Skip to main content

Biomechanics of the Growing Cervical Spine

  • Chapter
  • First Online:
  • 790 Accesses

Abstract

The growing skeleton has distinct structural features that distinguish it from the adults, and few places is this more true than in the cervical spine, where characteristics such as increased ligament laxity, developing bony anatomy, and the presence of growth centers create a unique biomechanical environment. As an example, radiographic findings that are abnormal in an adult—such as pseudosubluxation—may be normal in children, and differentiating age-dependent normal from pathologic states can be difficult for the inexperienced or uninformed physician. An understanding of clinically relevant biomechanical principles of the immature cervical spine is, therefore, essential for any physician treating spine pathology in children.

This chapter begins with a discussion of the normal biomechanics of the cervical spine. Due to the relative unavailability of pediatric cadaver specimens, much of the information provided in the normal biomechanics section is extrapolated from adult studies, with pediatric-specific information presented as available. Specific structural differences between the adult and pediatric spine are also discussed, concluding with a review of clinically relevant biomechanics of cervical implantation.

This is a preview of subscription content, log in via an institution.

References

  1. Arbogast KB, Gholve PA, Friedman JE, et al. Normal cervical spine range of motion in children 3-12 years old. Spine. 2007;32(10):E309–15.

    Article  PubMed  Google Scholar 

  2. Chen J, Solinger AB, Poncet JF, et al. Met-analysis of normative cervical motion. Spine. 1999;24(15):1571–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ghanayem G, Paxionos O. Cervical spine biomechanics. In: Emery SE, Boden SD, editors. Surgery of the cervical spine. Philadelphia: Saunders; 2002.

    Google Scholar 

  4. Tubbs SR, Kelly DR, Spooner A, et al. The tectorial membrane anatomical, biomechanical and histological analysis. Clin Anat. 2007;20(4):382–6.

    Article  PubMed  Google Scholar 

  5. Pang D, Li V. Atlantoaxial rotatory fixation: part I – biomechanics of normal rotation at the atlantoaxial joint in children. Neurosurgery. 2004;55(3):614–25; Discussion 625–626.

    Article  PubMed  Google Scholar 

  6. Tubbs R, Grabb P, Spooner A, et al. The apical ligament: anatomy and functional significance. J Neurosurg. 2000;92(2 Suppl):197–200.

    CAS  PubMed  Google Scholar 

  7. Panjabi M, Dvorak J, Duranceau J, et al. Three dimensional movements of the upper cervical spine. Spine. 1988;13(7):726–30.

    Article  CAS  PubMed  Google Scholar 

  8. Werne S. The possibilities of movement in the craniovertebral joints. Acta Orthop Scand. 1959;28(3):165–73.

    Article  CAS  PubMed  Google Scholar 

  9. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Spine. 2004;29(24):2826–31.

    Article  PubMed  Google Scholar 

  10. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the spine in lateral bending in vivo three-dimensional analysis. Spine. 2006;31(2):155–60.

    Article  PubMed  Google Scholar 

  11. White AA, Punjabi MM. The basic kinematics of the human spine: a review of past and current knowledge. Spine. 1978;3(1):12–20.

    Article  PubMed  Google Scholar 

  12. Lipson SJ. Dysplasia of the odontoid process in Morquio’s syndrome cuasing quadriparesis. J Bone Joint Surg Am. 1977;59(3):340–4.

    Article  CAS  PubMed  Google Scholar 

  13. Northover H, Cowie RA, Je W. Mucopolysaccharidosis type IVA (Morquio syndrome): a clinical review. J Inherit Metab Dis. 1996;19(3):357–65.

    Article  CAS  PubMed  Google Scholar 

  14. Clause JD, et al. Uncinate processes and Luschka joints influence the biomechanics of the cervical spine. J Orthop Res. 1997;15:342–7.

    Article  Google Scholar 

  15. Townsend EH Jr, Rowe ML. Mobility of the upper cervical spine in health and disease. Pediatrics. 1952;10(5):567–74.

    PubMed  Google Scholar 

  16. Bailey DK. The normal cervical spine in infants and children. Radiology. 1952;59(5):712–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nachemson AL, Evans JH. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech. 1968;1(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  18. Yoganandan N, Kumaresan S, Pintar FA, et al. Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng. 2000;122(6):623–9.

    Article  CAS  PubMed  Google Scholar 

  19. Luck JF, Nightingale RW, Song Y, et al. Tensile failure properties of the perinatal, neonatal and pediatric cadaveric spine. Spine. 2013;38(1):E1–E12.

    Article  PubMed  Google Scholar 

  20. Lysell E. Motion in the cervical spine. An experimental study on autopsy specimens. Acta Orthop Scand. 1969;40(Suppl 123):1–61.

    Article  Google Scholar 

  21. Penning L, Wilmink JT. Rotation of the cervical spine. Spine. 1987;12(8):732–8.

    Article  CAS  PubMed  Google Scholar 

  22. Dvorack J, Hayek J, Zehnder R. CT functional diagnostics of the totatory instability of the upper cervical spine part II: an evaluation on healthy adults and patients with suspected instability. Spine. 1987;12(8):726–31.

    Article  Google Scholar 

  23. Richter M, Wilke HH, Kluger P, et al. Load-displacement properties of the normal and injured lower cervical spine in vitro. Eur Spine J. 2000;9(2):104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanders JO, Herring JA, Browne RH. Posterior arthrodesis and instrumentation in the immature (Risser-grade-0) spine in idiopathic scoliosis. J Bone Joint Surg Am. 1995;77(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  25. Doubouseet J, Herring JA, Shufflebarger H. The crankshaft phenomenon. J Pediatr Orthop. 1989;9(5):541–50.

    Article  Google Scholar 

  26. Yasuoka S, Peterson HA, MacCarty CS. Incidence of spinal column deformity after multilevel laminectomy in children and adults. J Neurosurg. 1982;57(4):441–5.

    Article  CAS  PubMed  Google Scholar 

  27. Papagelopoulos PJ, Peterson HA, Ebersold MJ, et al. Spinal column deformity and instability after lumbar or thoracolumbar laminectomy for intraspinal tumors in children and young adults. Spine. 1997;22(4):442–51.

    Article  CAS  PubMed  Google Scholar 

  28. Bell DF, Walker JL, O’Connor G, et al. Spinal deformity after multiple-level cervical laminectomy in children. Spine. 1994;19(4):406–11.

    Article  CAS  PubMed  Google Scholar 

  29. Pal GP, Sherk HH. The vertical stability of the cervical spine. Spine. 1988;13(5):447–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cattell HS, Filtzer DL. Pseudosubluxation and other normal variations in the cervical spine in children. A study of one hundred and sixty children. J Bone Joint Surg Am. 1965;47(7):1295–309.

    Article  CAS  PubMed  Google Scholar 

  31. Stevens PM. Guided growth for angular correction: a preliminary series using a tension band plate. J Pediatr Orthop. 2007;27(3):253–9.

    Article  PubMed  Google Scholar 

  32. Crawford CH, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am. 2010;92(1):202–9.

    Article  PubMed  Google Scholar 

  33. Betz RR, Ranade A, Samdani AF, et al. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine. 2010;35(2):169–76.

    Article  PubMed  Google Scholar 

  34. Newton PO, Fricka KB, Lee SS, et al. Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine. 2002;27(7):689–93.

    Article  PubMed  Google Scholar 

  35. Seimon LP. Fracture of the odontoid process in young children. J Bone Joint Surg Am. 1977;59(7):943–8.

    Article  CAS  PubMed  Google Scholar 

  36. Brockmeyer DL. Advanced pediatric craniocervical surgery. New York/Stuttgart: Thieme Medical Publishers; 2006.

    Book  Google Scholar 

  37. Fesmire FJ, Luten RC. The pediatric cervical spine: developmental anatomy and clinical aspects. J Emerg Med. 1989;7(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  38. Swischuk LE. Anterior displacement of C2 in children: physiologic or pathologic. Radiology. 1977;122(3):759–83.

    Article  CAS  PubMed  Google Scholar 

  39. Henrys P, Lyne ED, Lifton C, et al. Clinical review of cervical spine injuries in children. Clin Orthop Relat Res. 1977;129:172–6.

    Article  Google Scholar 

  40. Platzer P, Jaindi M, Thalnammer G, et al. Cervical spine injuries in pediatric patients. J Trauma Inj Infect Crit Care. 2007;62(2):389–96.

    Article  Google Scholar 

  41. D’Amato C. Pediatric spinal trauma: injuries in very young children. Clin Orthop Relat Res. 2005;432:34–40.

    Article  Google Scholar 

  42. Hill SA, Miller CA, Kosnik EJ, et al. Pediatric neck injuries: a clinical study. J Neurosurg. 1984;60(4):700–6.

    Article  CAS  PubMed  Google Scholar 

  43. Rachesky I, Boyce WT, Duncan B, et al. Clinical prediction of cervical spine injuries in children. Am J Dis Child. 1987;141(2):199–201.

    Article  CAS  PubMed  Google Scholar 

  44. Treloar DJ, Nypaver M. Angulation of the pediatric cervical spine with and without cervical collar. Pediatr Emerg Care. 1997 Feb;13(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  45. Herzenberg JE, Hensinger RN, Dedrick DK, et al. Emergency transport and positioning of young children who have an injury of the cervical spine. The standard backboard may be hazardous. J Bone Joint Surg Am. 1989;71(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  46. Curran C, Dietrich AM, Bowman MJ, et al. Pediatric cervical-spine immobilization: achieving neutral position? J Trauma. 1995;39(4):729–32.

    Article  CAS  PubMed  Google Scholar 

  47. Pang D. Spinal cord injury without radiographic abnormality in children, two decades later. Neurosurgery. 2004;55(6):1325–42. discussion 1342–1343.

    Article  PubMed  Google Scholar 

  48. Dickman CA, Zabramski JM, Hadley MN, et al. Pediatric spinal cord injury without radiographic abnormalities: report of 26 cases and review of the literature. J Spinal Disord. 1991;4(3):296–305.

    Article  CAS  PubMed  Google Scholar 

  49. Foerster O. Die leitungsbahnen des schmerzgefuhls und die chirurgische behandlung der schmerzzustande. Mit 104 abbildungen im text. Berlin/Wien: Urban and Schwarzenberg; 1927. p. 266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burt Yaszay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemppainen, J., Yaszay, B. (2018). Biomechanics of the Growing Cervical Spine. In: Hedequist, D., Shah, S., Yaszay, B. (eds) The Management of Disorders of the Child’s Cervical Spine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7491-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7491-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4939-7489-4

  • Online ISBN: 978-1-4939-7491-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics