Epub 2006 Dec 21

    Article  CAS  PubMed  Google Scholar 

  181. Bright LJ, Liang Y, Mitchell DM et al (2005) The LATD gene of Medicago truncatula is required for both nodule and root development. Mol Plant-Microbe Interact 18(6):521–532

    Article  CAS  PubMed  Google Scholar 

  182. Zhang C, Bousquet A, Harris JM et al (2014) Abscisic acid and lateral root organ defective/NUMEROUS INFECTIONS AND POLYPHENOLICS modulate root elongation via reactive oxygen species in Medicago truncatula. Plant Physiol 166(2):644–658. https://doi.org/10.1104/pp.114.248542 Epub 2014 Sep 5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Fonouni-Farde C, Tan S, Baudin M et al (2016) DELLA-mediated gibberellin signalling regulates nod factor signalling and rhizobial infection. Nat Commun 7:12636. https://doi.org/10.1038/ncomms12636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Floss DS, Levy JG, Lévesque-Tremblay V et al (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 110(51):E5025–E5034. https://doi.org/10.1073/pnas.1308973110 Epub 2013 Dec 2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Pimprikar P, Carbonnel S, Paries M et al (2016) A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate Arbuscule branching. Curr Biol 26(8):987–998. https://doi.org/10.1016/j.cub.2016.01.069 Epub 2016 Mar 24

    Article  PubMed  CAS  Google Scholar 

  186. Müssig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133(3):1261–1271 Epub 2003 Oct 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9(1):86–100. https://doi.org/10.1016/j.molp.2015.12.003 Epub 2015 Dec 15

    Article  PubMed  CAS  Google Scholar 

  188. Bao F, Shen J, Brady SR et al (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134(4):1624–1631 Epub 2004 Mar 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cheng X, Gou X, Yin H et al (2017) Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Sci Rep 7(1):9327. https://doi.org/10.1038/s41598-017-09297-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol 138(4):2396–2405 Epub 2005 Jul 29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang H, Jennings A, Barlow PW et al (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96(11):6529–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Walch-Liu P, Ivanov I, Filleur S (2006) Nitrogen regulation of root branching. Ann Bot 97(5):875–881 Epub 2005 Dec 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bourion V, Martin C, de Larambergue H et al (2014) Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant. J Exp Bot 65(9):2365–2380. https://doi.org/10.1093/jxb/eru124 Epub 2014 Apr 4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152. https://doi.org/10.1199/tab.0152

    Article  PubMed  PubMed Central  Google Scholar 

  195. Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signal Behav 5(11):1365–1369 Epub 2010 Nov 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pellizzaro A, Clochard T, Cukier C et al (2014) The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. Plant Physiol 166(4):2152–2165. https://doi.org/10.1104/pp.114.250811 Epub 2014 Nov 3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Pellizzaro A, Alibert B, Planchet E et al (2017) Nitrate transporters: an overview in legumes. Planta 246(4):585–595. https://doi.org/10.1007/s00425-017-2724-6 [Epub ahead of print] Review

    Article  PubMed  CAS  Google Scholar 

  198. Hofferek V, Mendrinna A, Gaude N et al (2014) MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC Plant Biol 14:199. https://doi.org/10.1186/s12870-014-0199-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Gifford ML, Dean A, Gutierrez RA et al (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105:803–808

    Article  PubMed  PubMed Central  Google Scholar 

  200. Araya T, Miyamoto M, Wibowo J (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A 111(5):2029–2034. https://doi.org/10.1073/pnas.1319953111 Epub 2014 Jan 21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Czyzewicz N, Shi C-L, Vu LD et al (2015) Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. J Exp Bot 66:5229–5243. https://doi.org/10.1093/jxb/erv360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Mohd-Radzman NA, Binos S, Truong TT et al (2015) Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula. J Exp Bot 66(17):5289–5300. https://doi.org/10.1093/jxb/erv008 Epub 2015 Feb 22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Okushima Y, Fukaki H, Onoda M et al (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19(1):118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Boerjan W, Cervera MT, Delarue M et al (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huault E, Laffont C, Wen J et al (2014) Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genet 10(12):e1004891. https://doi.org/10.1371/journal.pgen.1004891 eCollection 2014 Dec

    Article  PubMed  PubMed Central  Google Scholar 

  206. De Bang TC, Lay KS, Scheible W-R et al (2017) Small peptide signaling pathways modulating macronutrient utilization in plants. Curr Opin Plant Biol 39:31–39

    Article  CAS  PubMed  Google Scholar 

  207. Jin J, Watt M, Mathesius U (2012) The autoregulation gene SUNN mediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport. Plant Physiol 159(1):489–500. https://doi.org/10.1104/pp.112.194993 Epub 2012 Mar 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Volpe V, Giovannetti M, Sun XG et al (2016) The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant Cell Environ 39(3):660–671. https://doi.org/10.1111/pce.12659 Epub 2016 Jan 12

    Article  PubMed  CAS  Google Scholar 

  209. De Cuyper C, Fromentin J, Yocgo RE et al (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66(1):137–146. https://doi.org/10.1093/jxb/eru404 Epub 2014 Nov 4. Erratum in: J Exp Bot. 2015 Jul;66(13):4091

    Article  PubMed  CAS  Google Scholar 

  210. Lauressergues D, André O, Peng J et al (2015) Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. J Exp Bot 66(5):1237–1244. https://doi.org/10.1093/jxb/eru471 Epub 2014 Dec 3

    Article  PubMed  CAS  Google Scholar 

  211. Li D, Zhang Y, Hu X et al (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109. https://doi.org/10.1186/1471-2229-11-109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Merchan F, de Lorenzo L, Rizzo SG et al (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51(1):1–17 Epub 2007 May 3

    Article  CAS  PubMed  Google Scholar 

  213. Gruber V, Blanchet S, Diet A et al (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol Gen Genomics 281(1):55–66. https://doi.org/10.1007/s00438-008-0392-8 Epub 2008 Nov 6

    Article  CAS  Google Scholar 

  214. Ariel FD, Diet A, Crespi M et al (2010) The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. Plant Signal Behav 5(12):1666–1668 Epub 2010 Dec 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lee HW, Cho C, Kim J (2015) Lateral Organ Boundaries Domain16 and 18 Act Downstream of the AUXIN1 and LIKE-AUXIN3 Auxin Influx Carriers to Control Lateral Root Development in Arabidopsis. Plant Physiol 168(4):1792–1806. https://doi.org/10.1104/pp.15.00578 Epub 2015 Jun 9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Zahaf O, Blanchet S, de Zélicourt A et al (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5(5):1068–1081. https://doi.org/10.1093/mp/sss009 Epub 2012 Mar 14

    Article  PubMed  CAS  Google Scholar 

  217. Kawakatsu T, Stuart T, Valdes M et al (2016) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2(5):16058. https://doi.org/10.1038/nplants.2016.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Lelandais-Brière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Proust, H., Hartmann, C., Crespi, M., Lelandais-Brière, C. (2018). Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. In: Cañas, L., Beltrán, J. (eds) Functional Genomics in Medicago truncatula. Methods in Molecular Biology, vol 1822. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8633-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8633-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8632-3

  • Online ISBN: 978-1-4939-8633-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics