Skip to main content

Spectral Unmixing Methods and Tools for the Detection and Quantitation of Collagen and Other Macromolecules in Tissue Specimens

  • Protocol
  • First Online:
Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1627))

Abstract

Collagen and other components in the extracellular matrix are proving of increasing importance for the understanding of complex cell and tissue interactions in a variety of settings. Detection and quantitation of these components can still prove challenging, and a number of techniques have been developed. We focus here on methods in fluorescence-based assessments, including multiplexed immunodetection and the use of simpler histochemical stains, both complemented by linear unmixing techniques. Typically, differentiating these components requires the use of a set of optical filters to isolate each fluorescent compound from each other and from often bright background autofluorescence signals. However, standard fluorescent microscopes are usually only able to separate a limited number of components. If the emission spectra of the fluorophores are spectrally distinct, but overlapping, sophisticated spectral imaging or computational methods can be used to optimize separation and quantitation. This chapter describes spectral unmixing methodology and associated open-source software tools available to analyze multispectral as well as simple color (RGB) images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mallory FB (1936) The anilin blue collagen stain. Stain Technol 11(3):101–102. doi:10.3109/10520293609110505

    Article  Google Scholar 

  2. Eroschenko VP, diFiore MSH (2013) diFiore’s atlas of histology with functional correlations, 12th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  3. Tadrous PJ (2010) Digital stain separation for histological images. J Microsc 240(2):164–172. doi:10.1111/j.1365-2818.2010.03390.x

    Article  CAS  PubMed  Google Scholar 

  4. Turner NJ, Pezzone MA, Brown BN et al (2013) Quantitative multispectral imaging of Herovici’s polychrome for the assessment of collagen content and tissue remodelling. J Tissue Eng Regen Med 7(2):139–148. doi:10.1002/term.508

    Article  CAS  PubMed  Google Scholar 

  5. von der Mark K, von der Mark H, Timpl R et al (1977) Immunofluorescent localization of collagen types I, II, and III in the embryonic chick eye. Dev Biol 59(1):75–85. doi:10.1016/0012-1606(77)90241-X

    Article  PubMed  Google Scholar 

  6. Hendrix MJC, Hay ED, von der Mark K et al (1982) Immunohistochemical localization of collagen types I and II in the developing chick cornea and tibia by electron microscopy. Invest Ophthalmol Vis Sci 22(3):359–375

    CAS  PubMed  Google Scholar 

  7. Mendler M, Eich-Bender SG, Vaughan L et al (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108(1):191–197. doi:10.1083/jcb.108.1.191

    Article  CAS  PubMed  Google Scholar 

  8. Bautista PA, Yagi Y (2012) Multispectral enhancement towards digital staining. Anal Cell Pathol 35(1):51–55. doi:10.3233/ACP-2011-0038

    Article  Google Scholar 

  9. Keikhosravi A, Bredfeldt JS, Sagar MAK et al (2014) Second-harmonic generation imaging of cancer. In: Waters JC, Wittman T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Academic Press, New York, NY, pp 531–546. doi:10.1016/B978-0-12-420138-5.00028-8

    Chapter  Google Scholar 

  10. Oldenbourg R (1996) A new view on polarization microscopy. Nature 381(27):811–812. doi:10.1038/381811a0

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs KO, Solis O, Tapawan R et al (2003) The effects of an estrogen and glycolic acid cream on the facial skin of postmenopausal women: a randomized histologic study. Cutis 71(6):481–488

    PubMed  Google Scholar 

  12. Shribak M (2015) Polychromatic polarization microscope: bringing colors to a colorless world. Sci Rep 5(17340):1–10. doi:10.1038/srep17340

    Google Scholar 

  13. Zhou L, El-Deiry WS (2009) Multispectral fluorescence imaging. J Nucl Med 50(10):1563–1566. doi:10.2967/jnumed.109.063925

    Article  PubMed  Google Scholar 

  14. Mansfield JR (2014) Multispectral imaging: a review of its technical aspects and applications in anatomic pathology. Vet Pathol 51(1):185–210. doi:10.1177/0300985813506918

    Article  CAS  PubMed  Google Scholar 

  15. Shi S-R, Taylor CR (2014) Antigen retrieval in immunohistochemistry. In: McManus LM, Mitchell RN (eds) Pathobiology of human disease: a dynamic encyclopedia of disease mechanisms. Academic Press, New York, NY, pp 3817–3828. doi:10.1016/B978-0-12-386456-7.07404-9

    Chapter  Google Scholar 

  16. Vinod KR, Jones D, Udupa V (2016) A simple and effective heat induced antigen retrieval method. MethodsX 3:315–319. doi:10.1016/j.mex.2016.04.001

    Article  Google Scholar 

  17. Fukunaga-Kalabis M, Martinez G, Liu ZJ et al (2006) CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J Cell Biol 175(4):563–569. (see supp figures). doi:10.1083/jcb.200602132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69A(8):748–758. doi:10.1002/cyto.a.20319

    Article  Google Scholar 

  19. Levenson RM, Lynch DT, Kobayashi H et al (2008) Multiplexing with multispectral imaging: from mice to microscopy. ILAR J 49(1):78–88. doi:10.1093/ilar.49.1.78

    Article  CAS  PubMed  Google Scholar 

  20. Stack EC, Wang C, Roman KA et al (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70(1):46–58. doi:10.1016/j.ymeth.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  21. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185(7):1135–1148. doi:10.1083/jcb.200903097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verdaasdonk JS, Lawrimore J, Bloom K (2014) Determining absolute protein numbers by quantitative fluorescence microscopy. In: Waters JC, Wittman T (eds) Quantitative imaging in cell biology, Methods in cell biology, vol 123. Academic Press, New York, NY, pp 347–365. doi:10.1016/B978-0-12-420138-5.00019-7

    Chapter  Google Scholar 

  23. Mansfield JR, Gossage KW, Hoyt CC et al (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):041207-041201–041207-041209. doi:10.1117/1.2032458

    Article  Google Scholar 

  24. Boardman JW (1994) Geometric mixture analysis of imaging spectrometry data. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Aug

    Google Scholar 

  25. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J Chemometr 9(1):31–58. doi:10.1002/cem.1180090105

    Article  CAS  Google Scholar 

  26. Bioucas-Dias J, Plaza A, Dobigeon N et al (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):354–379. doi:10.1109/JSTARS.2012.2194696

    Article  Google Scholar 

  27. Liu W-L, Wang L-W, Chen J-M et al (2016) Application of multispectral imaging in quantitative immunohistochemistry study of breast cancer: a comparative study. Tumour Biol 37(4):5013–5024. doi:10.1007/s13277-015-4327-9

    Article  CAS  PubMed  Google Scholar 

  28. Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299

    CAS  PubMed  Google Scholar 

  29. Levenson RM, Harmany ZT, Demos SG et al (2016) Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue. Paper presented at the Proceedings of SPIE

    Google Scholar 

Download references

Acknowledgments

We acknowledge Nenad Bozinovic for providing the MATLAB code for the UnmixingGUI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary T. Harmany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Harmany, Z.T., Fereidouni, F., Levenson, R.M. (2017). Spectral Unmixing Methods and Tools for the Detection and Quantitation of Collagen and Other Macromolecules in Tissue Specimens. In: Rittié, L. (eds) Fibrosis. Methods in Molecular Biology, vol 1627. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7113-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7113-8_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7112-1

  • Online ISBN: 978-1-4939-7113-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics