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Abstract

Computational approaches are useful tools to interpret and guide experiments to expedite the 

antibiotic drug design process. Structure based drug design (SBDD) and ligand based drug design 

(LBDD) are the two general types of computer-aided drug design (CADD) approaches in 

existence. SBDD methods analyze macromolecular target 3-dimensional structural information, 

typically of proteins or RNA, to identify key sites and interactions that are important for their 

respective biological functions. Such information can then be utilized to design antibiotic drugs 

that can compete with essential interactions involving the target and thus interrupt the biological 

pathways essential for survival of the microorganism(s). LBDD methods focus on known 

antibiotic ligands for a target to establish a relationship between their physiochemical properties 

and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can 

be used for optimization of known drugs or guide the design of new drugs with improved activity. 

In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a 

special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug 

discoveries.
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1. Introduction

Despite the fact that numerous antibiotic drugs are available and have been routinely used 

for a much longer time than most other drugs, the fight between humans and the surrounding 

bacteria responsible for infections are ongoing and will be so for the foreseeable future. 

Contributing to this is the steady rise of antibiotics drug resistance leading to the need for 

new antibiotics (1, 2). Toward the design of new antibiotics, computer-aided drug design 

(CADD) can be combined with wet-lab techniques to elucidate the mechanism of drug 

resistance, to search for new antibiotic targets and to design novel antibiotics for both known 

and new targets. Notably CADD methods can produce an atomic level structure-activity 
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relationship (SAR) used to facilitate the drug design process thereby minimizing time and 

costs (3, 4).

Understanding the atomic-detailed mechanism behind the antibiotics resistance helps to 

reveal limitations in current antibiotics and shed light on the design of new drugs. For 

examples, Trylska et al. studied the effects of mutations at the bacterial ribosomal A-site 

using molecular dynamics (MD) simulations to reveal the origins of bacterial resistance to 

aminoglycosidic antibiotics (5). Our lab studied the impact of ribosomal modification on the 

binding of the antibiotic telithromycin using a combined Grand Canonical Monte Carlo 

(GCMC)/Molecular Dynamics (MD) simulation methodology (6, 7) and revealed atom-level 

details of how those modifications lead to resistance that will be of utility to improve the 

activity and spectrum of macrolide analogs thereby minimizing resistance (8).

An important alternative to solve the antibiotic resistance issue is the identification of new 

antibiotic targets that may represent novel mechanisms essential for bacterial survival. For 

example, researchers used bioinformatics approaches to screen various databases 

computationally and identified seven enzymes involved in bacterial metabolic pathways as 

well as 15 non-homologous proteins located on membranes in the gram positive bacterium 

Staphylococcus aureus (SA), thereby indicating them as potential targets (9). Such findings 

may help to overcome the resistance of this bacterium to common antibiotics such as 

methicillin, fluoroquinolones and oxazolidinones. An example of a recently identified novel 

antibiotic target is the protein heme oxygenase, involved in the metabolism of heme by 

bacteria as required to access iron (10–12). In collaborative studies with the Wilks lab, we 

have successfully applied CADD techniques to identify inhibitors of the bacterial heme 

oxygenases from Pseudomonas aeruginosa and Neisseria meningitides, thereby confirming 

the potential role of heme oxygenases as a novel antimicrobial targets (13, 14).

Researchers are also continuing to look for new antibiotics against existing targets and 

computational approaches have been successfully used in a number of studies. Using in 
silico database screening, Chang et al. found a new series of non-β-lactam antibiotics, the 

oxadiazoles, which can inhibit penicillin-binding protein 2a (PBP2a) of methicillin-resistant 

SA (MRSA), the cause of most infections in hospitals (15). Using ligand-based drug design 

(LBDD), our lab with Andrade and coworkers investigated analogs of the third-generation 

ketolide antibiotic telithromycin as a possible means to address the bacterial resistance 

problem associated with that class of antibiotics (16–18). In another study, based on the 3D 

structure of the complex of human defensin peptide HNP1 with Lipid II, which serves as 

precursor for bacterial cell wall biosynthesis and is a validated target for antibiotics, our lab 

designed a simple pharmacophore model and used it in a database screen to search for low 

weight defensin mimetics (19). From that effort, a lead compound was identified that targets 

Lipid II with high specificity and affinity. Notably, this is the first example of a small 

molecular weight compound that shows promising activity against Lipid II. Lead compound 

derivatives were subsequently identified again using CADD in combination with medicinal 

chemistry (20) and the accumulated SAR information will facilitate the development of next 

generation antibiotics targeting gram positive pathogenic bacteria.
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Figure 1 illustrates the basic CADD workflow that can be interactively used with 

experimental techniques to identify novel lead compounds as well as direct iterative ligand 

optimization (3, 4, 21, 22). The process starts with the biological identification of a putative 

target to which ligand binding should lead to antimicrobial activity. In SDBB, the 3D 

structure of the target can be identified by X-ray crystallography or NMR or using homology 

modeling. This lays the foundation for CADD SBDD screening using the methods described 

below. LBDD is used in the absence of the target 3D structure with the central theme being 

the development of an SAR from which information on modification of the lead compound 

to improve activity can be obtained. Information from the CADD methods is then used to 

design compounds that are subjected to chemical synthesis and biological assay, with the 

information from those experiments used to further develop the SAR, yielding further 

improvements in the compounds with respect to activity as well as absorption, disposition, 

metabolism and excretion (ADME) considerations (23). Notably, CADD methods are 

evolving with researchers continually updating and implementing new CADD techniques 

with higher levels of accuracy and speed (24–26). In this chapter, we will present commonly 

used CADD approaches, including those used in our lab for the design of next-generation 

antibiotics.

2. Materials

CADD methods are mathematical tools to manipulate and quantify the properties of 

potential drug candidates as implemented in a number of programs. These include a range of 

publicly and commercially available software packages; the subset described below 

represents examples of fundamental tools for CADD with emphasis on those commonly 

used in our laboratory.

1. Commonly used MD simulation codes include CHARMM 

(27), AMBER (28), NAMD, (29) GROMACS (30) and 

OpenMM (31). These programs run on a variety of 

computer architectures including running in parallel on 

multicore central processing units (CPU) and, more 

recently, optimized for graphics processing units (GPU), 

such as those commonly used in video games.

2. For SBDD, the 3D structure of the protein, RNA or other 

macromolecule may be obtained from the Protein Data 

Bank (PDB) (32) if it was solved by X-ray crystallography 

or nuclear magnetic resonance (NMR) experiments. 

Alternatively, a 3D structure may be constructed using 

homology modeling methods with a program such as 

MODELLER (33) or an on-line web server such as 

SWISS-MODEL (34).

3. In order to perform MD simulations, homology modeling, 

database screening or other CADD techniques empirical 

force fields for the molecules of interest are needed. These 

force fields are used by the respective programs to estimate 
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the energy and forces associated with, for example, a drug-

protein complex. Force fields such as those from the 

CHARMM (35–38) or AMBER (39, 40) families are used 

to describe the internal and external energetic properties of 

a molecular system during an energy minimization or a MD 

simulation. When parameters are missing in the existing 

force field, which is common for small drug-like 

molecules, automated parameter generation programs such 

as the CGenFF program (41, 42) or Antechamber (43) can 

be used to complete the force field. It is important to note 

that when using a force field the parameters for different 

parts of the system (e.g. the protein and the ligand) need to 

be compatible, such that CGenFF should be used with 

CHARMM or Antechamber with AMBER. In addition, 

when parameters are estimated it is suggested that the user 

check the parameters with respect to their accuracy in 

treating the energy as a function of conformation, as 

described for CGenFF (37, 44, 45). To facilitate this 

process when generating parameters using the CGenFF 

program (see https://cgenff.paramchem.org), penalties are 

assigned to parameters estimated based on analogy, guiding 

the user with respect to parameters that require checking.

4. When no information on the binding site of a target is 

available, putative binding sites can be identified by various 

CADD methods. An example, is the binding response 

program (46) developed in our lab. The program identifies 

potential binding sites by considering both the geometrical 

match and the binding energy of a set of diverse drug-like 

compounds to the sites being queried on the protein. Other 

programs for binding site identification include FINDSITE 

(47) and ConCavity (48).

5. Virtual database screening (VS) techniques are generally 

used to screen large in silico compound databases to 

identify potential binders for a query target. Examples of 

docking software commonly used for this purpose are 

DOCK (49) and AutoDock (50) as well as AutoDock Vina 

(51), all of which are well-known freeware programs. 

Another example is the program Pharmer (52), which uses 

3D pharmacophores for database screening.

6. The in silico database of drug-like compounds is an 

essential component of CADD ligand identification based 

on VS. A publically accessible database of compounds for 

VS is ZINC (53) which currently has about 90 million 

compounds that can be purchased from various chemical 
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vendors. In-house databases can also be constructed for 

particular VS needs and chemical vendors such as 

ChemBridge and ChemDiv (54) supply their chemical 

catalogs in SDF format for download. However, conversion 

of these to 3D structures can be challenging and all 

physiologically accessible protonation and tautomeric 

states of the ligands in the database should be included.

7. Commercially available CADD software packages include 

Discovery Studio (55), OpenEye (56), Schrödinger (57) and 

MOE (58). These programs, which can often be obtained at 

a discount for academic users, cover most of the 

capabilities required for CADD including both SBDD and 

LBDD methods.

3. Methods

CADD can be separated into ligand or hit identification and ligand or hit optimization, with 

both SBDD and LBDD methods useful in the appropriate context. Database screening 

methods are often used for hit identification (59) while a number of methods may be used 

for hit optimization (4, 24, 60). These include the Site-identification by ligand competitive 

saturation (SILCS) methodology. Below we present a collection of methods that may be 

used for both ligand identification and optimization.

3.1 MD simulations

MD simulations can be used to study target-ligand interactions at an atomic level of detail 

(61), to generate conformational ensembles for the target or for the ligand to take flexibility 

into account for both SBDD and LBDD studies (see Note 1) and, in combination with other 

methods, used to estimate relative free energies of binding. Following are the steps required 

to perform a standard MD simulation (see Note 2 for additional MD techniques). A 

convenient web-based tool to perform a number of the steps below is the CHARMM-GUI at 

www.charmm-gui.org (62).

1. Download the 3D structure of the bacterial target structure 

of interest from the PDB or use homology modelling to 

generate a structure.

2. Refine the target structure including adjusting the side 

chain orientations, add hydrogens, and determine the 

1Conformational flexibility of molecules is a very important feature no matter if it is a small ligand or a large protein. Thus 
conformational sampling of a protein or ligand that produces an ensemble of biological meaningful conformations is necessary either 
for SBDD or for LBDD. The CADD methods presented in the chapter such as SILCS for SBDD or CSP for LBDD take this issue into 
account and thus have advantages over other CADD methods that only rely on single crystal structure or limited ligand conformations.
2MD simulation is an efficient way to generate conformational ensembles. For larger system, more advanced MD techniques can be 
employed to enhance the sampling efficiency such as replica exchange methods. The protocols developed in our lab such as 
Hamiltonian replica exchange with biasing potentials (107) and replica exchange with concurrent solute scaling and Hamiltonian 
biasing in one dimension (108) are efficient replica exchange methods for use to enhance the MD efficiency. However, with all MD 
based methods the user must perform careful analysis to assure that the conformational ensemble is adequately converged for effective 
use in CADD.
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appropriate protonation states for titratable residues. 

Software such as Reduce (63) can be used for this purpose. 

Remove or retain cofactors, ions and crystal waters 

depending on the study needs.

3. Choose a force field, such as CHARMM36 (http://

mackerell.umaryland.edu/charmm_ff.shtml) to describe the 

system and a MD code to carry out the simulation. Prepare 

the input files according to the program formats. If force 

field parameters are missing, develop parameters using an 

automated program such as the CGenFF program or 

following a standard parametrization protocol for the 

chosen force field (37, 38).

4. For explicit solvent MD, solvate the system in a water box 

with periodic boundary conditions (PBC) (61), a process 

that can be performed automatically using the CHARMM-

GUI mentioned above. Minimize and equilibrate the whole 

system step by step to allow bad atomic contacts to relax 

and attain relaxed geometries. Usually harmonic restraints 

are first put on non-water components of the system and 

gradually reduced through the minimization and MD 

equilibration. This avoids large changes in the target 

structure due to bad atomic contacts in the initial model. 

NVT canonical ensemble MD is usually used for first step 

equilibration and followed by NPT ensemble MD to allow 

the PBC box size to adjust corresponding to the 

temperature and pressure, typically 298 K and 1 atm, 

respectively, of interest.

5. Run the MD simulation in the NPT ensemble for the time 

scale corresponding to the phenomena being studied. This 

usually involves nano- to microsecond timescales, although 

some phenomena can occur on shorter timescales. The user 

is advised to check that the event of interest (e.g. 

conformational change of the protein binding site) has 

occurred multiple times during the simulation or the 

phenomenon being monitored does not change significantly 

with increasing simulation time. However, no MD 

simulation is ever truly converged such that changes in the 

properties being monitored may occur after it appears that 

they are no longer changing.

6. Do a basic quality check on the MD trajectories such as 

analyzing the root-mean-square deviation (RMSD) of the 

target with respect to the starting conformation along the 

simulation time. Typically, there is an increase in the 
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RMSD followed by a stable, fluctuating value. However, as 

stated in the preceding section, though a simulation appears 

stable, additional changes can occur upon additional 

simulation time.

7. When studying target-ligand interactions, different 

properties along the trajectory can be calculated for 

analyses such as interaction energy and hydrogen bonding 

profiles. In addition structural clustering algorithms can be 

used to extract representative conformations from MD 

trajectories (64) to understand different interaction patterns 

between the ligand and the protein that contribute to 

binding.

3.2 Site Identification by Ligand Competitive Saturation (SILCS)

SILCS is a novel CADD protocol developed in our lab to facilitate ligand design (65). It 

uses all-atom explicit-solvent MD simulations that include small organic solutes, such as 

propane, methanol and others, to identify 3D functional-group binding patterns on the target. 

These patterns can be used qualitatively to direct ligand design and, when converted to free 

energies, termed grid free energy (GFE) FragMaps (66, 67), used to quantitatively estimate 

the relative binding affinities of ligands. The detailed protocol based on full MD simulations 

was described previously in this same book series (68). Here we present an updated protocol 

based on the use of oscillating μex Grand Canonical Monte Carlo/MD (GCMC/MD) 

simulations for SILCS (69). The GCMC/MD approach allows for the application of the 

SILCS method to target systems with deep or occluded pockets such as nuclear receptors 

and GPCRs (70).

1. Prepare the system in a similar way as described in section 

3.1 for MD simulations. In addition to water, add solute 

molecules such as benzene, propane, methanol, formamide, 

acetaldehyde, imidazole, methylammonium and acetate at a 

concentration of about 0.25 M.

2. Place weak restraints only on the backbone Cα carbon 

atoms with a force constant (k in 1/2 kδx2) of 0.12 

kcal/mol/Å for all residues or only on core region residues 

in the target if additional flexibility of selected regions of 

the protein is desired. The use of Cα restraints prevents the 

rotation and translation of the protein in the simulation box 

and prevents potential denaturation due to the presence of 

small solutes in the aqueous solution surrounding the target 

(71).

3. This system is minimized for 5000 steps with the steepest 

descent (SD) algorithm (72) in the presence of PBC 

followed by a 250 picosecond (ps) MD equilibration during 

which temperature is adjusted by velocity rescaling.
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4. During GCMC, solutes and water are exchanged between 

their gas-phase reservoirs and the simulation system. The 

excess chemical potential (μex) supplied to drive solute and 

water exchange is periodically oscillated over every 3 

cycles for each solute or water, based on their target 

concentration (eg. 0.25 M for the solutes and 55 M for 

water). From these calculations, which are performed over 

100 or more cycles, the average μex is close to the 

respective experimental hydration free energy values of the 

solutes and water. As described in detail elsewhere (69), 

there are four possible GCMC moves: insertion, deletion, 

translation and rotation, with the probabilities for 

acceptance of these moves governed by the Metropolis 

criteria.

5. The configuration at the end of each GCMC cycle is used 

as the starting configuration for a 0.5 to 1 nanosecond (ns) 

MD simulation during which the protein can undergo 

conformational changes as well as to obtain additional 

sampling of the water and solutes in and around the target 

molecule. Before the production MD, a 500 step SD 

minimization and a 100 ps equilibration is run. The last 

conformation from the production MD is used as the 

starting conformation of the next GCMC cycle.

6. Ten independent 100 cycle GCMC-MD runs are 

recommended. For each cycle, 200,000 steps of GCMC and 

0.5 ns MD are conducted yielding a cumulative 200 million 

steps of GCMC and 500 ns of MD over all 10 independent 

simulations.

7. 3D probability distributions of selected atoms from the 

solutes, called “FragMaps”, from the GCMC/MD 

simulations are constructed. These are converted to GFE 

FragMaps based on a Boltzmann transformation, which 

allow for quantitative evaluation of ligand affinities, 

including the contribution of individual atoms. The GFE 

FragMaps can be used to guide ligand docking using the 

MC-SILCS approach (67) or for the calculation of target 

pharmacophore models using SILCS-Pharm (73, 74).

3.3 Database Preparation

VS against a database containing commercially available compounds, is an efficient way to 

find potential low-molecular weight binders to the target protein (59). While the ZINC 

database is available, researchers may want to prepare an in-house database for specific use.
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1. Download the commercial database(s) from chemical 

vendors such as Chembridge, Chemdiv, Maybridge, Specs, 

etc. These databases are most often in 2D SDF format and 

need further refinement.

2. Convert 2D SDF files into 3D structure files such as MOL2 

format files using a chemical data tool such as Open Babel 

(75) or RDKit (76). During the conversion, preliminary 

geometry optimization can be conducted to refine the 3D 

geometry to avoid bad contacts that may be transferred 

from the 2D structure. Missing hydrogens are added and 

appropriate protonation states are determined usually for 

pH 7.2 (see Note 3). Various tautomers can also be 

generated and if subsequent screening studies will use rigid 

ligand docking, multiple rotamers, typically 100 to 200, can 

also be generated for consideration of the conformations 

accessible to each molecule.

3. All 3D structures can be further optimized using a force 

field based minimization to obtain more chemically-

accurate structures and assign atomic charges for 

subsequent screening studies if required. Organic molecule 

force fields such as CGenFF (37, 38), GAFF (40) or 

MMFF94 (77) can be used for this purpose.

4. When a database is prepared based on compounds from 

various vendors, in-house consistent identifiers are often 

needed to tag all the compounds for easy data management. 

For each compound, various entries such as physical 

properties and vendor information can be added for 

convenient use in subsequent analyses. The database, if 

extremely large, can be divided into several pieces for more 

efficient use. Finally, the database needs to be saved in the 

format required by the software to be used in following 

studies, for example, MOE (58) uses the binary MDB 

format while Dock uses the readable MOL2 format.

3.4 Docking-based VS

Docking involves posing a compound in the putative binding site on the target in an optimal 

way defined by a scoring function in combination with a conformational sampling method 

(78). Various docking programs are available that differ based on the scoring function used 

3Protonation states of titratable residues at the targeted binding site and in the ligand being studied are quite important when setting up 
the CADD calculations. For example, different protonation states of histidine residues can offer different hydrogen bonding types to 
potential ligands. Available experimental observations and known complex structures are useful to determine the correct protonation 
state of protein residue upon ligand binding. Software such as Reduce can assign the most appropriate protonation state based on 
environment. Constant pH MD simulation (109) where protonation state of titratable residue can change during the simulation may 
also be useful. With respect to ligands, many computational tools for prediction of ionization state are available, though common sense 
by the user is often adequate to deal with the most common ionizable groups such as carboxylates.
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to describe the interaction between small molecule and the target and the conformational 

sampling method used to generate the binding poses of the ligand on the protein. Here we 

present a docking protocol using the DOCK program (49) to illustrate the typical docking 

VS workflow.

1. Prepare the target structure in the required DOCK input 

format. Define the desired binding pocket on the protein 

surface either using experimental information or by using a 

binding pocket prediction program as described in the 

Materials section. As docking typically is based on a single 

conformation of the target, MD simulations of the target 

can be used to generate multiple conformations for 

individual docking runs. In this scenario, each compound in 

the database is docked to each target conformation and the 

most favorable score for that compound is used for ranking 

as described below.

2. Choose a sampling method and scoring scheme for 

docking. The DOCK program adopts an incremental ligand 

construction and conformational sampling scheme which 

divides ligands into fragments and reassembles these 

fragments in the binding site in a number of different 

conformational poses. Scoring the binding poses uses a 

physical force field based scoring function that includes 

both van der Waals (vdW) and electrostatic terms (see Note 

4 also).

3. Dock the entire compound database using a single crystal 

structure of the target or multiple conformations from MD 

mentioned above. Compounds are then ranked based on 

their interactions energies and selected for further analyses. 

It is suggested that multiple step VS can be used to balance 

the efficiency and reliability of docking results (79, 80). 

This approach applies a more approximate, 

computationally faster approach for the full database of 

typically > 1 million compounds from which a subset of 

compounds are selected for a secondary, more accurate 

dock screen.

4. When using multiple step VS with DOCK in our 

laboratory, the first round of docking involves a coarse but 

fast optimization for each compound in the database 

targeting one or a few target structures. 50,000 compounds 

4For VS, consensus scoring can be used instead of a single scoring scheme to rank hit compounds to allow more diversity of the 
identified compounds (86). For example, in our SILCS-Pharm protocol, LGFE and RMSD are used together to rank compounds that 
pass our pharmacophore model filtering. Additional scoring metrics can include the DOCK or AUTODOCK scores (49, 50), or the 
average interaction energies from MD simulations, with many other variations available.

Yu and MacKerell Page 10

Methods Mol Biol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are selected from this round based on the vdW attractive 

energy normalized for the compound molecular weight 

(81). In this way, compounds with maximal steric 

complementarity with the target are selected rather than 

compounds with very favorable electrostatic interaction that 

do not complement the shape of the binding pocket. The 

molecular weight normalization accounts for the tendency 

of ranking based on interaction energies to favor larger 

compounds.

5. The 50,000 compounds selected from the first round of VS 

are subject to a second round of docking using a more 

rigorous optimization that includes more steps of 

minimization and multiple protein conformations (~10) are 

used to take target flexibility into account. The top 1000 

hits based on MW normalized total interaction energies, 

including both vdW and electrostatic terms are selected for 

further consideration. We emphasize that each compound is 

docked against each target conformation with the most 

favorable score over all the target conformations assigned 

to each compounds, with that score used to select the top 

1000 compounds.

6. The final selection step is to obtain ~100 compounds for 

biological assays that are diverse as well as having 

properties that will likely have favorable ADME properties 

(see Note 6). Diversity is important as it will maximize the 

potential of selecting biologically active compounds and 

having diverse lead compounds will improve the 

probability of ultimately identifying compounds that have a 

high probability of success in clinical trials. The top 1000 

compounds can be clustered based on chemical structure 

and/or physiochemical properties to maximize the chemical 

diversity of the selected compounds (80). Other descriptors 

such as Lipinski’s rule of 5 (RO5) (82) or the 4D 

Bioavailability (4D-BA) ranking (83) can be used as 

metrics of ADME to filter the final list for testing, although 

using rigorous cutoffs based on these metric is not advised 

as there are many therapeutic agents on the market that 

“break the rules”.

6When constructing the final list of compound for experimental assays from VS, in addition to the binding score, drug likeness can be 
another criterion to further filter the list. Potential bioavailability of a compound is often judged by the Lipinski’s rule of five (RO5) 
(82). The 4-dimensional bioavailability (4D-BA) descriptor (83) is a scalar term derived from the four criteria in RO5 and thus 
facilitates the selection of potential bioavailable compounds in an automatic fashion. Pan assay interference compounds (PAINS) filter 
(110) can also be used to remove compounds that are likely to interfere in experimental screening techniques mainly through potential 
reactivity leading to false positives.
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3.5 SILCS-Pharm

An alternative to docking based VS is target-based pharmacophore VS (84). This approach 

can quickly filter a database for potential binders to a specific bacterial target. A 

pharmacophore model is defined as spatially distributed chemical features that are essential 

for specific ligand-target binding. It represents a simplification of the detailed energetic 

information used by docking methods and so its computational requirements are much 

lower. While multiple methods can be used to generate pharmacophores (84), we will 

present a method based on information from SILCS as described in section 3.2. The 

workflow for generation of a SILCS-based pharmacophore model (73, 74) is illustrated in 

Figure 2.

1. Similar to docking VS, the desired binding site needs to be 

defined.

2. GFE FragMaps from SILCS are used as input into the 

SILCS-Pharm code (73, 74) to generate pharmacophore 

models. GFE cutoffs for FragMaps are used to define the 

sizes of related pharmacophore features and can be 

determined by visualizing FragMaps in a program such as 

VMD (85) and adjusting the contour value, as defined by 

the energy, to get well separated, local FragMap regions. If 

the chosen GFE contour values are too high there will be 

many bulky features while contour values that are too low 

lead to few or no pharmacophore features for VS.

3. During generation of the pharmacophore by the SILCS-

Pharm program FragMap voxels within the defined GFE 

cutoffs will be clustered into intermediate SILCS features 

and then converted into standard pharmacophore features. 

The final generated pharmacophore models or hypotheses 

are ranked by the sum of all the feature GFEs in the model 

for a given number of features. More favorable GFE scores 

typically indicate a more effective model for use in VS as 

the GFE defines the strength of functional group binding 

obtained from the SILCS simulation. It is suggested that the 

most GFE favorable SILCS-Pharm model with four 

features can be used for VS based on tests in our lab (74).

4. Pharmacophore VS software such as Pharmer (52) or MOE 

(56) is then used to filter compounds in a database based on 

the selected SILCS-Pharm model. RMSD score, which 

represent the accordance between features in the 

pharmacophore model with related functional groups in a 

query compound, can be used to rank the final compound 

list.

5. As mentioned above, multiple, low energy conformations 

for each compound in the database should be pre-generated 
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before pharmacophore VS as ligand flexibility is not 

included in the posing algorithm. Programs such as Open 

Babel (58) can be used for this purpose. 100–200 

conformations for each ligand should be enough according 

to our in-house tests.

6. Once ligands are selected based on RMSD, alternate 

methods may be used to rank the ligands in a method 

referred to as consensus scoring (86). For example, SILCS 

ligand grid free energy (LGFE) scores (67) can be used to 

re-rank the list to give a free energy based ranking. The 

final compound list for experimental testing can be 

obtained by consensus scoring considering both RMSD and 

LGFE scores to maximize the hit potential (68).

3.6 Similarity Search

Once lead compounds are identified from experiments, LBDD methods can be utilized to 

start to develop an SAR or find more hit compounds. Of these, the similarity search method 

is the most straightforward and rapid approach (87). It can search for compounds that are 

chemically or physiochemically similar to the input compound, as described below. This 

approach may also be used as lead validation, as a compound that has multiple analogs with 

biological activity from which SAR can be developed is appropriate for further studies (88).

1. Prepare the query compound in a format the program doing 

similarity search can recognize. The program MOE (58) 

has good similarity searching capabilities.

2. Choose the types of fingerprint used to define the 

compounds in the database. The fingerprint of a molecule 

refers to a collection of descriptors such as structural, 

physical, or chemical properties that are used to define the 

molecule (79). Structural fingerprints, for example BIT 

MACCS (89) encodes information such as the presence of 

specific types of atoms, bonds, or rings in the molecule and 

can be used to identify compounds that are structurally 

similar to the lead, facilitating SAR development, and may 

have improved binding affinity (88). Physiochemical 

fingerprints such as MPMFP (90) encodes properties such 

as the free energy of solvation, polarity and molecular 

weight and can be used to identify compounds with 

dissimilar structures but similar physiochemical properties. 

This approach may help to identify novel hits that have 

activity but with a different chemical scaffold as compared 

to the lead compound, a process referred to as “lead 

hopping.” Such compounds could represent novel 

intellectual property (IP).
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3. Choose a similarity comparison method and do the 

similarity search against an in silico database. To quantify 

the extent of similarity between two molecules, various 

similarity metrics (91) are available such as the commonly 

used Tanimoto coefficient (92). Such metrics allow for 

giant databases to be rapidly screened. Compounds that are 

more similar to the query compound will have higher 

coefficients, such that the cutoff for the coefficient can be 

varied to select a desired number of similar compounds for 

testing. With the BIT MACCS fingerprints, a compound 

with a TC of 0.85 or higher (over a range of 0 to 1) is likely 

to have biological activity similar to that of the parent, 

query compound.

3.7 Lead Optimization using SAR

When multiple hits for a specific bacterial target with activity data are available, structure-

activity relationship (SAR) models can be developed and used to predict new compounds 

with improved activity (93). LBDD SAR models use regression methods to relate a set of 

descriptors of the lead series of compounds to their activities. The developed regression 

model can then be used to quantitatively predict the activity of the modified compounds 

(93). The descriptors can be physical or chemical properties of compounds or even 

geometric parameters that are representative for the spatial distributions of important 

functional groups in the compounds, i.e. pharmacophore features. Knowledge of the 

relationship of these properties to activity (i.e. SAR) can be used by the medicinal chemist to 

qualitatively design new, synthetically-accessible compounds that can be quantitatively 

evaluated. When developing SAR using pharmacophore descriptors, the appropriate 

conformations of the compounds that are responsible for the biological activity must be 

used. Here we illustrate the development of SAR using our in-house developed 

conformationally sampled pharmacophore (CSP) protocol (94, 95).

1. Langevin dynamics based MD simulations are conducted 

for all known hit compounds. Aqueous solvation effects of 

the simulated compounds can be included using explicit 

solvent or are treated using an implicit solvation model 

such as the generalized Born continuum solvent model 

(96). Simulations should be performed for a minimum of 

10 ns with the sampling of conformations of the ligand 

checked for convergence. If sampling is not adequate, the 

simulations should be extended or conducted using 

enhanced sampling methods, such as Temperature or 

Hamiltonian Replica Exchange methods (97). Snapshots 

are typically saved every 0.2 ps for analysis.

2. Pharmacophore points, which are representative of well-

conserved functional groups common in the hit compounds, 

such as aromatic ring centroid and hydrogen bond donor/
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acceptor atoms, are identified. Distances and angles 

between these pharmacophore points are measured 

throughout the trajectories from which probability 

distributions are obtained.

3. Analysis can be performed on 1- (1D) or 2-dimensional 

(2D) probability distributions. 1D distributions involve, for 

example, a distance between two important functional 

groups or the angle between 3 groups. 2D distributions can 

be between all possible distance or angle pairs. The 1D or 

2D distributions are recorded for each hit compound. One 

hit compound, usually the most active compound, is 

selected as reference. To quantify the extent of similarity of 

the distributions, the overlap coefficients (OC) between the 

probability distributions of the reference compound and 

other compounds are calculated (95).

4. OCs are then used as independent variables in multiple 

regression analyses to fit the experimental activities. 

Different combinations of OCs for the various 1D and 2D 

pharmacophore probability distribution are regressed to 

identify those that yield the best correlation with the 

experimental data. For large training sets of compounds, 

multiple SAR models can be developed (95). The active 

compounds are usually divided into training and test set 

compounds with only the training set used for the SAR 

development, with the test set used to filter out the best 

SAR model. In studies of the opioids for a given set of 

compounds, CSP SAR models have been developed for 

both mu and delta efficacies (95, 98), allowing for 

identification of a compound that is both a mu agonist and 

a delta antagonist that may be of lower tolerance than 

opioids currently used in the clinic (99).

5. The regression model can be extended by the inclusion of 

physiochemical properties such as polar solvent 

accessibility, MW among others (100, 101).

6. The best CSP-SAR model can then be used to calculate 

predicted activities of query compounds and suggest the 

most potential compounds for further experimental tests. 

Ideally, multiple models are available for different activities 

allowing for both desirable and undesirable characteristics 

to be designed into the compounds, as done above with the 

opioids. In an ongoing study as the number of compounds 

for which biological activity is available increases the CSP 

model should be reevaluated to improve its predictability.
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3.8 Single-step Free Energy Perturbation (SSFEP)

Free energy perturbation (FEP) is a higher level, computationally demanding method with 

increased accuracy (see Note 5) that may be used to quantify the binding free energy change 

related to a modification in a compound (102). To save computational time, the single step 

FEP (SSFEP) may be applied (103). The approach uses a pre-computed MD simulation of 

the hit compound-target complex from which the free energy difference due to small, single 

non-hydrogen atom modifications (e.g. aromatic –H to –Cl or –OH) can be rapidly evaluated 

(103). This is in contrast to the need for many simulations in which the chemical 

modification is introduced in standard FEP methods (102). SSFEP has the ability to give 

rapid predictions of binding affinity changes related to modifications and, thus, is quite 

useful for lead optimization (104). The method may be applied using the following protocol 

with most simulations packages.

1. Run five 10 ns MD simulations of the hit compound-target 

complex and of the hit compound alone in solution.

2. For the chemical modification of the hit compound build in 

the modification onto the compounds with all other 

coordinates in the ligand and the remainder of the system 

identical to those from the original MD simulation.

3. Evaluate the interaction energy of the hit compound with 

the full environment for both the initial, unmodified and 

modified states for the simulations in the presence of the 

target and hit compound alone in solution.

4. Calculate the free energy difference, ΔG, in the presence of 

the protein and in aqueous solution based on the free 

energy perturbation formula (105) or the Bennett 

acceptance ratio (BAR) as described elsewhere (106). The 

difference in the free energy differences in the presence of 

the protein and in aqueous solution yields the overall free 

energy difference, ΔΔG, due to the chemical modification.

The utility of the SSFEP approach is that the ΔΔG values for many modifications may be 

rapidly evaluated as the same trajectories from the original MD simulations of the hit 

compound are used in each case. This approach may be of use during the fine tuning of 

ligand affinity or specificity for a target or as required to improve physiochemical and 

pharmacokinetic properties without significantly altering desirable properties such as 

affinity.

5In the ligand optimization stage of CADD, as only a few compounds are under consideration, accuracy rather than computational 
efficiency is usually pursued. This means more sophisticated binding affinity evaluation methods should be used. These include the 
free energy methods such as SSFEP or the SILCS based LGFE scoring discussed above.
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Figure 1. 
Basic CADD workflow in drug discovery. Wet-lab, SBDD and LBDD CADD techniques are 

outlined in solid lines, dashed lines or dotted lines, respectively. Double headed arrows 

indicate the two techniques can be used interactively in several iterative rounds of ligand 

design.
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Figure 2. 
SILCS-Pharm workflow for pharmacophore based VS. The protocol starts from the SILCS 

simulation on the target (i), then FragMaps are generated (ii) and pharmacophore models are 

derived based on FragMaps (iii). The pharmacophore is then used in VS against a compound 

database (iv) that contains multiple conformations of each compound from which hit 

compounds are identified (v) and further tested in bioassays (vi).
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