Skip to main content

Fertility Preservation in Cancer Patients

  • Chapter
  • First Online:
The Biology of Mammalian Spermatogonia

Abstract

Chemotherapy and radiation treatments for cancer or other conditions can cause permanent infertility. This condition not only affects the ability to bear children after cure, but may also have a lasting impact on psychosocial well-being, relationships and overall health. Adolescent and adult patients may have the options to preserve eggs, sperm, or embryos prior to treatment to preserve their future fertility. These options are not available to prepubertal patients who are not producing mature eggs or sperm. This is a critical human health concern because most children will survive their cancer and still have their entire reproductive life in front of them. This review focuses on stem cell-based methods that may provide new fertility-sparing options for boys receiving gonadotoxic therapies for cancer or other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Wahab AY, Md Isa ML, Ramli R (2016) Spermatogonial stem cells protein identification in in vitro culture from non-obstructive Azoospermia patient. Malays J Med Sci 23(3):40–48

    PubMed  PubMed Central  Google Scholar 

  • Abrishami M, Abbasi S, Honaramooz A (2010) The effect of donor age on progression of spermatogenesis in canine testicular tissue after xenografting into immunodeficient mice. Theriogenology 73(4):512–522

    Article  CAS  PubMed  Google Scholar 

  • Achille MA et al (2006) Facilitators and obstacles to sperm banking in young men receiving gonadotoxic chemotherapy for cancer: the perspective of survivors and health care professionals. Hum Reprod 21(12):3206–3216

    Article  PubMed  Google Scholar 

  • Agarwal A, Ong C, Durairajanayagam D (2014) Contemporary and future insights into fertility preservation in male cancer patients. Transl Androl Urol 3(1):27–40

    PubMed  PubMed Central  Google Scholar 

  • Akhondi MM et al (2013) Propagation of human germ stem cells in long-term culture. Iran J Reprod Med 11(7):551–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RA et al (2015) Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet Diabetes Endocrinol 3(7):556–567

    Article  CAS  PubMed  Google Scholar 

  • Arregui L, Dobrinski I (2014) Xenografting of testicular tissue pieces: twelve years of an in vivo spermatogenesis system. Reproduction (Cambridge, England) 148(5):R71–R84

    Article  CAS  Google Scholar 

  • Arregui L et al (2008a) Xenografting of adult mammalian testis tissue. Anim Reprod Sci 106(1–2):65–76

    Article  PubMed  Google Scholar 

  • Arregui L et al (2008b) Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction 136(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Arregui L et al (2012) Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis. Fertil Steril 97(6):1422–1429

    Article  PubMed  PubMed Central  Google Scholar 

  • Baert Y et al (2013) What is the best cryopreservation protocol for human testicular tissue banking? Hum Reprod 28(7):1816–1826

    Article  CAS  PubMed  Google Scholar 

  • Baert Y et al (2015) Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril 104(5):1244–1252.e4

    Article  CAS  PubMed  Google Scholar 

  • Bahadur G et al (2002) Semen quality and cryopreservation in adolescent cancer patients. Hum Reprod 17(12):3157–3161

    Article  CAS  PubMed  Google Scholar 

  • Bensdorp A et al (2007) Intra-uterine insemination for male subfertility. Cochrane Database Syst Rev 4

    Google Scholar 

  • Borgmann-Staudt A et al (2012) Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transplant 47(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91(24):11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91(24):11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster CJ et al (2003) Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol Reprod 69(2):412–420

    Article  CAS  PubMed  Google Scholar 

  • Brook PF et al (2001) Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil Steril 75(2):269–274

    Article  CAS  PubMed  Google Scholar 

  • Chapman RM, Sutcliffe SB, Malpas JS (1981) Male gonadal dysfunction in Hodgkin's disease. A prospective study. JAMA 245(13):1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Chen B et al (2009) Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J Androl 11(5):557–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen LY et al (2014) Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 155(12):4964–4974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiarini-Garcia H et al (2001) Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 65(4):1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Chiarini-Garcia H, Raymer AM, Russell LD (2003) Non-random distribution of spermatogonia in rats: evidence of niches in the seminiferous tubules. Reproduction 126(5):669–680

    Article  CAS  PubMed  Google Scholar 

  • Clark AT, Phillips BT, Orwig KE (2011) Fruitful progress to fertility: male fertility in the test tube. Nat Med 17(12):1564–1565

    Article  CAS  PubMed  Google Scholar 

  • Culty M (2009) Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res C Embryo Today 87(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Curaba M et al (2011) Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil Steril 95(6):2123. e9–12

    Article  PubMed  Google Scholar 

  • de Rooij DG (2009) The spermatogonial stem cell niche. Microsc Res Tech 72(8):580–585

    Article  PubMed  CAS  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (1999) Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 61(5):1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57(3):270–279

    Article  CAS  PubMed  Google Scholar 

  • Dorval-Coiffec I et al (2005) Identification of the leukemia inhibitory factor cell targets within the rat testis. Biol Reprod 72(3):602–611

    Article  CAS  PubMed  Google Scholar 

  • Dovey SL et al (2013) Eliminating malignant contamination from therapeutic human spermatogonial stem cells. J Clin Invest 123(4):1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour JM, Rajotte RV, Korbutt GS (2002) Development of an in vivo model to study testicular morphogenesis. J Androl 23(5):635–644

    PubMed  Google Scholar 

  • Dym M (1994) Basement membrane regulation of Sertoli cells. Endocr Rev 15(1):102–115

    CAS  PubMed  Google Scholar 

  • Ehmcke J et al (2011) Immature rhesus monkey (Macaca mulatta) testis xenografts show increased growth, but not enhanced seminiferous differentiation, under human chorionic gonadotropin treatment of nude mouse recipients. Int J Androl 34(5pt2):e459–e467

    Article  CAS  PubMed  Google Scholar 

  • Eildermann K, Gromoll J, Behr R (2012) Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Hum Reprod 27(6):1754–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ethics Committee of the American Society for Reproductive Medicine (2005) Fertility preservation and reproduction in cancer patients. Fertil Steril 83(6):1622–1628

    Article  Google Scholar 

  • Feldschuh J et al (2005) Successful sperm storage for 28 years. Fertil Steril 84(4):1017

    Article  PubMed  Google Scholar 

  • Fujita K et al (2005) Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest 115(7):1855–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K et al (2006) Isolation of germ cells from leukemia and lymphoma cells in a human in vitro model: potential clinical application for restoring human fertility after anticancer therapy. Cancer Res 66(23):11166–11171

    Article  CAS  PubMed  Google Scholar 

  • Gassei K, Orwig KE (2016) Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 105(2):256–266

    Article  PubMed  Google Scholar 

  • Gassei K, Schlatt S, Ehmcke J (2006) De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts. J Androl 27(4):611–618

    Article  PubMed  Google Scholar 

  • Gassei K et al (2010) Immature rat seminiferous tubules reconstructed in vitro express markers of Sertoli cell maturation after xenografting into nude mouse hosts. Mol Hum Reprod 16(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Ge W et al (2015) In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 6:e1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geens M et al (2006) Spermatogonial survival after grafting human testicular tissue to immunodeficient mice. Hum Reprod 21(2):390–396

    Article  PubMed  Google Scholar 

  • Geens M et al (2007) The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod 22(3):733–742

    Article  CAS  PubMed  Google Scholar 

  • Geens M, Goossens E, Tournaye H (2011) Cell selection by selective matrix adhesion is not sufficiently efficient for complete malignant cell depletion from contaminated human testicular cell suspensions. Fertil Steril 95(2):787–791

    Article  CAS  PubMed  Google Scholar 

  • Geijsen N et al (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427(6970):148–154

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg JP et al (2010) An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod 25(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • Goharbakhsh L et al (2013) Isolation and culture of human spermatogonial stem cells derived from testis biopsy. Avicenna J Med Biotechnol 5(1):54–61

    PubMed  PubMed Central  Google Scholar 

  • Goossens E, Van Saen D, Tournaye H (2013) Spermatogonial stem cell preservation and transplantation: from research to clinic. Hum Reprod 28(4):897–907

    Article  CAS  PubMed  Google Scholar 

  • Gourdon JC, Travis AJ (2011) Spermatogenesis in ferret testis xenografts: a new model. Comp Med 61(2):145–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green DM et al (2010) Fertility of male survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 28(2):332–339

    Article  PubMed  Google Scholar 

  • Guo Y et al (2015) Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways. Exp Biol Med (Maywood) 240(8):1112–1122

    Article  CAS  Google Scholar 

  • Hadley MA, Dym M (1987) Immunocytochemistry of extracellular matrix in the lamina propria of the rat testis: electron microscopic localization. Biol Reprod 37(5):1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Hager M et al (2005) Laminin {alpha}1 chain corrects male infertility caused by absence of laminin {alpha}2 chain. Am J Pathol 167(3):823–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond C, Abrams JR, Syrjala KL (2007) Fertility and risk factors for elevated infertility concern in 10-year hematopoietic cell transplant survivors and case-matched controls. J Clin Oncol 25(23):3511–3517

    Article  PubMed  Google Scholar 

  • Hamra FK et al (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A 99(23):14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamra FK et al (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):17430–17435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K et al (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532

    Article  CAS  PubMed  Google Scholar 

  • He Z et al (2010) Isolation, characterization, and culture of human spermatogonia. Biol Reprod 82(2):363–372

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP et al (2011) Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 26(12):3222–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP et al (2012) Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11(5):715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrid M et al (2009) Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 81(5):898–905

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A et al (2002) Sperm from neonatal mammalian testes grafted in mice. Nature 418(6899):778–781

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A et al (2003) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69(4):1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A et al (2004) Accelerated maturation of primate testis by xenografting into mice. Biol Reprod 70(5):1500–1503

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A et al (2007) Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol Reprod 76(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Howell SJ, Shalet SM (2005) Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr (34):12–17

    Google Scholar 

  • Hsiao W et al (2011) Successful treatment of postchemotherapy Azoospermia with microsurgical testicular sperm extraction: the weill cornell experience. J Clin Oncol 29(12):1607–1611

    Article  PubMed  Google Scholar 

  • Hudson MM et al (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA 309(22):2371–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie N et al (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1–2):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii K et al (2012) FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 139(10):1734–1743

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F et al (2003a) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126(6):765–774

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F et al (2003b) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68(1):272–281

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F et al (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26(6):1296–1306

    Article  PubMed  Google Scholar 

  • Jahnukainen K et al (2001) Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res 61(2):706–710

    CAS  PubMed  Google Scholar 

  • Jahnukainen K et al (2007) Effect of cold storage and cryopreservation of immature non-human primate testicular tissue on spermatogonial stem cell potential in xenografts. Hum Reprod 22(4):1060–1067

    Article  PubMed  Google Scholar 

  • Jahnukainen K et al (2011) Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod 26(8):1945–1954

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahnukainen K et al (2012) Autologous ectopic grafting of cryopreserved testicular tissue preserves the fertility of prepubescent monkeys that receive sterilizing cytotoxic therapy. Cancer Res 72(20):5174–5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson L et al (1996) Effect of developmental age or time after transplantation on Sertoli cell number and testicular size in inbred Fischer rats. Biol Reprod 54(5):948–959

    Article  CAS  PubMed  Google Scholar 

  • Kala S et al (2012) In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. J Assist Reprod Genet 29(12):1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M et al (2003a) Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum Reprod 18(12):2660–2667

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M et al (2003b) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69(2):612–616

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M et al (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 72(4):985–991

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M et al (2008) Long-term culture of male germline stem cells from hamster testes. Biol Reprod 78(4):611–617

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M et al (2014) Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 91(4):88

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T et al (2010) Regeneration of spermatogenesis and production of functional sperm by grafting of testicular cell aggregates in Zebrafish (Danio rerio). Biol Reprod 83(4):533–539

    Article  CAS  PubMed  Google Scholar 

  • Kelleher S et al (2001) Long-term outcomes of elective human sperm cryostorage. Hum Reprod 16(12):2632–2639

    Article  CAS  PubMed  Google Scholar 

  • Keros V et al (2007) Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod 22(5):1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Kim Y et al (2007) Effect of donor age on success of spermatogenesis in feline testis xenografts. Reprod Fertil Dev 19(7):869–876

    Article  PubMed  Google Scholar 

  • Kim Y et al (2008) Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 136(6):823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita K et al (2007) Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod 76(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Kokkinaki M et al (2009) The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol Reprod 80(4):707–717

    Article  CAS  PubMed  Google Scholar 

  • Kokkinaki M, Djourabtchi A, Golestaneh N (2011) Long-term culture of human SSEA-4 positive spermatogonial stem cells (SSCs). J Stem Cell Res Ther 2(2)

    Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004a) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101(47):16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004b) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71(3):722–731

    Article  CAS  PubMed  Google Scholar 

  • Kubota H et al (2011) Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 25(8):2604–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijk EW, Colenbrander B, Roelen BA (2009) The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138(4):721–731

    Article  CAS  PubMed  Google Scholar 

  • Kuopio T et al (1989) Transplantation of newborn rat testis under the kidney capsule of adult host as a model to study the structure and function of Leydig cells. J Androl 10(5):335–345

    Article  CAS  PubMed  Google Scholar 

  • Kvist K et al (2006) Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum Reprod 21(2):484–491

    Article  CAS  PubMed  Google Scholar 

  • Langenstroth D et al (2014) Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 29(9):2018–2031

    Article  PubMed  Google Scholar 

  • Lass A et al (1998) A programme of semen cryopreservation for patients with malignant disease in a tertiary infertility centre: lessons from 8 years' experience. Hum Reprod 13(11):3256–3261

    Article  CAS  PubMed  Google Scholar 

  • Lawson KA et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ et al (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24(18):2917–2931

    Article  PubMed  Google Scholar 

  • Lian G, Miller KA, Enders GC (1992) Localization and synthesis of entactin in seminiferous tubules of the mouse. Biol Reprod 47(3):316–325

    Article  CAS  PubMed  Google Scholar 

  • Lim JJ et al (2010) Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif 43(4):405–417

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2011) Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol 9(1):1–9

    Article  CAS  Google Scholar 

  • Loren AW et al (2013) Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31(19):2500–2510

    Article  PubMed  PubMed Central  Google Scholar 

  • Luetjens CM et al (2008) Complete spermatogenesis in orthotopic but not in ectopic transplants of autologously grafted marmoset testicular tissue. Endocrinology 149(4):1736–1747

    Article  CAS  PubMed  Google Scholar 

  • Luo J et al (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73(12):1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Magnúsdóttir E et al (2013) A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 15(8):905–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmoud HK et al (2015) Allogeneic hematopoietic stem cell transplantation for non-malignant hematological disorders. J Adv Res 6(3):449–458

    Article  PubMed  Google Scholar 

  • Manku G, Culty M (2015) Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges. Reproduction 149(3):R139–R157

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer A (2013) Human testicular peritubular cells: more than meets the eye. Reproduction 145(5):R107–R116

    Article  CAS  PubMed  Google Scholar 

  • Medrano JV et al (2016) Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril 106(6):1539–1549.e8

    Article  CAS  PubMed  Google Scholar 

  • Meistrich ML (2009) Male gonadal toxicity. Pediatr Blood Cancer 53(2):261–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Mikkola M et al (2006) Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim 41(2):124–128

    Article  CAS  PubMed  Google Scholar 

  • Mirzapour T et al (2012) Effects of basic fibroblast growth factor and leukaemia inhibitory factor on proliferation and short-term culture of human spermatogonial stem cells. Andrologia 44(Suppl 1):41–55

    Article  PubMed  CAS  Google Scholar 

  • Nagano M, Brinster RL (1998) Spermatogonial transplantation and reconstitution of donor cell spermatogenesis in recipient mice. APMIS 106(1):47–55; discussion 56–7

    Article  CAS  PubMed  Google Scholar 

  • Nagano M et al (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30(4):389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M et al (2001) Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A 98(23):13090–13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M et al (2002) Lentiviral vector transduction of male germ line stem cells in mice. FEBS Lett 524(1–3):111–115

    Article  CAS  PubMed  Google Scholar 

  • Nagano M et al (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68(6):2207–2214

    Article  CAS  PubMed  Google Scholar 

  • Nakaki F et al (2013) Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501(7466):222–226

    Article  CAS  PubMed  Google Scholar 

  • Naysmith TE et al (1998) Do men undergoing sterilizing cancer treatments have a fertile future? Hum Reprod 13(11):3250–3255

    Article  CAS  PubMed  Google Scholar 

  • Nowroozi MR et al (2011) In vitro colonization of human spermatogonia stem cells: effect of patient's clinical characteristics and testicular histologic findings. Urology 78(5):1075–1081

    Article  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM et al (2004) Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue. Biol Reprod 71(2):494–501

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Reeves JJ, McLean DJ (2005a) Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age. Biol Reprod 72(2):358–364

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Reeves JJ, McLean DJ (2005b) Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age. Biol Reprod 72(2):358–364

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Avarbock MR, Brinster RL (2007) Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 282(35):25842–25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136(7):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley MJ et al (2016) Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol Reprod 95(1):14

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T et al (2000) Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 6(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohinata Y et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213

    Article  CAS  PubMed  Google Scholar 

  • Orwig KE, Valli H, Peters KA, Freihling E, Sanfilippo JS, Cannon GM, Orwig JJ Fertility preservation program of Magee-Womens Hospital in Pittsburgh. http://fertilitypreservationpittsburgh.org

  • Osterberg EC et al (2014) Current practices in fertility preservation in male cancer patients. Urology Annals 6(1):13–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Palermo G et al (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini M et al (2003) Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci 116(Pt 16):3363–3372

    Article  CAS  PubMed  Google Scholar 

  • Petersen PM et al (1999) Semen quality and reproductive hormones before orchiectomy in men with testicular cancer. J Clin Oncol 17(3):941–947

    Article  CAS  PubMed  Google Scholar 

  • Picton HM et al (2015) A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys. Hum Reprod 30(11):2463–2475

    Article  PubMed  Google Scholar 

  • Piravar Z et al (2013) In vitro culture of human testicular stem cells on feeder-free condition. J Reprod Infertility 14(1):17–22

    CAS  Google Scholar 

  • Plant TM et al (2005) Postnatal and pubertal development of the rhesus monkey (Macaca mulatta) testis. Ann N Y Acad Sci 1061:149–162

    Article  CAS  PubMed  Google Scholar 

  • Poels J et al (2013) Vitrification preserves proliferation capacity in human spermatogonia. Hum Reprod 28(3):578–589

    Article  CAS  PubMed  Google Scholar 

  • Quinn GP et al (2009) Physician referral for fertility preservation in oncology patients: a national study of practice behaviors. J Clin Oncol 27(35):5952–5957

    Article  PubMed  Google Scholar 

  • Radford J (2003) Restoration of fertility after treatment for cancer. Horm Res 59(Suppl 1):21–23

    CAS  PubMed  Google Scholar 

  • Radford J, Shalet S, Lieberman B (1999) Fertility after treatment for cancer. Questions remain over ways of preserving ovarian and testicular tissue. BMJ 319(7215):935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathi R et al (2006) Germ cell development in equine testis tissue xenografted into mice. Reproduction 131(6):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Rathi R et al (2008) Maturation of testicular tissue from infant monkeys after xenografting into mice. Endocrinology 149(10):5288–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson TE et al (2009) Sterile testis complementation with spermatogonial lines restores fertility to DAZL-deficient rats and maximizes donor germline transmission. PLoS One 4(7):e6308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu BY et al (2003) Stem cell and niche development in the postnatal rat testis. Dev Biol 263(2):253–263

    Article  CAS  PubMed  Google Scholar 

  • Ryu BY et al (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 102(40):14302–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sa R et al (2012) Cryopreservation of human testicular diploid germ cell suspensions. Andrologia 44(6):366–372

    Article  CAS  PubMed  Google Scholar 

  • Sadri-Ardekani H et al (2009) Propagation of human spermatogonial stem cells in vitro. JAMA 302(19):2127–2134

    Article  CAS  PubMed  Google Scholar 

  • Sadri-Ardekani H et al (2011) In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 305(23):2416–2418

    Article  CAS  PubMed  Google Scholar 

  • Saito K et al (2003) Semen cryopreservation for patients with malignant or non-malignant disease: our experience for 10 years. Nihon Hinyokika Gakkai Zasshi 94(4):513–520

    PubMed  Google Scholar 

  • Saitou M (2009) Specification of the germ cell lineage in mice. Front Biosci (Landmark Ed) (14):1068–1087

    Google Scholar 

  • Salomon F, Hedinger CE (1982) Abnormal basement membrane structures of seminiferous tubules in infertile men. Lab Investig 47(6):543–554

    CAS  PubMed  Google Scholar 

  • Sanger WG, Olson JH, Sherman JK (1992) Semen cryobanking for men with cancer—criteria change. Fertil Steril 58(5):1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Sato Y et al (2010) Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum Reprod 25(5):1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Sato T et al (2011a) In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471(7339):504–507

    Article  CAS  PubMed  Google Scholar 

  • Sato T et al (2011b) In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nat Commun 2:472

    Article  PubMed  CAS  Google Scholar 

  • Sato T et al (2015) In vitro spermatogenesis in explanted adult mouse testis tissues. PLoS One 10(6):e0130171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlatt S, Kim SS, Gosden R (2002) Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 124(3):339–346

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S et al (2006) Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod 21(2):384–389

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S et al (2010) Donor-host involvement in immature rat testis xenografting into nude mouse hosts. Biol Reprod 82(5):888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt KLT et al (2004) Assisted reproduction in male cancer survivors: fertility treatment and outcome in 67 couples. Hum Reprod 19(12):2806–2810

    Article  PubMed  Google Scholar 

  • Schmidt JA, de Avila JM, McLean DJ (2006) Effect of vascular endothelial growth factor and testis tissue culture on spermatogenesis in bovine ectopic testis tissue xenografts. Biol Reprod 75(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Sevilla J et al (2005) Hematopoietic transplantation for bone marrow failure syndromes and thalassemia. Bone Marrow Transplant 35(S1):S17–S21

    Article  PubMed  Google Scholar 

  • Shalet SM (1993) Effect of irradiation treatment on gonadal function in men treated for germ cell cancer. Eur Urol 23(1):148–151; discussion 152

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T et al (2001) Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A 98(11):6186–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T et al (2002) Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum Reprod 17(12):3039–3045

    Article  CAS  PubMed  Google Scholar 

  • Shirazi A, Khadivi A, Shams-Esfandabadi N (2014) Male pronuclear formation using dog sperm derived from ectopic testicular xenografts, testis, and epididymis. Avicenna J Med Biotechnol 6(3):140–146

    PubMed  PubMed Central  Google Scholar 

  • Siu MK, Cheng CY (2008) Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 636:74–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Tung PS, Fritz IB (1985) Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol 100(6):1941–1947

    Article  CAS  PubMed  Google Scholar 

  • Smith JF et al (2014) Testicular niche required for human spermatogonial stem cell expansion. Stem Cells Transl Med 3(9):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snedaker AK, Honaramooz A, Dobrinski I (2004) A game of cat and mouse: xenografting of testis tissue from domestic kittens results in complete cat spermatogenesis in a mouse host. J Androl 25(6):926–930

    Article  PubMed  Google Scholar 

  • Staub C (2001) A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl 22(6):911–926

    Article  CAS  PubMed  Google Scholar 

  • Steinberger A, Steinberger E (1965) Differentiation of rat seminiferous epithelium in organ culture. J Reprod Fertil 9:243–248

    Article  CAS  PubMed  Google Scholar 

  • Steinberger A, Steinberger E (1966) Stimulatory effect of vitamins and glutamine on the differentiation of germ cells in rat testes organ culture grown in chemically defined media. Exp Cell Res 44(2):429–435

    Article  CAS  PubMed  Google Scholar 

  • STEINBERGER E, STEINBERGER A, PERLOFF WH (1964) Initiation of spermatogenesis in vitro. Endocrinology 74(5):788–792

    Article  CAS  PubMed  Google Scholar 

  • Stephens SM, Arnett DM, Meacham RB (2013) The use of in vitro fertilization in the management of male infertility: what the urologist needs to know. Rev Urology 15(4):154–160

    Google Scholar 

  • Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2(8085):366

    Article  CAS  PubMed  Google Scholar 

  • Storb R et al (2001) Cyclophosphamide and antithymocyte globulin to condition patients with aplastic anemia for allogeneic marrow transplantations: the experience in centers. Biol Blood Marrow Transplant 7(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Szell AZ et al (2013) Live births from frozen human semen stored for 40 years. J Assist Reprod Genet 30(6):743–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima S et al (2015) Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal. Stem Cell Rep 4(3):489–502

    Article  CAS  Google Scholar 

  • Tournaye H, Dohle GR, Barratt CL (2014) Fertility preservation in men with cancer. Lancet 384(9950):1295–1301

    Article  PubMed  Google Scholar 

  • Toyooka Y et al (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci 100(20):11457–11462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowell OA (1959) The culture of mature organs in a synthetic medium. Exp Cell Res 16(1):118–147

    Article  CAS  PubMed  Google Scholar 

  • Unni S et al (2012) Efficient cryopreservation of testicular tissue: effect of age, sample state, and concentration of cryoprotectant. Fertil Steril 97(1):200–208. e1

    Article  CAS  PubMed  Google Scholar 

  • Valli H et al (2014a) Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril 101(1):3–13

    Article  PubMed  Google Scholar 

  • Valli H et al (2014b) Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 102(2):566–580. e7

    Article  PubMed  PubMed Central  Google Scholar 

  • Valli H, Gassei K, Orwig KE (2015) Stem cell therapies for male infertility: where are we now and where are we going? In: Carrell DT et al (eds) Biennial review of infertility, vol 4. Springer, Cham, pp 17–39

    Chapter  Google Scholar 

  • Van Saen D et al (2011) Meiotic activity in orthotopic xenografts derived from human postpubertal testicular tissue. Hum Reprod 26(2):282–293

    Article  PubMed  Google Scholar 

  • Vigersky RA et al (1982) Testicular dysfunction in untreated Hodgkin’s disease. Am J Med 73(4):482–486

    Article  CAS  PubMed  Google Scholar 

  • Volkmann J et al (2011) Disturbed spermatogenesis associated with thickened lamina propria of seminiferous tubules is not caused by dedifferentiation of myofibroblasts. Hum Reprod 26(6):1450–1461

    Article  CAS  PubMed  Google Scholar 

  • Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15–28

    Article  CAS  PubMed  Google Scholar 

  • Wallace WH, Anderson RA, Irvine DS (2005) Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol 6(4):209–218

    Article  PubMed  Google Scholar 

  • Wang J, Sauer MV (2006) In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2(4):355–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward E et al (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64(2):83–103

    Article  PubMed  Google Scholar 

  • Weber S et al (2010) Critical function of AP-2gamma/TCFAP2C in mouse embryonic germ cell maintenance. Biol Reprod 82(1):214–223

    Article  CAS  PubMed  Google Scholar 

  • Wenzel L et al (2005) Defining and measuring reproductive concerns of female cancer survivors. J Natl Cancer Inst Monogr (34):94–98

    Google Scholar 

  • Wistuba J et al (2006) Meiosis in autologous ectopic transplants of immature testicular tissue grafted to Callithrix jacchus. Biol Reprod 74(4):706–713

    Article  CAS  PubMed  Google Scholar 

  • Wu X et al (2009) Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proc Natl Acad Sci 106(51):21672–21677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2012) Fertile offspring derived from mouse spermatogonial stem cells cryopreserved for more than 14 years. Hum Reprod 27(5):1249–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyns C et al (2007) Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice. Hum Reprod 22(6):1603–1611

    Article  PubMed  Google Scholar 

  • Wyns C et al (2008) Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod 23(11):2402–2414

    Article  PubMed  Google Scholar 

  • Wyns C et al (2011) Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod 26(4):737–747

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y et al (2006) Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 75(5):705–716

    Article  CAS  PubMed  Google Scholar 

  • Yamaji M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40(8):1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Yokonishi T et al (2013) Vitro reconstruction of mouse seminiferous tubules supporting germ cell differentiation. Biol Reprod 89(1):15

    Article  PubMed  CAS  Google Scholar 

  • Yokonishi T et al (2014) Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun 5:4320

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317(5845):1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Yu J et al (2006) Development of neonatal mouse and fetal human testicular tissue as ectopic grafts in immunodeficient mice. Asian J Androl 8(4):393–403

    Article  CAS  PubMed  Google Scholar 

  • Zebrack BJ et al (2004) Fertility issues for young adult survivors of childhood cancer. Psychooncology 13(10):689–699

    Article  PubMed  Google Scholar 

  • Zeng W et al (2006) The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl 27(4):527–533

    Article  PubMed  Google Scholar 

  • Zhang Z et al (2008) Bovine sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J Androl 29(4):418–430

    Article  PubMed  Google Scholar 

  • Zheng Y et al (2014) Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod 29(11):2497–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q et al (2016) Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340

    Article  CAS  PubMed  Google Scholar 

  • Zohni K et al (2012) CD9 is expressed on human male germ cells that have a long-term repopulation potential after transplantation into mouse testes. Biol Reprod 87(2):27

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle E. Orwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

David, S., Orwig, K.E. (2017). Fertility Preservation in Cancer Patients. In: Oatley, J., Griswold, M. (eds) The Biology of Mammalian Spermatogonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7505-1_13

Download citation

Publish with us

Policies and ethics