Skip to main content

Glycoengineering of CHO Cells to Improve Product Quality

  • Protocol
  • First Online:
Heterologous Protein Production in CHO Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1603))

Abstract

Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal RS (2014) What’s fueling the biotech engine-2012 to 2013. Nat Biotechnol 32(1):32–39

    Article  CAS  PubMed  Google Scholar 

  2. Ghaderi D et al (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175

    Article  CAS  PubMed  Google Scholar 

  3. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  CAS  PubMed  Google Scholar 

  4. Lepenies B, Seeberger PH (2014) Simply better glycoproteins. Nat Biotechnol 32(5):443–445

    Article  CAS  PubMed  Google Scholar 

  5. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  PubMed  Google Scholar 

  6. Palomares LA, Estrada-Mondaca S, Ramirez OT (2004) Production of recombinant proteins: challenges and solutions. Methods Mol Biol 267:15–52

    CAS  PubMed  Google Scholar 

  7. Gavel Y, Vonheijne G (1990) Sequence differences between glycosylated and nonglycosylated Asn-X-Thr Ser acceptor sites - implications for protein engineering. Protein Eng 3(5):433–442

    Article  CAS  PubMed  Google Scholar 

  8. An HJ et al (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem 75(20):5628–5637

    Article  CAS  PubMed  Google Scholar 

  9. Stavenhagen K et al (2013) Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom 48(6):i

    Article  CAS  PubMed  Google Scholar 

  10. Varki A, Cummings RD, Esko JD et al (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  11. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833(11):2430–2437

    Article  CAS  PubMed  Google Scholar 

  12. Aebi M et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35(2):74–82

    Article  CAS  PubMed  Google Scholar 

  13. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96(4):885–894

    Article  CAS  PubMed  Google Scholar 

  14. Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153

    Article  CAS  PubMed  Google Scholar 

  15. Padler-Karavani V, Varki A (2011) Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 18(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bosques CJ et al (2011) Chinese hamster ovary cells can produce galactose-alpha-1, 3-galactose antigens on proteins (vol 28, pg 1153, 2010). Nat Biotechnol 29(5):459–459

    Article  CAS  Google Scholar 

  17. Muchmore EA et al (1989) Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264(34):20216–20223

    CAS  PubMed  Google Scholar 

  18. Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112

    Article  CAS  PubMed  Google Scholar 

  20. Croset A et al (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y et al (2008) Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275(9):1939–1948

    Article  CAS  PubMed  Google Scholar 

  22. Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4(3):385–391

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spearman M, Butler M (2015) Glycosylation in cell culture. Anim Cell Culture 9:237–258

    CAS  Google Scholar 

  24. Sareneva T et al (1995) N-Glycosylation of human interferon-gamma - glycans at Asn-25 are critical for protease resistance. Biochem J 308:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32

    Article  CAS  PubMed  Google Scholar 

  26. Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469

    Article  CAS  PubMed  Google Scholar 

  28. Harduin-Lepers A et al (2001) The human sialyltransferase family. Biochimie 83(8):727–737

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q et al (2015) Strategies for engineering protein N-glycosylation pathways in mammalian cells. Methods Mol Biol 1321:287–305

    Article  PubMed  Google Scholar 

  30. Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554

    Article  CAS  PubMed  Google Scholar 

  31. Cole ES et al (1993) Invivo clearance of tissue plasminogen-activator - the complex role of sites of glycosylation and level of sialylation. Fibrinolysis 7(1):15–22

    Article  CAS  Google Scholar 

  32. Schauer R (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena) 107(1):49–64

    Article  CAS  Google Scholar 

  33. Chung CY et al (2015) Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the alpha 2,3 sialylation linkage of mammalian glycoproteins. Biochem Biophys Res Commun 463(3):211–215

    Article  CAS  PubMed  Google Scholar 

  34. Krzewinski-Recchi MA et al (2003) Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. Eur J Biochem 270(5):950–961

    Article  CAS  PubMed  Google Scholar 

  35. Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264(23):13848–13855

    CAS  PubMed  Google Scholar 

  36. Minch SL, Kallio PT, Bailey JE (1995) Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages. Biotechnol Prog 11(3):348–351

    Article  CAS  PubMed  Google Scholar 

  37. Schlenke P et al (1997) Expression of human α2, 6-Sialyltransferase in BHK-21A cells increases the sialylation of coexpressed human erythropoietin: NeuAc-transfer onto GalNAc(βl-4)GlcNAc-R motives. In: Carrondo MT, Griffiths B, Moreira JP (eds) Animal Cell Technology. Springer, The Netherlands, pp 475–480

    Chapter  Google Scholar 

  38. Bragonzi A et al (2000) A new Chinese hamster ovary cell line expressing alpha 2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. BBA-Gen Subjects 1474(3):273–282

    Article  CAS  Google Scholar 

  39. Jassal R et al (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249

    Article  CAS  PubMed  Google Scholar 

  40. Monaco L et al (1996) Genetic engineering of alpha2,6-sialyltransferase in recombinant CHO cells and its effects on the sialylation of recombinant interferon-gamma. Cytotechnology 22(1–3):197–203

    Article  CAS  PubMed  Google Scholar 

  41. Donadio-Andrei S et al (2012) Glycoengineering of protein-based therapeutics. Carbohydrate Chemistry: Chemical and Biological Approaches 38:94–123

    CAS  Google Scholar 

  42. Weikert S et al (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121

    Article  CAS  PubMed  Google Scholar 

  43. Jeong YT et al (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18(12):1945–1952

    CAS  PubMed  Google Scholar 

  44. Stasche R et al (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272(39):24319–24324

    Article  CAS  PubMed  Google Scholar 

  45. Reinke SO et al (2009) Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis. Biol Chem 390(7):591–599

    Article  CAS  PubMed  Google Scholar 

  46. Son YD et al (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21(8):1019–1028

    Article  CAS  PubMed  Google Scholar 

  47. Ferreira H et al (1999) Sialuria in a Portuguese girl: clinical, biochemical, and molecular characteristics. Mol Genet Metab 67(2):131–137

    Article  CAS  PubMed  Google Scholar 

  48. Enns GM et al (2001) Clinical course and biochemistry of sialuria. J Inherit Metab Dis 24(3):328–336

    Article  CAS  PubMed  Google Scholar 

  49. Hauser H, Wagner R (eds) (2014) Animal cell biotechnology. Biologics production. De Gruyter, Berlin, Boston

    Google Scholar 

  50. Baker KN et al (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202

    Article  CAS  PubMed  Google Scholar 

  51. Hills AE et al (2001) Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75(2):239–251

    Article  CAS  PubMed  Google Scholar 

  52. Wong NS et al (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336

    Article  CAS  PubMed  Google Scholar 

  53. Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648

    Article  CAS  PubMed  Google Scholar 

  54. Lawrence SM et al (2001) Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconj J 18(3):205–213

    Article  CAS  PubMed  Google Scholar 

  55. Jeong YT et al (2009) Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnol Appl Biochem 52(Pt 4):283–291

    Article  CAS  PubMed  Google Scholar 

  56. Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93(5):1005–1016

    Article  CAS  PubMed  Google Scholar 

  57. Demetriou M et al (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409(6821):733–739

    Article  CAS  PubMed  Google Scholar 

  58. Misaizu T et al (1995) Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86(11):4097–4104

    CAS  PubMed  Google Scholar 

  59. Fukuta K et al (2000) Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10(4):421–430

    Article  CAS  PubMed  Google Scholar 

  60. Yin B et al (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351

    Article  CAS  PubMed  Google Scholar 

  61. Fukuta K et al (2000) Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj J 17(12):895–904

    Article  CAS  PubMed  Google Scholar 

  62. Chan KF, Goh JSY, Song Z (2014) Improving sialylation of recombinant biologics for enhanced therapeutic efficacy. Pharmaceutical Bioprocessing 2(5):363–366

    Article  Google Scholar 

  63. Goh JS et al (2010) RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metab Eng 12(4):360–368

    Article  CAS  PubMed  Google Scholar 

  64. Iskratsch T et al (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 386(2):133–146

    Article  CAS  PubMed  Google Scholar 

  65. Goh JS et al (2014) Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Bioengineered 5(4):269–273

    Article  PubMed  PubMed Central  Google Scholar 

  66. Goh JS et al (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 9(1):100–109

    Article  CAS  PubMed  Google Scholar 

  67. Ngantung FA et al (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95(1):106–119

    Article  CAS  PubMed  Google Scholar 

  68. Burg M, Muthing J (2001) Characterization of cytosolic sialidase from Chinese hamster ovary cells: part I: cloning and expression of soluble sialidase in Escherichia coli. Carbohydr Res 330(3):335–346

    Article  CAS  PubMed  Google Scholar 

  69. Munzert E et al (1997) Production of recombinant human antithrombin III on 20-L bioreactor scale: correlation of supernatant neuraminidase activity, desialylation, and decrease of biological activity of recombinant glycoprotein. Biotechnol Bioeng 56(4):441–448

    Article  CAS  PubMed  Google Scholar 

  70. Hinek A et al (2006) Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly. J Biol Chem 281(6):3698–3710

    Article  CAS  PubMed  Google Scholar 

  71. Kakugawa Y et al (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99(16):10718–10723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seyrantepe V et al (2004) Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J Biol Chem 279(35):37021–37029

    Article  CAS  PubMed  Google Scholar 

  73. de Geest N et al (2002) Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice. Hum Mol Genet 11(12):1455–1464

    Article  PubMed  Google Scholar 

  74. Gramer MJ et al (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Biotechnology (N Y) 13(7):692–698

    Article  CAS  Google Scholar 

  75. Ferrari J et al (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M et al (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105(6):1094–1105

    CAS  PubMed  Google Scholar 

  77. Figueroa B Jr et al (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5(4):230–245

    Article  CAS  PubMed  Google Scholar 

  78. Reed JC et al (1996) Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 406:99–112

    Article  CAS  PubMed  Google Scholar 

  79. Kim R (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333(2):336–343

    Article  CAS  PubMed  Google Scholar 

  80. Lee JH, Kim YG, Lee GM (2015) Effect of Bcl-xL overexpression on sialylation of Fc-fusion protein in recombinant Chinese hamster ovary cell cultures. Biotechnol Prog 31(4):1133–1136

    Article  CAS  PubMed  Google Scholar 

  81. Rhee WJ, Lee EH, Park TH (2009) Expression of Bombyx mori 30Kc19 protein in Escherichia coli and Its anti-apoptotic effect in Sf9 Cell. Biotechnol Bioproc Eng 14(5):645–650

    Article  CAS  Google Scholar 

  82. Wang Z et al (2011) Enhancement of recombinant human EPO production and sialylation in chinese hamster ovary cells through Bombyx mori 30Kc19 gene expression. Biotechnol Bioeng 108(7):1634–1642

    Article  CAS  PubMed  Google Scholar 

  83. Park JH et al (2012) Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Appl Microbiol Biotechnol 96(3):671–683

    Article  CAS  PubMed  Google Scholar 

  84. Jones J, Krag SS, Betenbaugh MJ (2005) Controlling N-linked glycan site occupancy. Biochim Biophys Acta 1726(2):121–137

    Article  CAS  PubMed  Google Scholar 

  85. Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209(2):331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mononen I, Karjalainen E (1984) Structural comparison of protein sequences around potential N-glycosylation sites. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology 788(3):364–367

    Article  CAS  Google Scholar 

  87. Shakin-Eshleman SH, Spitalnik SL, Kasturi L (1996) The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. J Biol Chem 271(11):6363–6366

    Article  CAS  PubMed  Google Scholar 

  88. Kasturi L et al (1995) The hydroxy amino acid in an Asn-X-Ser/Thr sequon can influence N-linked core glycosylation efficiency and the level of expression of a cell surface glycoprotein. J Biol Chem 270(24):14756–14761

    Article  CAS  PubMed  Google Scholar 

  89. Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84(Suppl 1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Egrie JC et al (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31(4):290–299

    Article  CAS  PubMed  Google Scholar 

  91. Perlman S et al (2003) Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J Clin Endocrinol Metab 88(7):3227–3235

    Article  CAS  PubMed  Google Scholar 

  92. Stork R et al (2008) N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 283(12):7804–7812

    Article  CAS  PubMed  Google Scholar 

  93. Kronman C et al (1995) Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J 311(Pt 3):959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chitlaru T et al (2002) Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. Biochem J 363(Pt 3):619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kronman C et al (2000) Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem 275(38):29488–29502

    Article  CAS  PubMed  Google Scholar 

  96. Chitlaru T et al (2001) Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Biochem J 354(Pt 3):613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ferrara C et al (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861

    Article  CAS  PubMed  Google Scholar 

  98. Elliott S et al (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32(12):1146–1155

    Article  CAS  PubMed  Google Scholar 

  99. Meuris L et al (2014) GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat Biotechnol 32(5):485–489

    Article  CAS  PubMed  Google Scholar 

  100. Yang Z et al (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation (grant no. 1512265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Betenbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, Q., Yin, B., Chung, CY., Betenbaugh, M.J. (2017). Glycoengineering of CHO Cells to Improve Product Quality. In: Meleady, P. (eds) Heterologous Protein Production in CHO Cells. Methods in Molecular Biology, vol 1603. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6972-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6972-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6971-5

  • Online ISBN: 978-1-4939-6972-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics