Skip to main content

Potential Applications of Polyamines in Agriculture and Plant Biotechnology

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  PubMed  CAS  Google Scholar 

  2. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  3. Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 7:870

    Article  PubMed  PubMed Central  Google Scholar 

  4. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  PubMed  CAS  Google Scholar 

  5. Walters D, Meurer-Grimes B, Rovira I (2001) Antifungal activity of three spermidine conjugates. FEMS Microbiol Lett 201:255–258

    Article  PubMed  CAS  Google Scholar 

  6. Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J (2007) Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol 144:1531–1545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  PubMed  CAS  Google Scholar 

  8. Farooq M, Basra SMA, Rehman H, Hussain M (2008) Seed priming with polyamines improves the germination and early seedling growth in fine rice. J New Seeds 9:145–155

    Article  Google Scholar 

  9. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340

    Article  PubMed  CAS  Google Scholar 

  10. Cao DD, Hu J, Gao CH, Guan YJ, Zang S, Xiao JF (2008) Chilling tolerance of maize can be improved by seed soaking in putrescine. Seed Sci Technol 36:191–197

    Article  Google Scholar 

  11. Yang L, Hong XU, Xiao-xia W, Yun-cheng L (2016) Effect of polyamines on wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:60345–60347

    Google Scholar 

  12. Ali RM, Abbas HM, Kamal RK (2009) The effects of treatment with polyamines on dry matter and some metabolites in salinity-stressed chamomile and sweet majoram seedlings. Plant Soil Environ 55:477–483

    Article  CAS  Google Scholar 

  13. Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19:18003–18024

    Article  PubMed  CAS  Google Scholar 

  14. Rebecca LJ, Das S, Dhanalakshmi V, Anbuselvi S (2010) Effect of exogenous spermidine on salinity tolerance with respect to seed germination. Int J Appl Agric Res 5:163–169

    Google Scholar 

  15. Sedagahat S, Rahemi M (2011) Effect of pre-soaking seeds in polyamines on seed germination and seedling growth of Pistacia vera L. cv. Ghazvini. Int J f Nuts Relat Sci 2:7–14

    Google Scholar 

  16. Huang Y, Lin C, He F, Li Z, Guan Y, Hu Q, Hu J (2017) Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol 17:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chunthaburee S, Sanichon J, Pattanagul W, Theerakulpisut (2014) Alleviation of salt stress in seedlings of Black glutinous rice by seed priming with spermidine and gibberelic acid. Not Bot Horti Agrobot 42:405–413

    CAS  Google Scholar 

  18. Iqbal M, Ashraf M, Rehman S-U, Rha ES (2006) Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat plants under salt stress? Bot Stud 47:239–250

    CAS  Google Scholar 

  19. Ferrando A, Carrasco P, Tiburcio AF (2009) Modulation of seed growth and development by inhibition of polyamine catabolism. Patent WO2009074700

    Google Scholar 

  20. Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond Ser B Biol Sci 367:1441–1452

    Article  CAS  Google Scholar 

  21. Couée I, Hummel I, Sulmon C, Gouesbert G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10

    Article  Google Scholar 

  22. Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    Article  PubMed  CAS  Google Scholar 

  23. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A 96:6529–6534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  26. Flores HE, Galston AW (1982) Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261

    Article  PubMed  CAS  Google Scholar 

  27. Biondi S, Mengoli M, Mott D, Bagni N (1993) Hairy root cultures of Hyosciamus muticus-effect of polyamine biosynthesis inhibitors. Plant Physiol Biochem 31:51–58

    CAS  Google Scholar 

  28. Martin-Tanguy J, Carré M (1993) Polyamines in grapevine microcuttings cultivated in vitro-effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280

    Article  CAS  Google Scholar 

  29. Tiburcio AF, Amin Gendy C, Tran Than Van K (1989) Morphogenesis in tobacco subepidermal cells: putrescine as a marker of root differentiation. Plant Cell Tissue Organ Cult 19:43–54

    Article  CAS  Google Scholar 

  30. Cui X, Ge C, Wang R, Wang H, Chen W, Fu Z, Jiang X, Li J, Wang Y (2010) The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Res 20:576–586

    Article  PubMed  CAS  Google Scholar 

  31. Wu Q-S, Zou Y-N, Liu C-Y, Cheng K (2012) Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange seedlings. Not Bot Horti Agrobot 40:80–85

    Article  CAS  Google Scholar 

  32. Tang W, Newton RJ (2005) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep 24:581–589

    Article  PubMed  CAS  Google Scholar 

  33. Wu Q-S, Zou Y-N, Liu C-Y, Lu T (2010) Interacted effect of arbuscular mycorrizal fungi and polyamines on root system architecture of citrus seedlings. J Integr Biol 11:1675–1681

    Google Scholar 

  34. Tomar PC, Lakra N, Mishra SN (2013) Cadaverine: a lysine catabolite involved in plant growth and development. Plant Signal Behav 8(10)

    Google Scholar 

  35. Gamarnik A, Frydman RB (1991) Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol 97:778–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Strohm AK, Vaughn LM, Masson PH (2015) Natural variation in the expression of ORGANIC CATION TRANSPORTER1 affects root length responses to cadaverine in Arabidopsis. J Exp Bot 66:853–862

    Article  PubMed  CAS  Google Scholar 

  37. Liu T, Dobashi H, Kim DW, Sagor GH, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants 20:151–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sagor GH, Berberich T, Kojima S, Niitsu M, Kusano T (2016) Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Rep 35:1247–1257

    Article  PubMed  CAS  Google Scholar 

  39. Salabert A (1995) Obtaining and use of diamines, polyamines and other complementary active elements from treated natural products. Patent EP0726240A1

    Google Scholar 

  40. Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  42. Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci U S A 96:290–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456

    Article  PubMed  CAS  Google Scholar 

  44. Geuns JM, Smets R, Struyf T, Prinsen E, Valcke R, Van Onckelen H (2001) Apical dominance in Pssu-ipt-transformed tobacco. Phytochemistry 58:911–921

    Article  PubMed  CAS  Google Scholar 

  45. Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  46. Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451

    Article  PubMed  CAS  Google Scholar 

  47. Tran Thanh Van M (1973) Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta 115:87–92

    Article  Google Scholar 

  48. Kaur-Sawhney R, Tiburcio AF, Galston AW (1988) Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173:282–284

    Article  PubMed  CAS  Google Scholar 

  49. Purohit SD, Singhvi A, Nagori R, Vyas S (2007) Polyamines stimulate shoot bud proliferation in Achras sapota grown in culture. Indian J Biotechnol 6:85–90

    CAS  Google Scholar 

  50. Ganesan M, Jayabalan N (2006) Influence of cytokinins, auxins and polyamines on in vitro mass multiplication of cotton (Gossypium hirsutum L. cv. SVPR2). Indian J Exp Biol 44:506–513

    PubMed  CAS  Google Scholar 

  51. Sivanandhan G, Mariashibu TS, Arun M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Eithania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    Article  CAS  Google Scholar 

  52. Bajaj S, Rajam MV (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol 112:1343–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tiburcio AF, Figueras X, Claparols I, Santos M, Torné JM (1991) Improved plant regeneration in maize callus cultures after pretreatment with DL-alpha difluoro-methylarginine. Plant Cell Tissue Organ Cult 27:27–32

    Article  CAS  Google Scholar 

  54. Ammirato PV (1984) Induction, maintenance, and manipulation of development in embryogenic cell suspension cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Academic Press, New York, pp 139–151

    Google Scholar 

  55. Jiménez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395

    Article  PubMed  Google Scholar 

  56. Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Montague MJ, Armstrong TA, Jaworski EG (1979) Polyamine metabolism in embryogenic cells of daucus carota: II. Changes in arginine decarboxylase activity. Plant Physiol 63:341–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223:1433–1435

    Article  PubMed  CAS  Google Scholar 

  59. Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidase and nitric oxid in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  PubMed  CAS  Google Scholar 

  60. Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  PubMed  CAS  Google Scholar 

  61. Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim Biophys Acta 1860:95–105

    Article  PubMed  CAS  Google Scholar 

  62. Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    Article  PubMed  CAS  Google Scholar 

  63. Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dai YR, Wang J (1987) Relation of polyamine titer to photoperiodic induction of flowering in Pharbitis. Plant Sci 51:137–139

    Article  Google Scholar 

  66. Hamasaki N, Galston AW (1990) The polyamines of Xanthium strumarium and their response to photoperiod. Photochem Photobiol 52:181–186

    Article  PubMed  CAS  Google Scholar 

  67. Havelange A, Lejeune P, Bernier G, Kaur-Sawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96:59–65

    Article  CAS  Google Scholar 

  68. Wada N, Shinozaki M, Iwamura H (1994) Flower induction by polyamines and related compounds in seedlings of morning glory (Pharbitis nil cv. Kidachi). Plant Cell Physiol 35:469–472

    CAS  Google Scholar 

  69. Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108:314–320

    Article  CAS  Google Scholar 

  70. Tiburcio AF, Kaur-Sawhney R, Galston AW (1988) Polyamine biosynthesis during vegetative-and floral-bud differentiation in thin-layer tobacco tissues cultures. Plant Cell Physiol 29:1241–1249

    CAS  Google Scholar 

  71. DeCantu LB, Kandeler R (1989) Significance of polyamines for flowering in Spirodela punctata. Plant Cell Physiol 30:455–458

    Google Scholar 

  72. Malmberg RL, McIndoo J (1983) Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305:623–625

    Article  CAS  Google Scholar 

  73. Malmberg RL, McIndoo J (1988) Nicotiana plants with altered polyamine levels and floral organs. Patent US4751348

    Google Scholar 

  74. Gerats AG, Kaye C, Collins C, Malmberg RL (1988) Polyamine levels in petunia genotypes with normal and abnormal floral morphologies. Plant Physiol 86:390–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rastogi R, Sawhney VK (1990) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill.): II. Effects of polyamines and their biosynthetic inhibitors on the development of normal and mutant floral buds cultured in vitro. Plant Physiol 93:446–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lu J-H, Honda C, Moriguchi T (2006) Involvement of polyamines in floral and fruit development. Jpn Agric Res Q 40:51–58

    Article  Google Scholar 

  77. Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    Article  PubMed  CAS  Google Scholar 

  78. Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    Article  PubMed  CAS  Google Scholar 

  79. Jibran R, A Hunter D, P Dijkwel P (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561

    Article  PubMed  CAS  Google Scholar 

  80. Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  81. Kaur-Sawhney R, Flores HE, Galston AW (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol 65:368–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tiburcio AF, Kaur-Sawhney R, Galston AW (1986) Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol 82:375–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically-stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  84. Capell T, Campos JL, Tiburcio AF (1993) Antisenescence properties of guazatine in osmotically-stressed oat leaves. Phytochemistry 33:785–788

    Article  Google Scholar 

  85. Borrell A, Carbonell R, Farràs R, Puig-Parellada P, Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Article  CAS  Google Scholar 

  86. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  PubMed  CAS  Google Scholar 

  87. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    Article  PubMed  CAS  Google Scholar 

  88. Sequera-Mutiozabal MI, Erban A, Kopka J, Atanasov KE, Bastida J, Fotopoulos V, Alcázar R, Tiburcio AF (2016) Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci 7:173

    Article  PubMed  PubMed Central  Google Scholar 

  89. Del Duca S, Serafini-Fracassini D, Cai G (2014) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:120

    PubMed  PubMed Central  Google Scholar 

  90. Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Thompson JE, Tzann-Wei Wang T-W, Lu DL (2003) DNA encoding a plant deoxyhypusine synthase, a plant eukaryotic initiation factor 5A, transgenic plants and a method for controlling senescence programmed and cell death in plants. Patent US 6538182 B1

    Google Scholar 

  92. Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol 52:1223–1235

    Article  PubMed  CAS  Google Scholar 

  93. Wang TW, Zhang CG, Wu W, Nowack LM, Madey E, Thompson JE (2005) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol 138:1372–1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, Kakeyama M, Benno Y, Matsumoto M (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Stabyl GL, Basel RM, Michael S, Reid MS, Dodge LL (1993) Efficacies of commercial anti-ethylene products for fresh cut flowers. HortTechnology 3:199–202

    Google Scholar 

  96. Watkins CB (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389–409

    Article  PubMed  CAS  Google Scholar 

  97. Leshem YY, Wills RBH, Veng-Va Ku V (1998) Evidence for the function of the free radical gas – nitric oxide (NO) – as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  98. Farahi MH, Khalighi A, Kholdbarin B, Akbar-boojar MM, Eshghi S (2013) Morphological responses and vase life of Rosa hybrida cv. dolcvita to polyamines spray in hydroponic system. World Appl Sci J 21:1681–1686

    CAS  Google Scholar 

  99. Ling X, ZhongShen W, Zifa D (2007) Effects of polyamines and penicillin on preservation of cut roses. J Nanjing For Univ Nat Sci Ed 31:53–56

    Google Scholar 

  100. Nada K, Kawaguchi T, Tachibana S (2004) Effects of polyamines in the vase water on the vase life of cut rose flowers. Hortic Res (Japan) 3:101–104

    Article  CAS  Google Scholar 

  101. Dantuluri VSR, Misra RL, Singh VP (2008) Effect of polyamines on post harvest life of gladiolus spikes. J Ornam Hort 11:66–68

    Google Scholar 

  102. Upfold SJ, Van Staden J (1991) Polyamines and carnation flower senescence: endogenous levels and the effect of applied polyamines on senescence. Plant Growth Regul 10:355–362

    Article  CAS  Google Scholar 

  103. Mahgoub MH, Abd El Aziz NG, Mazhar MA (2011) Response of Dahlia pinnata L plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American-Eurasian J Agric Environ Sci 10:769–775

    CAS  Google Scholar 

  104. Iman Talaat M, Bekheta MA, Mahgoub MM (2005) Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int J Agric Biol 7:210–213

    Google Scholar 

  105. Mahros KM, El-Saady MB, Mahgoub MH, Afaf MH, El-Sayed MI (2011) Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. Plant J Am Sci 7:399–408

    Google Scholar 

  106. Gelein C (1984) Catalogue: cut flowers-pot plants-bedding plants. Verenige Bloemenveilingen Aalsmeer, The Netherlands, pp 105–115

    Google Scholar 

  107. Tiburcio AF, Campos JL, Figueras X, Marce M, Capell T, Riera R, Bestford RT (1993) Polyamines and morphogenesis in monocots: experimental systems and mechanisms of action. In: Roubelakis-Angelakis KA, Tran Thanh Van K (eds) Morphogenesis in plants. Plenum Press, New York, pp 113–135

    Chapter  Google Scholar 

  108. Miller SR, Abdulkadri A (2008) The U.S. economic impact of the IR-4 ornamental horticulture project. Dec 4, pp 1–18

    Google Scholar 

Download references

Acknowledgements

A.F.T. acknowledges funding support from Spanish Ministerio de Ciencia e Innovación (BIO2011-29683). R.A. acknowledges further funding support from the Ramón y Cajal Program (RYC-2011-07847) of the Ministerio de Ciencia e Innovación (Spain), the BFU2013-41337-P grant of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (Ministerio de Economía y Competitividad, Spain) and a Marie Curie Career Integration Grant (DISEASENVIRON, PCIG10-GA-2011-303568) of the European Union. R.A. and A.F.T. are members of the Group de Recerca Consolidat 2014 SGR-920 of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Tiburcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tiburcio, A.F., Alcázar, R. (2018). Potential Applications of Polyamines in Agriculture and Plant Biotechnology. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_40

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics