Skip to main content

An Introduction to Epitope Mapping

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1785))

Abstract

Antibodies are protein molecules used routinely for therapeutic, diagnostic, and research purposes due to their exquisite ability to selectively recognize and bind a given antigen. The particular area of the antigen recognized by the antibody is called the epitope, and for proteinaceous antigens the epitope can be of complex nature. Information about the binding epitope of an antibody can provide important mechanistic insights and indicate for what applications an antibody might be useful. Therefore, a variety of epitope mapping techniques have been developed to localize such regions. Although the real picture is even more complex, epitopes in protein antigens are broadly grouped into linear or discontinuous epitopes depending on the positioning of the epitope residues in the antigen sequence and the requirement of structure. Specialized methods for mapping of the two different classes of epitopes, using high-throughput or high-resolution methods, have been developed. While different in their detail, all of the experimental methods rely on assessing the binding of the antibody to the antigen or a set of antigen mimics. Early approaches utilizing sets of truncated proteins, small numbers of synthesized peptides, and structural analyses of antibody-antigen complexes have been significantly refined. Current state-of-the-art methods involve combinations of mutational scanning, protein display, and high-throughput screening in conjunction with bioinformatic analyses of large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volk AL, Hu FJ, Berglund MM, Nordling E, Stromberg P, Uhlen M, Rockberg J (2016) Stratification of responders towards eculizumab using a structural epitope mapping strategy. Sci Rep 6:31365. https://doi.org/10.1038/srep31365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brooks BD, Miles AR, Abdiche YN (2014) High-throughput epitope binning of therapeutic monoclonal antibodies: why you need to bin the fridge. Drug Discov Today 19(8):1040–1044. https://doi.org/10.1016/j.drudis.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  3. Ladner RC (2007) Mapping the epitopes of antibodies. Biotechnol Genet Eng Rev 24:1–30

    Article  CAS  Google Scholar 

  4. Barlow DJ, Edwards MS, Thornton JM (1986) Continuous and discontinuous protein antigenic determinants. Nature 322(6081):747–748. https://doi.org/10.1038/322747a0

    Article  CAS  PubMed  Google Scholar 

  5. Getzoff ED, Tainer JA, Lerner RA, Geysen HM (1988) The chemistry and mechanism of antibody binding to protein antigens. Adv Immunol 43:1–98

    Article  CAS  Google Scholar 

  6. Laver WG, Air GM, Webster RG, Smith-Gill SJ (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61(4):553–556

    Article  CAS  Google Scholar 

  7. Morris GE (1996) Overview. Choosing a method for epitope mapping. Methods Mol Biol 66:1–9. https://doi.org/10.1385/0-89603-375-9:1

    Article  CAS  PubMed  Google Scholar 

  8. Van Regenmortel MHV (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9(3):465–472

    Article  Google Scholar 

  9. Jemmerson R (1987) Antigenicity and native structure of globular proteins: low frequency of peptide reactive antibodies. Proc Natl Acad Sci U S A 84(24):9180–9184

    Article  CAS  Google Scholar 

  10. Van Regenmortel MH (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20. https://doi.org/10.1007/978-1-59745-450-6_1

    Article  CAS  PubMed  Google Scholar 

  11. Uhlen M, Bandrowski A, Carr S, Edwards A, Ellenberg J, Lundberg E, Rimm DL, Rodriguez H, Hiltke T, Snyder M, Yamamoto T (2016) A proposal for validation of antibodies. Nat Methods 13(10):823–827. https://doi.org/10.1038/nmeth.3995

    Article  CAS  Google Scholar 

  12. Atassi MZ (1984) Antigenic structures of proteins. Their determination has revealed important aspects of immune recognition and generated strategies for synthetic mimicking of protein binding sites. Eur J Biochem 145(1):1–20

    Article  CAS  Google Scholar 

  13. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81(13):3998–4002

    Article  CAS  Google Scholar 

  14. Forsstrom B, Axnas BB, Stengele KP, Buhler J, Albert TJ, Richmond TA, Hu FJ, Nilsson P, Hudson EP, Rockberg J, Uhlen M (2014) Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 13(6):1585–1597. https://doi.org/10.1074/mcp.M113.033308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Timmerman P, Puijk WC, Meloen RH (2007) Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit 20(5):283–299. https://doi.org/10.1002/jmr.846

    Article  CAS  PubMed  Google Scholar 

  16. Meloen RH, Puijk WC, Slootstra JW (2000) Mimotopes: realization of an unlikely concept. J Mol Recognit 13(6):352–359. https://doi.org/10.1002/1099-1352(200011/12)13:6<352::AID-JMR509=3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  17. Abbott WM, Damschroder MM, Lowe DC (2014) Current approaches to fine mapping of antigen-antibody interactions. Immunology 142(4):526–535. https://doi.org/10.1111/imm.12284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y (2007) Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21(3):145–156. https://doi.org/10.2165/00063030-200721030-00002

    Article  CAS  PubMed  Google Scholar 

  19. Johansson LC, Stauch B, Ishchenko A, Cherezov V (2017) A bright future for serial femtosecond crystallography with XFELs. Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2017.06.007

  20. Koide S (2009) Engineering of recombinant crystallization chaperones. Curr Opin Struct Biol 19(4):449–457. https://doi.org/10.1016/j.sbi.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wuthrich K (1990) Protein structure determination in solution by NMR spectroscopy. J Biol Chem 265(36):22059–22062

    CAS  PubMed  Google Scholar 

  22. Kuhlbrandt W (2014) Biochemistry. The resolution revolution. Science 343(6178):1443–1444. https://doi.org/10.1126/science.1251652

    Article  PubMed  Google Scholar 

  23. Merino F, Raunser S (2017) Electron cryo-microscopy as a tool for structure-based drug development. Angew Chem Int Ed Engl 56(11):2846–2860. https://doi.org/10.1002/anie.201608432

    Article  CAS  PubMed  Google Scholar 

  24. Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL, Juge N, Yu Y, Mergel CM, Chaparro-Riggers J, Strop P, Tampe R, Edwards RH, Stroud RM, Craik CS, Cheng Y (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20(4):582–592. https://doi.org/10.1016/j.str.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  Google Scholar 

  26. Chakraborti S, Prabakaran P, Xiao X, Dimitrov DS (2005) The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol J 2:73. https://doi.org/10.1186/1743-422X-2-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dall'Acqua W, Goldman ER, Lin W, Teng C, Tsuchiya D, Li H, Ysern X, Braden BC, Li Y, Smith-Gill SJ, Mariuzza RA (1998) A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry 37(22):7981–7991. https://doi.org/10.1021/bi980148j

    Article  CAS  PubMed  Google Scholar 

  28. Van Regenmortel MH (1989) Structural and functional approaches to the study of protein antigenicity. Immunol Today 10(8):266–272. https://doi.org/10.1016/0167-5699(89)90140-0

    Article  PubMed  Google Scholar 

  29. Opuni KF, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO (2016) Mass spectrometric epitope mapping. Mass Spectrom Rev. https://doi.org/10.1002/mas.21516

  30. Coales SJ, Tuske SJ, Tomasso JC, Hamuro Y (2009) Epitope mapping by amide hydrogen/deuterium exchange coupled with immobilization of antibody, on-line proteolysis, liquid chromatography and mass spectrometry. Rapid Commun Mass Spectrom 23(5):639–647. https://doi.org/10.1002/rcm.3921

    Article  CAS  PubMed  Google Scholar 

  31. Pandit D, Tuske SJ, Coales SJ, SY E, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 25(3):114–124. https://doi.org/10.1002/jmr.1169

    Article  CAS  PubMed  Google Scholar 

  32. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342(2):539–550. https://doi.org/10.1016/j.jmb.2004.07.053

    Article  CAS  PubMed  Google Scholar 

  33. Kowalsky CA, Faber MS, Nath A, Dann HE, Kelly VW, Liu L, Shanker P, Wagner EK, Maynard JA, Chan C, Whitehead TA (2015) Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing. J Biol Chem 290(44):26457–26470. https://doi.org/10.1074/jbc.M115.676635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Najar TA, Khare S, Pandey R, Gupta SK, Varadarajan R (2017) Mapping protein binding sites and conformational epitopes using cysteine Labeling and yeast surface display. Structure 25(3):395–406. https://doi.org/10.1016/j.str.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  35. Van Blarcom T, Rossi A, Foletti D, Sundar P, Pitts S, Bee C, Melton Witt J, Melton Z, Hasa-Moreno A, Shaughnessy L, Telman D, Zhao L, Cheung WL, Berka J, Zhai W, Strop P, Chaparro-Riggers J, Shelton DL, Pons J, Rajpal A (2015) Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. J Mol Biol 427(6 Pt B):1513–1534. https://doi.org/10.1016/j.jmb.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  36. Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, Mumey B, Ofran Y, Pellequer JL, Pinilla C, Ponomarenko JV, Raghava GP, van Regenmortel MH, Roggen EL, Sette A, Schlessinger A, Sollner J, Zand M, Peters B (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20(2):75–82. https://doi.org/10.1002/jmr.815

    Article  CAS  PubMed  Google Scholar 

  37. Sela-Culang I, Ofran Y, Peters B (2015) Antibody specific epitope prediction-emergence of a new paradigm. Curr Opin Virol 11:98–102. https://doi.org/10.1016/j.coviro.2015.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Regenmortel MH (2014) Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 27(11):627–639. https://doi.org/10.1002/jmr.2394

    Article  CAS  PubMed  Google Scholar 

  39. Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537(7620):320–327. https://doi.org/10.1038/nature19946

    Article  CAS  PubMed  Google Scholar 

  40. De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11(5–6):203–209. https://doi.org/10.1016/S1359-6446(05)03720-7

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):33. https://doi.org/10.1186/s13073-016-0288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14(1):246–248. https://doi.org/10.1110/ps.041059505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin fab. Nature 421(6924):756–760. https://doi.org/10.1038/nature01392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Vinnova, NNF Center for Biosustainability, WCPR Wallenberg Center for Protein Research, and the Knut and Alice Wallenberg foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johan Nilvebrant or Johan Rockberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nilvebrant, J., Rockberg, J. (2018). An Introduction to Epitope Mapping. In: Rockberg, J., Nilvebrant, J. (eds) Epitope Mapping Protocols. Methods in Molecular Biology, vol 1785. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7841-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7841-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7839-7

  • Online ISBN: 978-1-4939-7841-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics