Skip to main content

Clostridium botulinum, Clostridium perfringens, Clostridium difficile

  • Chapter
  • First Online:

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Members of the genus Clostridium cause a variety of diseases in humans and animals, sometimes with fatal consequences. These organisms are anaerobic spore-forming rod-shaped bacteria and mostly associated with soil and sediments. Three species, Clostridium botulinum, C. perfringens and C. difficile, have a significant importance because these pathogens are responsible for neuroparalytic botulism (intoxication), food poisoning (toxicoinfection), and antibiotic-associated diarrhea and pseudomembranous colitis (infection) diseases, respectively. Clostridium botulinum strains are grouped into proteolytic and non-proteolytic due to their ability to produce proteases. C. botulinum produces eight antigenically distinct botulinum toxins (A, B, C, D, E, F, G, and H). In foodborne botulism, the botulinum toxin is produced in the food during anaerobic growth. Botulinum toxin is an A–B-type toxin with a zinc-dependent endopeptidase activity. It cleaves SNARE protein complex, which is responsible for the release of neurotransmitter, acetylcholine, from the synaptic vesicles into the neuromuscular junction for transmission of nerve impulse. Lack of acetylcholine release impedes nerve impulse propagation resulting in the onset of flaccid paralysis. The symptoms appear as early as 2 h after ingestion of toxin, and the severity and progression of the disease depend on the amount of toxins being ingested. Early medical intervention involves administration of antibotulinal antisera. C. perfringens causes food poisoning, necrotic enteritis, gas gangrene, myonecrosis, and toxemia. It produces at least 20 different toxins and causes toxicoinfection. There are five types of C. perfringens (A, B, C, D, and E), classified based on the production of four types of extracellular toxins: alpha (α), beta (β), epsilon (ε), and iota (ι). C. perfringens type A strain is generally associated with the foodborne disease. After consumption of vegetative cells, the bacterium begins to sporulate as it encounters acidic pH of the stomach. The enterotoxin (CPE) is produced during sporulation. The enterotoxin binds to the claudin receptor in the tight junction (TJ) and forms a large protein complex with other membrane proteins to form a pore in the membrane that alters the membrane permeability to cause Ca2+ influx and fluid and ion (Na+, Cl) losses. CPE alters the paracellular membrane permeability and promotes diarrhea. Food poisoning is generally self-limiting requiring bed rest and fluid therapy, but in rare cases, myonecrosis and necrotic enteritis diseases could be life-threatening thus patients require hospitalization and antibiotic therapy. Clostridium difficile is a nosocomial (hospital-acquired) human pathogen and causes Clostridium difficile antibiotic-associated diarrhea (CDAD) and pseudomembranous colitis. It produces toxin A (TcdA), toxin B (TcdB), and CDT which cause diarrhea and mucus membrane damage, inflammation leading to diarrhea, and sometimes life-threatening pseudomembranous colitis and megacolon and intestinal perforation. C. difficile association with meat animals and routine isolation from meats support its possible involvement as a foodborne pathogen. Prevention of C. difficile infection is possible by revising the antibiotic prescription practices such as the type of antibiotics, frequency, and duration of use. Probiotics supplement and fecal bacteriotherapy to repopulate the patient’s gut with healthy microbiota, and the surgical removal of infected section of the intestine are used to control recurrent infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Readings

  1. Abt, M.C., McKenney, P.T. and Pamer, E.G. (2016) Clostridium difficile colitis: Pathogenesis and host defence. Nat Rev Microbiol 14, 609–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnon, S.S., Schechter, R., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Fine, A.D., Hauer, J., Layton, M., Lillibridge, S., Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., Swerdlow, D.L. and Tonat, K. (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285, 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  3. Barash, J.R. and Arnon, S.S. (2014) A novel strain of Clostridium botulinum that produces Type B and Type H botulinum toxins. J Infect Dis 209, 183–191.

    Article  CAS  PubMed  Google Scholar 

  4. Barth, H. and Aktories, K. (2011) New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol 90, 944–950.

    Article  CAS  PubMed  Google Scholar 

  5. Barth, H., Fischer, S., Möglich, A. and Förtsch, C. (2015) Clostridial C3 toxins target monocytes/macrophages and modulate their functions. Front Immunol 6, 339.

    Google Scholar 

  6. Bartlett, J. G., Chang, T. W., Gurwith, M., Gorbach, S. L. and Onderdonk, A. B. (1978) Antibiotic-associated pseudomembranous colitis due to toxin-producing Clostridia. N Engl J Med 298, 531–534.

    Article  CAS  PubMed  Google Scholar 

  7. Böhnel, H. and Gessler, F. (2005) Botulinum toxins – cause of botulism and systemic diseases? Vet Res Commun 29, 313.

    Article  PubMed  Google Scholar 

  8. Bokori-Brown, M., Savva, C.G., da Costa, S.P.F., Naylor, C.E., Basak, A.K. and Titball, R.W. (2011) Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J 278, 4589–4601.

    Article  CAS  PubMed  Google Scholar 

  9. Bruggemann, H. (2005) Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity. Curr Opin Microbiol 8, 601.

    Article  CAS  PubMed  Google Scholar 

  10. Brynestad, S. and Granum, P.E. (2002) Clostridium perfringens and foodborne infections. Int J Food Microbiol 74, 195–202.

    Article  PubMed  Google Scholar 

  11. Freedman, J., Shrestha, A. and McClane, B. (2016) Clostridium perfringens enterotoxin: Action, genetics, and translational applications. Toxins 8, 73.

    Article  CAS  PubMed Central  Google Scholar 

  12. García, S. and Heredia, N. (2011) Clostridium perfringens: A dynamic foodborne pathogen. Food Bioprocess Technol 4, 624–630.

    Article  Google Scholar 

  13. Gerding, D.N., Johnson, S., Rupnik, M. and Aktories, K. (2014) Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5, 15–27.

    Google Scholar 

  14. Gorbach, S.L. (2014) John G. Bartlett: Contributions to the Discovery of Clostridium difficile Antibiotic-Associated Diarrhea. Clin Infect Dis 59, S66–S70.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, E.A. and Bradshaw, M. (2001) Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 39, 1703–1722.

    Article  CAS  PubMed  Google Scholar 

  16. Li, J., Uzal, F. and McClane, B. (2016) Clostridium perfringens sialidases: Potential contributors to intestinal pathogenesis and therapeutic targets. Toxins 8, 341.

    Article  CAS  PubMed Central  Google Scholar 

  17. Lindström, M., Heikinheimo, A., Lahti, P. and Korkeala, H. (2011) Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 28, 192–198.

    Article  PubMed  Google Scholar 

  18. Lindstrom, M. and Korkeala, H. (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19, 298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucey, B.P. and Hutchins, G.M. (2004) William H. Welch, MD, and the discovery of Bacillus welchii. Arch Pathol Lab Med 128, 1193–1195.

    Google Scholar 

  20. McClane, B.A. and Chakrabarti, G. (2004) New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe 10, 107.

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell, L.A. and Koval, M. (2010) Specificity of interaction between Clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins 2, 1595–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Novak, J., Peck, M., Juneja, V. and Johnson, E. (2005) Clostridium botulinum and Clostridium perfringens. In Foodborne Pathogens: Microbiology and Molecular Biology eds. Fratamico, P., Bhunia, A. and Smith, J. pp.383–407. Norfolk, UK: Caister Academic Press.

    Google Scholar 

  23. O’Horo, J.C., Jindai, K., Kunzer, B. and Safdar, N. (2014) Treatment of recurrent Clostridium difficile infection: a systematic review. Infection 42, 43–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peck, M.W., Stringer, S.C. and Carter, A.T. (2011) Clostridium botulinum in the post-genomic era. Food Microbiol 28, 183–191.

    Article  PubMed  Google Scholar 

  25. Rossetto, O., Pirazzini, M. and Montecucco, C. (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12, 535–549.

    Article  CAS  PubMed  Google Scholar 

  26. Rupnik, M. and Songer, J.G. (2010) Clostridium difficile: Its potential as a source of foodborne disease. Adv Food Nutr Res 60, 53–66.

    Google Scholar 

  27. Sakurai, J., Nagahama, M., Oda, M., Tsuge, H. and Kobayashi, K. (2009) Clostridium perfringens Iota-toxin: Structure and function. Toxins 1, 208–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sinh, P., Barrett, T.A. and Yun, L. (2011) Clostridium difficile infection and inflammatory bowel disease: A review. Gastroenterol Res Practice 2011, 11.

    Google Scholar 

  29. Sobel, J. (2005) Botulism. Clin Infect Dis 41, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  30. Songer, J.G. (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140, 399–404.

    Article  CAS  PubMed  Google Scholar 

  31. Ting, P.T. and Freiman, A. (2004) The story of Clostridium botulinum: from food poisoning to Botox. Clin Med 4, 258–261.

    Article  PubMed  Google Scholar 

  32. Uzal, F.A., Freedman, J.C., Shrestha, A., Theoret, J.R., Garcia, J., Awad, M.M., Adams, V., Moore, R.J., Rood, J.I. and McClane, B.A. (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9, 361–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wise, M.G. and Siragusa, G.R. (2005) Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl Environ Microbiol 71, 3911–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, A.K. (2018). Clostridium botulinum, Clostridium perfringens, Clostridium difficile . In: Foodborne Microbial Pathogens. Food Science Text Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7349-1_12

Download citation

Publish with us

Policies and ethics