Skip to main content

qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  CAS  Google Scholar 

  2. Agrawal S, Prajapati R (2012) Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol 4:1528–1535

    Google Scholar 

  3. Swierczewska M, Liu G, Lee S et al (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41:2641–2655

    Article  CAS  Google Scholar 

  4. Etzioni R, Urban N, Ramsey S et al (2003) The case for early detection. Nat Rev Cancer 3:243–252

    Article  CAS  Google Scholar 

  5. Li J, Dobrucki LW, Marjanovic M et al (2015) Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys Med Biol 60:727–739

    Article  Google Scholar 

  6. Zhang R, Pan D, Cai X et al (2015) alphaVbeta3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics 5:124–133

    Article  Google Scholar 

  7. Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509

    Article  CAS  Google Scholar 

  8. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    Article  CAS  Google Scholar 

  9. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  CAS  Google Scholar 

  10. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887

    Article  CAS  Google Scholar 

  11. Arao T, Matsumoto K, Furuta K et al (2011) Acquired drug resistance to vascular endothelial growth factor receptor 2 tyrosine kinase inhibitor in human vascular endothelial cells. Anticancer Res 31:2787–2796

    CAS  Google Scholar 

  12. Li J, Brown LF, Hibberd MG et al (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811

    CAS  Google Scholar 

  13. Brown LF, Berse B, Jackman RW et al (1995) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 26:86–91

    Article  CAS  Google Scholar 

  14. Gerritsen ME, Tomlinson JE, Zlot C et al (2003) Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 140:595–610

    Article  CAS  Google Scholar 

  15. Dougher M, Terman BI (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18:1619–1627

    Article  CAS  Google Scholar 

  16. Duval M, Bédard-Goulet S, Delisle C et al (2003) Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278:20091–20097

    Article  CAS  Google Scholar 

  17. Guo Y, Xiao P, Lei S et al (2008) How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin 40:426–436

    Article  CAS  Google Scholar 

  18. Bhargava R, Gerald WL, Li AR et al (2005) EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 18:1027–1033

    Article  CAS  Google Scholar 

  19. Xu J, Chai H, Ehinger K et al (2014) Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. J Gen Physiol 144:81–104

    Article  CAS  Google Scholar 

  20. Faratian D, Christiansen J, Gustavson M et al (2011) Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence. J Vis Exp 56:e3334

    Google Scholar 

  21. Chen S, Guo X, Imarenezor O et al (2015) Quantification of VEGFRs, NRP1, and PDGFRs on endothelial cells and fibroblasts reveals serum, Intra-Family Ligand, and Cross-Family Ligand Regulation. Cell Mol Bioeng 8:383–403

    Article  CAS  Google Scholar 

  22. Rocha-Martins M, Njaine B, Silveira MS (2012) Avoiding pitfalls of internal controls: validation of reference genes for analysis by qRT-PCR and Western blot throughout rat retinal development. PloS one 7(e43028)

    Google Scholar 

  23. Vigelsø A, Dybboe R, Hansen CN et al (2015) GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985) 118:386–394

    Article  Google Scholar 

  24. Baumgartner R, Umlauf E, Veitinger M et al (2013) Identification and validation of platelet low biological variation proteins, superior to GAPDH, actin and tubulin, as tools in clinical proteomics. J Proteomics 94:540–551

    Article  CAS  Google Scholar 

  25. Nguyen R, Perfetto S, Mahnke YD et al (2013) Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 83:306–315

    Article  Google Scholar 

  26. Wheeless LL, Coon JS, Cox C et al (1989) Measurement variability in DNA flow cytometry of replicate samples. Cytometry 10:731–738

    Article  CAS  Google Scholar 

  27. Pannu KK, Joe ET, Iyer SB (2001) Performance evaluation of quantiBRITE phycoerythrin beads. Cytometry 45:250–258

    Article  CAS  Google Scholar 

  28. Wang L, Abbasi F, Gaigalas AK et al (2006) Comparison of fluorescein and phycoerythrin conjugates for quantifying CD20 expression on normal and leukemic B-cells. Cytometry B Clin Cytom 70:410–415

    Article  Google Scholar 

  29. Imoukhuede PI, Dokun AO, Annex BH et al (2013) Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 304:H1085–H1093

    Article  CAS  Google Scholar 

  30. Napione L, Pavan S, Veglio A et al (2012) Unraveling the influence of endothelial cell density on VEGF-A signaling. Blood 119:5599–5607

    Article  CAS  Google Scholar 

  31. Weddell JC, Imoukhuede PI (2014) Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PloS one 9:e97271

    Article  Google Scholar 

  32. Weddell JC, Imoukhuede PI. Integrative meta-modeling ranks RTK signaling and identifies connection between nuclear translocation and extracellular ligand concentrations. In: American Institute of Chemical Engineers. San Francisco, CA; 2016

    Google Scholar 

  33. Chen S., Ansari A., Sterrett W., et al. (2014). Current state-of-the-art and future directions in systems biology. http://ojs.unsysdigital.com/index.php/pcs/article/view/148

  34. Imoukhuede PI, Popel AS (2014) Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med 3:225–244

    Article  CAS  Google Scholar 

  35. Imoukhuede PI, Popel AS (2011) Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res 317:955–965

    Article  CAS  Google Scholar 

  36. Imoukhuede PI, Popel AS (2012) Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PloS one 7:e44791

    Article  Google Scholar 

  37. Roxworthy BJ, Johnston MT, Lee-Montiel FT et al (2014) Plasmonic optical trapping in biologically relevant media. PloS one 9:e93929

    Article  Google Scholar 

  38. TrypLE™ Express Enzyme (1X), phenol red—Life Technologies, https://www.lifetechnologies.com/order/catalog/product/12605036

  39. Miller MA, Meyer AS, Beste MT et al (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 110:E2074–E2083

    Article  CAS  Google Scholar 

  40. Guaiquil VH, Swendeman S, Zhou W et al (2010) ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J Mol Med (Berl) 88:497–505

    Article  CAS  Google Scholar 

  41. Weskamp G, Mendelson K, Swendeman S et al (2010) Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res 106:932–940

    Article  CAS  Google Scholar 

  42. Delano FA, Chen AY, Wu K-IS et al (2011) The autodigestion and receptor cleavage in diabetes and hypertension. Drug Discov Today Dis Models 8:37–46

    Article  CAS  Google Scholar 

  43. Purdue University Cytometry Laboratories Catalog of Free Flow Cytometry Software. http://www.cyto.purdue.edu/flowcyt/software/Catalog.htm

  44. Holton SE, Walsh MJ, Bhargava R (2011) Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging. Analyst 136:2953

    Article  CAS  Google Scholar 

  45. Chan V, Zorlutuna P, Jeong JH et al (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062

    Article  CAS  Google Scholar 

  46. Qayyum MA, Kwak JT, Insana MF (2015) Stromal-epithelial responses to fractionated radiotherapy in a breast cancer microenvironment. Cancer Cell Int 15:67

    Article  Google Scholar 

  47. Lyer S, Bishop J, Abrams B et al (1997) QuantiBRITE: a new standard for PE flourescence quantitation. White Paper, Becton Dickinson Immunocytometry Systems, San Jose, CA, In

    Google Scholar 

  48. Houtz B, Trotter J, Sasaki D (2004) Tips on cell preparation for flow cytometric analysis and sorting. BD FACService Technotes 4:3–4

    Google Scholar 

  49. Ormerod MG, Imrie PR Flow cytometry. In: Jeffrey W. Pollard and John M. Walker, Animal cell culture. Humana Press, New Jersey, pp 543–558

    Google Scholar 

  50. Schmid I, Uittenbogaart CH, Giorgi JV (1994) Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15:12–20

    Article  CAS  Google Scholar 

  51. Rao CR Diversity: its measurement, decomposition, apportionment and analysis. Sankhya A44:1–22

    Google Scholar 

  52. Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theor Popul Biol 21:24–43

    Article  Google Scholar 

  53. Rao CR (2010) Quadratic entropy and analysis of diversity. Sankhya A 72:70–80

    Article  Google Scholar 

  54. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  55. Potts SJ, Krueger JS, Landis ND et al (2012) Evaluating tumor heterogeneity in immunohistochemistry-stained breast cancer tissue. Lab Invest 92:1342–1357

    Article  Google Scholar 

  56. Gough AH, Chen N, Shun TY et al (2014) Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery. PloS one 9:e102678

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Barbara Pilas for her advice and help with flow cytometry. We would also like to thank Spencer B. Mamer and Ali Ansari for their help with editing. Finally, we would like to thank the American Heart Association Grant #16SDG26940002, American Cancer Society Illinois Division Basic Research Grant #282802, and National Science Foundation CBET Grant #1512598 for funding support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chen, S., Weddell, J., Gupta, P., Conard, G., Parkin, J., Imoukhuede, P.I. (2017). qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics