Skip to main content

Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture

  • Protocol
  • First Online:
Heterologous Protein Production in CHO Cells

Abstract

Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger M, Kaup M, Blanchard V (2012) Protein glycosylation and its impact on biotechnology. Adv Biochem Eng Biotechnol 127:165–185. doi:10.1007/10_2011_101

    CAS  PubMed  Google Scholar 

  2. Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 50(1–3):57–76. doi:10.1007/s10616-005-4537-x

    Article  CAS  PubMed  Google Scholar 

  3. Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J (2013) Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 34(4):281–299. doi:10.3109/07388551.2013.793649

    Article  PubMed  Google Scholar 

  4. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949. doi:10.1093/glycob/cwp079

    Article  CAS  PubMed  Google Scholar 

  5. Bruhlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H (2015) Tailoring recombinant protein quality by rational media design. Biotechnol Prog 31(3):615–629. doi:10.1002/btpr.2089

    Article  PubMed  Google Scholar 

  6. Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27. doi:10.1016/j.jbiotec.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  7. Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89(2):164–177. doi:10.1002/bit.20317

    Article  PubMed  Google Scholar 

  8. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347

    Article  CAS  PubMed  Google Scholar 

  9. Nahrgang S, Kkagten E, De Jesus M, Bourgeois M, Déjardin S, Von Stockar U, Marison IW (2002) The effect of cell line, transfection procedure and reactor conditions on the glycosylation of recombinant human anti-rhesus D IgGl. In: Bernard A, Griffiths B, Noé W, Wurm F (eds) Animal cell technology: products from cells, cells as products. Springer, The Netherlands, pp 259–261. doi:10.1007/0-306-46875-1_59

    Google Scholar 

  10. Fan Y, Jimenez Del Val I, Muller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112(3):521–535. doi:10.1002/bit.25450

    Article  CAS  PubMed  Google Scholar 

  11. Fan Y, Jimenez Del Val I, Muller C, Lund AM, Sen JW, Rasmussen SK, Kontoravdi C, Baycin-Hizal D, Betenbaugh MJ, Weilguny D, Andersen MR (2015) A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture. Biotechnol Bioeng 112(10):2172–2184. doi:10.1002/bit.25620

    Article  CAS  PubMed  Google Scholar 

  12. Kildegaard HF, Fan Y, Sen JW, Larsen B, Andersen MR (2016) Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng 113(2):359–366. doi:10.1002/bit.25715

    Article  CAS  PubMed  Google Scholar 

  13. Schilling BM, Gangloff S, Kothari D, Leister K, Matlock L, Zegarelli SG, Joosten CE, Basch JD, Sakhamuri S, Lee SS (2008) Production quality enhancements in mammalian cell culture process for protein production. US Patent 7,332,303

    Google Scholar 

  14. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602. doi:10.1002/bit.23075

    Article  CAS  PubMed  Google Scholar 

  15. St Amand MM, Tran K, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Controllability analysis of protein glycosylation in CHO cells. PLoS One 9(2):e87973. doi:10.1371/journal.pone.0087973

    Article  PubMed  PubMed Central  Google Scholar 

  16. St Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng 111(10):1957–1970. doi:10.1002/bit.25251

    Article  CAS  PubMed  Google Scholar 

  17. Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286. doi:10.1016/j.jbiotec.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68(6):637–646

    Article  CAS  PubMed  Google Scholar 

  19. Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549. doi:10.1002/bit.21141

    Article  CAS  PubMed  Google Scholar 

  20. Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132. doi:10.1016/j.ymben.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  21. Slade PG, Caspary RG, Nargund S, Huang CJ (2016) Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol Bioeng 7(113):1468–1480. doi:10.1002/bit.25924

    Article  Google Scholar 

  22. Zupke C, Brady LJ, Slade PG, Clark P, Caspary RG, Livingston B, Taylor L, Bigham K, Morris AE, Bailey RW (2015) Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels. Biotechnol Prog 31(5):1433–1441. doi:10.1002/btpr.2136

    Article  CAS  PubMed  Google Scholar 

  23. Lamotte D, Buckberry L, Monaco L, Soria M, Jenkins N, Engasser JM, Marc A (1999) Na-butyrate increases the production and alpha2,6-sialylation of recombinant interferon-gamma expressed by alpha2,6- sialyltransferase engineered CHO cells. Cytotechnology 29(1):55–64. doi:10.1023/A:1008080432681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong JK, Lee SM, Kim KY, Lee GM (2014) Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 98(12):5417–5425. doi:10.1007/s00253-014-5596-8

    Article  CAS  PubMed  Google Scholar 

  25. Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31

    Article  CAS  PubMed  Google Scholar 

  26. Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ (2010) Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng 105(6):1048–1057. doi:10.1002/bit.22644

    CAS  PubMed  Google Scholar 

  27. Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18(1):129–138. doi:10.1021/bp0101334

    Article  CAS  PubMed  Google Scholar 

  29. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202

    Article  CAS  PubMed  Google Scholar 

  30. Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336. doi:10.1002/bit.22812

    Article  CAS  PubMed  Google Scholar 

  31. Kunkel JP, Jan DC, Jamieson JC, Butler M (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 62(1):55–71

    Article  CAS  PubMed  Google Scholar 

  32. Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15(1–3):217–221

    Article  CAS  PubMed  Google Scholar 

  33. Lin AA, Kimura R, Miller WM (1993) Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng 42(3):339–350. doi:10.1002/bit.260420311

    Article  CAS  PubMed  Google Scholar 

  34. Hossler P (2012) Protein glycosylation control in Mammalian cell culture: past precedents and contemporary prospects. Adv Biochem Eng Biotechnol 127:187–219. doi:10.1007/10_2011_113

    CAS  PubMed  Google Scholar 

  35. Zanghi JA, Mendoza TP, Schmelzer AE, Knop RH, Miller WM (1998) Role of nucleotide sugar pools in the inhibition of NCAM polysialylation by ammonia. Biotechnol Prog 14(6):834–844. doi:10.1021/bp9800945

    Article  CAS  PubMed  Google Scholar 

  36. Kimura R, Miller WM (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 13(3):311–317. doi:10.1021/bp9700162

    Article  CAS  PubMed  Google Scholar 

  37. Muthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Karst U, Peter-Katalinic J (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83(3):321–334. doi:10.1002/bit.10673

    Article  PubMed  Google Scholar 

  38. Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89(3):345–356. doi:10.1002/bit.20353

    Article  CAS  PubMed  Google Scholar 

  39. Borys MC, Linzer DI, Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology 11(6):720–724

    Article  CAS  PubMed  Google Scholar 

  40. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044. doi:10.1002/bit.21013

    Article  CAS  PubMed  Google Scholar 

  41. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298. doi:10.1002/bit.10566

    Article  CAS  PubMed  Google Scholar 

  42. Agarabi CD, Schiel JE, Lute SC, Chavez BK, Boyne MT 2nd, Brorson KA, Khan MA, Read EK (2015) Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody. J Pharm Sci 104(6):1919–1928. doi:10.1002/jps.24420

    Article  CAS  PubMed  Google Scholar 

  43. Senger RS, Karim MN (2003) Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol Prog 19(4):1199–1209. doi:10.1021/bp025715f

    Article  CAS  PubMed  Google Scholar 

  44. Robinson DK, Chan CP, Yu Lp C, Tsai PK, Tung J, Seamans TC, Lenny AB, Lee DK, Irwin J, Silberklang M (1994) Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotechnol Bioeng 44(6):727–735. doi:10.1002/bit.260440609

    Article  CAS  PubMed  Google Scholar 

  45. Pacis E, Yu M, Autsen J, Bayer R, Li F (2011) Effects of cell culture conditions on antibody N-linked glycosylation—what affects high mannose 5 glycoform. Biotechnol Bioeng 108(10):2348–2358. doi:10.1002/bit.23200

    Article  CAS  PubMed  Google Scholar 

  46. Sha S, Agarabi C, Brorson K, Lee DY, Yoon S (2016) N-glycosylation design and control of therapeutic monoclonal antibodies. Trends Biotechnol 34(10):835–846. doi:10.1016/j.tibtech.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  47. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622. doi:10.1002/bit.20151

    Article  CAS  PubMed  Google Scholar 

  48. Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908. doi:10.1002/bit.20326

    Article  CAS  PubMed  Google Scholar 

  49. Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121. doi:10.1038/15104

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425(3):441–452

    Article  CAS  PubMed  Google Scholar 

  51. Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249. doi:10.1006/bbrc.2001.5382

    Article  CAS  PubMed  Google Scholar 

  52. Ferrari J, Gunson J, Lofgren J, Krummen L, Warner TG (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595

    Article  CAS  PubMed  Google Scholar 

  53. Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93(5):1005–1016. doi:10.1002/bit.20815

    Article  CAS  PubMed  Google Scholar 

  54. Chenu S, Gregoire A, Malykh Y, Visvikis A, Monaco L, Shaw L, Schauer R, Marc A, Goergen JL (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta 1622(2):133–144

    Article  CAS  PubMed  Google Scholar 

  55. Maszczak-Seneczko D, Olczak T, Jakimowicz P, Olczak M (2011) Overexpression of UDP-GlcNAc transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation. FEBS Lett 585(19):3090–3094. doi:10.1016/j.febslet.2011.08.038

    Article  CAS  PubMed  Google Scholar 

  56. Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32. doi:10.1016/j.jbiotec.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  57. Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130(3):300–310. doi:10.1016/j.jbiotec.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  58. Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84. doi:10.1186/1472-6750-7-84

    Article  PubMed  PubMed Central  Google Scholar 

  59. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294

    Article  CAS  PubMed  Google Scholar 

  60. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180. doi:10.1038/6179

    Article  CAS  PubMed  Google Scholar 

  61. North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285(8):5759–5775. doi:10.1074/jbc.M109.068353

    Article  CAS  PubMed  Google Scholar 

  62. von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618. doi:10.1093/glycob/cwq109

    Article  Google Scholar 

  63. Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. doi:10.1038/nbt.3280

    Article  CAS  PubMed  Google Scholar 

  64. Hanko VP, Heckenberg A, Rohrer JS (2004) Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection. J Biomol Tech 15(4):317–324

    PubMed  PubMed Central  Google Scholar 

  65. Jimenez Del Val I, Kyriakopoulos S, Polizzi KM, Kontoravdi C (2013) An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Anal Biochem 443(2):172–180. doi:10.1016/j.ab.2013.09.005

    Article  Google Scholar 

  66. Kaas CS, Bolt G, Hansen JJ, Andersen MR, Kristensen C (2015) Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines. Biotechnol J 10(7):1081–1089. doi:10.1002/biot.201400667

    Article  CAS  PubMed  Google Scholar 

  67. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30. doi:10.1021/bp049807b

    Article  CAS  PubMed  Google Scholar 

  69. Pande S, Rahardjo A, Livingston B, Mujacic M (2015) Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines. Biotechnol Bioeng 112(7):1383–1394. doi:10.1002/bit.25551

    Article  CAS  PubMed  Google Scholar 

  70. Castro PM, Ison AP, Hayter PM, Bull AT (1995) The macroheterogeneity of recombinant human interferon-gamma produced by Chinese-hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol Appl Biochem 21(Pt 1):87–100

    CAS  PubMed  Google Scholar 

  71. Jenkins N, Castro P, Menon S, Ison A, Bull A (1994) Effect of lipid supplements on the production and glycosylation of recombinant interferon-gamma expressed in CHO cells. Cytotechnology 15(1–3):209–215

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhou Fan or Mikael Rørdam Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fan, Y., Kildegaard, H.F., Andersen, M.R. (2017). Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture. In: Meleady, P. (eds) Heterologous Protein Production in CHO Cells. Methods in Molecular Biology, vol 1603. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6972-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6972-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6971-5

  • Online ISBN: 978-1-4939-6972-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics