Skip to main content

Library Growth and Protein Expression: Optimal and Reproducible Microtiter Plate Expression of Recombinant Enzymes in E. coli Using MTP Shakers

  • Protocol
  • First Online:
  • 4840 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

Escherichia coli (E. coli) as heterologous host enables the recombinant expression of the desired protein in high amounts. Nevertheless, the expression in such a host, especially by utilizing a strong induction system, can result in insoluble and/or inactive protein fractions (inclusion bodies). Furthermore, the expression of different enzyme variants often leads to a diverse growth behavior of the E. coli clones resulting in the identification of false-positives when screening a mutant library. Thus, we developed a protocol for an optimal and reproducible protein expression in microtiter plates showcased for the expression of the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871. By emerging this protocol, several parameters concerning the expression medium, the cultivation temperatures, shaking conditions as well as time and induction periods for CHMO were investigated. We employed a microtiter plate shaker with humidity and temperature control (Cytomat™) (integrated in a robotic platform) to obtain an even growth and expression over the plates. Our optimized protocol provides a comprehensive overview of the key factors influencing a reproducible protein expression and this should serve as basis for the adaptation to other enzyme classes.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  2. Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  3. Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    Article  CAS  PubMed  Google Scholar 

  4. Tao JH, Xu JH (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt S, Scherkus C, Muschiol J et al (2015) An enzyme cascade synthesis of ε-caprolactone and its oligomers. Angew Chem Int Ed 54:2784–2787

    Article  CAS  Google Scholar 

  6. Sattler JH, Fuchs M, Mutti FG et al (2014) Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid. Angew Chem Int Ed 53:14153–14157

    Article  CAS  Google Scholar 

  7. Dörr M, Fibinger MPC, Last D et al (2016) Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng 113:1421–1432

    Article  PubMed  Google Scholar 

  8. Barclay SS, Woodley JM, Lilly MD et al (2001) Production of cyclohexanone monooxygenase from Acinetobacter calcoaceticus for large scale Baeyer-Villiger monooxygenase reactions. Biotechnol Lett 23:385–388

    Article  CAS  Google Scholar 

  9. Doig SD, O'Sullivan LM, Patel S et al (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzym Microb Technol 28:265–274

    Article  CAS  Google Scholar 

  10. Staudt S, Bornscheuer UT, Menyes U et al (2013) Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone. Enzym Microb Technol 53:288–292

    Article  CAS  Google Scholar 

  11. Walton AZ, Stewart JD (2002) An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol Prog 18:262–268

    Article  CAS  PubMed  Google Scholar 

  12. Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  CAS  PubMed  Google Scholar 

  13. Lee WH, Park JB, Park K et al (2007) Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin CVF, Woodley JM (2006) On oxygen limitation in a whole cell biocatalytic Baeyer–Villiger oxidation process. Biotechnol Bioeng 95:362–369

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira-Torres C, Micheletti M, Lye GJ (2005) Microscale process evaluation of recombinant biocatalyst libraries: application to Baeyer–Villiger monooxygenase catalysed lactone synthesis. Bioprocess Biosyst Eng 28:83–93

    Article  CAS  PubMed  Google Scholar 

  16. Doig SD, Pickering SCR, Lye GJ et al (2002) The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics. Biotechnol Bioeng 80:42–49

    Article  CAS  PubMed  Google Scholar 

  17. Doig SD, Avenell PJ, Bird PA et al (2002) Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol Prog 18:1039–1046

    Article  CAS  PubMed  Google Scholar 

  18. Studier F (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe T. Bornscheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, S., Dörr, M., Bornscheuer, U.T. (2018). Library Growth and Protein Expression: Optimal and Reproducible Microtiter Plate Expression of Recombinant Enzymes in E. coli Using MTP Shakers. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics