Skip to main content

Microemulsion Electrokinetic Chromatography

  • Protocol
  • First Online:
Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1483))

Abstract

Microemulsion electrokinetic chromatography (MEEKC) is a special mode of capillary electrophoresis employing a microemulsion as carrier electrolyte. Analytes may partition between the aqueous phase of the microemulsion and its oil droplets which act as a pseudostationary phase. The technique is well suited for the separation of neutral species, in which case charged oil droplets (obtained by addition of an anionic or cationic surfactant) are present. A single set of separation parameters may be sufficient for separation of a wide range of analytes belonging to quite different chemical classes. Fine-tuning of resolution and analysis time may be achieved by addition of organic solvents, by changes in the nature of the surfactants (and cosurfactants) used to stabilize the microemulsion, or by various additives that may undergo some additional interactions with the analytes. Besides the separation of neutral analytes (which may be the most important application area of MEEKC), it can also be employed for cationic and/or anionic species. In this chapter, MEEKC conditions are summarized that have proven their reliability for routine analysis. Furthermore, the mechanisms encountered in MEEKC allow an efficient on-capillary preconcentration of analytes, so that the problem of poor concentration sensitivity of ultraviolet absorbance detection is circumvented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152:102–103

    Article  CAS  Google Scholar 

  2. Watarai H (1991) Microemulsion capillary electrophoresis. Chem Lett 391–394

    Google Scholar 

  3. Yang H, Ding Y, Cao J, Li P (2013) Twenty-one years of microemulsion electrokinetic chromatography (1991-2012): a powerful analytical tool. Electrophoresis 34:1273–1294

    Article  CAS  PubMed  Google Scholar 

  4. Yu L, Chu K, Ye H, Liu X, Yu X, Chen G (2012) Recent advances in microemulsion electrokinetic chromatography. Trends Anal Chem 34:140–151

    Article  CAS  Google Scholar 

  5. Ryan R, Altria K, McEvoy E, Donegan S, Power J (2013) A review of developments in the methodology and application of microemulsion electrokinetic chromatography. Electrophoresis 34:159–177

    Article  CAS  PubMed  Google Scholar 

  6. Ryan R, McEvoy E, Donegan S, Power J, Altria K (2011) Recent developments in the methodology and application of MEEKC. Electrophoresis 32:184–201

    Article  CAS  PubMed  Google Scholar 

  7. Ryan R, Donegan S, Power J, McEvoy E, Altria K (2009) Recent advances in the methodology, optimisation and application of MEEKC. Electrophoresis 30:65–82

    Article  CAS  PubMed  Google Scholar 

  8. McEvoy E, Marsh A, Altria K, Donegan S, Power J (2007) Recent advances in the development and application of microemulsion EKC. Electrophoresis 28:193–207

    Article  CAS  PubMed  Google Scholar 

  9. Ryan R, Donegan S, Power J, Altria K (2010) Advances in the theory and application of MEEKC. Electrophoresis 31:755–767

    Article  CAS  PubMed  Google Scholar 

  10. Schöftner R, Buchberger W (2003) Systematic investigations of different capillary electrophoretic techniques for separation of methylquinolines. J Sep Sci 26:1247–1252

    Article  Google Scholar 

  11. Cao J, Qu H, Cheng Y (2010) The use of novel ionic liquid-in-water microemulsion without the addition of organic solvents in a capillary electrophoretic system. Electrophoresis 31:3492–3498

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Li F, Yang FQ, Zuo HL, Xia ZN (2012) Simultaneous determination of α-, β- and γ-asarone in Acorus tatarinowii by microemulsion electrokinetic chromatography with [BMIM]PF6 as oil phase. Talanta 101:510–515

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Yang FQ, Xia ZN (2013) Simultaneous determination of ten nucleosides and related compounds by MEEKC with [BMIM]PF6 as oil phase. Chromatographia 76:1003–1011

    Article  CAS  Google Scholar 

  14. Siren H, Vesanen S, Suomi J (2014) Separation of steroids using vegetable oils in microemulsion elekctrokinetic capillary chromatography. J Chromatogr B 945–946:199–206

    Article  Google Scholar 

  15. Hu S, Chen Y, Zhu H, Zhu J, Yan N, Chen X (2009) In situ synthesis of di-n-butyl L-tartrate-boric acid complex chiral selector and its application in chiral microemulsion electrokinetic chromatography. J Chromatogr A 1216:7932–7940

    Article  CAS  PubMed  Google Scholar 

  16. Hu S-Q, Chen Y-L, Zhu H-D, Shi H-J, Yan N, Chen X-G (2010) Effect of molecular structure of tartrates on chiral recognition of tartrate-boric acid complex chiral selectors in chiral microemulsion electrokinetic chromatography. J Chromatogr A 1217:5529–5535

    Article  CAS  PubMed  Google Scholar 

  17. Pascoe R, Foley JP (2002) Rapid separation of pharmaceutical enantiomers using electrokinetic chromatography with a novel chiral microemulsion. Analyst 127:710–714

    Article  CAS  PubMed  Google Scholar 

  18. Mertzman MD, Foley JP (2004) Effect of surfactant concentration and buffer selection on chromatographic figures of merit in chiral microemulsion electrokinetic chromatography. Electrophoresis 25:3247–3256

    Article  CAS  PubMed  Google Scholar 

  19. Mertzman MD, Foley JP (2004) Effect of oil substitution in chiral microemulsion electrokinetic chromatography. Electrophoresis 25:723–732

    Article  CAS  PubMed  Google Scholar 

  20. Kahle KA, Foley JP (2007) Two-chiral-component microemulsion electrokinetic chromatography-chiral surfactant and chiral oil: part 1. Dibutyl tartrate. Electrophoresis 28:1723–1734

    Article  CAS  PubMed  Google Scholar 

  21. Kahle KA, Foley JP (2007) Two-chiral component microemulsion EKC—chiral surfactant and chiral oil. Part 2: diethyl tartrate. Electrophoresis 28:2644–2657

    Article  CAS  PubMed  Google Scholar 

  22. Pomponio R, Gotti R, Luppi B, Cavrini V (2003) Microemulsion electrokinetic chromatography for the analysis of green tea catechins: effect of the cosurfactant on the separation selectivity. Electrophoresis 24:1658–1667

    Article  CAS  PubMed  Google Scholar 

  23. Klampfl C (2003) Solvent effects in microemulsion electrokinetic chromatography. Electrophoresis 24:1537–1543

    Article  CAS  PubMed  Google Scholar 

  24. Zheng ZX, Lin J-M, Chan W-H, Lee AWM, Huie CW (2004) Separation of enantiomers in microemulsion electrokinetic chromatography using chiral alcohols as cosurfactants. Electrophoresis 25:3263–3269

    Article  CAS  PubMed  Google Scholar 

  25. Kahle KA, Foley JP (2006) Chiral microemulsion electrokinetic chromatography with two chiral components: improved separations via synergies between a chiral surfactant and a chiral cosurfactant. Electrophoresis 27:896–904

    Article  CAS  PubMed  Google Scholar 

  26. Kahle KA, Foley JP (2007) Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral-component microemulsions and comparison with one- and two-chiral-component microemulsions. Electrophoresis 28:3024–3040

    Article  CAS  PubMed  Google Scholar 

  27. Nozal L, Arce L, Simonet BM, Rios A, Valcarcel M (2006) Microemulsion electrokinetic chromatography separation using hexane-in-water microemulsion without cosurfactant: comparison with MEKC. Electrophoresis 27:4439–4445

    Article  CAS  PubMed  Google Scholar 

  28. Hilder EF, Klampfl CW, Buchberger W, Haddad PR (2001) Separation of hydrophobic polymer additives by microemulsion electrokinetic chromatography. J Chromatogr A 922:293–302

    Article  CAS  PubMed  Google Scholar 

  29. Altria KD, Clark BJ, Mahuzier P-E (2000) The effect of operating variables in microemulsion capillary chromatography. Chromatographia 52:758–768

    Article  CAS  Google Scholar 

  30. Borst C, Holzgrabe U (2013) Cyclodextrin-mediated enantioseparation in microemulsion electrokinetic chromatography. Meth Mol Biol 970:363–375

    Article  CAS  Google Scholar 

  31. Borst C, Holzgrabe U (2008) Enantioseparation of DOPA and related compounds by cyclodextrin-modified microemulsion electrokinetic chromatography. J Chromatogr A 1204:191–196

    Article  CAS  PubMed  Google Scholar 

  32. Borst C, Holzgrabe U (2010) Comparison of chiral electrophoretic separation methods for phenethylamines and application on impurity analysis. J Pharm Biomed Anal 53:1201–1209

    Article  CAS  PubMed  Google Scholar 

  33. Cao J, Qu H, Cheng Y (2010) Separation of flavonoids and phenolic acids in complex natural products by microemulsion electrokinetic chromatography using surfactant-coated and carboxylic single-wall carbon nanotubes as additives. Electrophoresis 31:1689–1696

    Article  CAS  PubMed  Google Scholar 

  34. Cao J, Dun W, Qu H (2011) Evaluation of the addition of various surfactant-suspended carbon nanotubes in MEEKC with an in situ-synthesized surfactant system. Electrophoresis 32:408–413

    Article  CAS  PubMed  Google Scholar 

  35. Cao J, Li P, Chen J, Tan T, Dai H-B (2013) Enhanced separation of compound Xueshuantong capsule using functionalized carbon nanotubes with cationic surfactant solutions in MEEKC. Electrophoresis 34:324–330

    Article  CAS  PubMed  Google Scholar 

  36. Ni X, Yu M, Cao Y, Cao G (2013) Microstructure of microemulsion modified with ionic liquids in microemulsion electrokinetic chromatography and analysis of seven corticosteroids. Electrophoresis 34:2568–2576

    Article  CAS  PubMed  Google Scholar 

  37. Hsieh S-Y, Wang CC, Wu SM (2013) Microemulsion electrokinetic chromatography for analysis of phthalates in soft drinks. Food Chem 141:3486–3491

    Article  CAS  PubMed  Google Scholar 

  38. Cao W, Hu S-S, Li X-Y, Pang X-Q, Cao J, Ye L-H, Dai H-B, Liu X-J, Da J-H, Chu C (2014) Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection. J Chromatogr A 1358:277–284

    Google Scholar 

  39. Cao J, Dun WL (2011) Separation and sweeping of flavonoids by microemulsion electrokinetic chromatography using mixed anionic and cationic surfactants. Talanta 84:155–159

    Article  CAS  PubMed  Google Scholar 

  40. Altria KD, Broderick MF, Donegan S, Power J (2004) The use novel water-in-oil microemulsions in microemulsion electrokinetic chromatography. Electrophoresis 25:645–652

    Article  CAS  PubMed  Google Scholar 

  41. Broderick M, Donegan S, Power J, Altria K (2005) Optimisation and use of water-in-oil MEEKC in pharmaceutical analysis. J Pharm Biomed Anal 37:877–884

    Article  CAS  PubMed  Google Scholar 

  42. Nyunt KTN, Prutthiwanasan B, Suntornsuk L (2013) Microemulsion electrokinetic chromatography of β-carotene and astaxanthin. J Liq Chrom Rel Techn 36:671–686

    CAS  Google Scholar 

  43. Bitar Y, Holzgrabe U (2007) Impurity profiling of atropine sulfate by microemulsion electrokinetic chromatography. J Pharm Biomed Anal 44:623–633

    Article  CAS  PubMed  Google Scholar 

  44. Cao J, Chen J, Yi L, Li P, Qi L-W (2008) Comparison of oil-in-water and water-in-oil microemulsion electrokinetic chromatography as methods for the analysis of eight phenolic acids and five diterpenoids. Electrophoresis 29:2310–2320

    Article  CAS  PubMed  Google Scholar 

  45. Huang H-Y, Liu W-L, Singco B, Hsieh S-H, Shih Y-H (2011) On-line concentration sample stacking coupled with water-in-oil microemulsion electrokinetic chromatography. J Chromatogr A 1218:7663–7669

    Article  CAS  PubMed  Google Scholar 

  46. Terabe S (2009) Capillary separation: micellar electrokinetic chromatography. Ann Rev Anal Chem 2:99–120

    Article  CAS  Google Scholar 

  47. Lin W-C, Liu W-L, Tang W-Y, Huang C-P, Huang H-Y, Chin T-Y (2014) Determination of amino acids by microemulsion electrokinetic chromatography laser induced fluorescence method. Electrophoresis 35:1751–1755

    Article  CAS  PubMed  Google Scholar 

  48. Klampfl CW, Buchberger W (2010) Recent advances in the use of capillary electrophoresis coupled to high-resolution mass spectrometry for the analysis of small molecules. Curr Anal Chem 6:118–125

    Article  CAS  Google Scholar 

  49. Himmelsbach M, Haunschmidt M, Buchberger W, Klampfl CW (2007) Microemulsion electrokinetic chromatography with on-line atmospheric pressure photoionization mass spectrometric detection. Anal Chem 79:1564–1568

    Article  CAS  PubMed  Google Scholar 

  50. Himmelsbach M, Haunschmidt M, Buchberger W, Klampfl CW (2007) Microemulsion electrokinetic chromatography with on-line atmospheric pressure photoionization-mass spectrometric detection of medium polarity compounds. J Chromatogr A 1159:58–62

    Article  CAS  PubMed  Google Scholar 

  51. Schappler J, Guillarme D, Rudaz S, Veuthey J-L (2008) Microemulsion electrokinetic chromatography hyphenated to atmospheric pressure photoionization mass spectrometry. Electrophoresis 29:11–19

    Article  CAS  PubMed  Google Scholar 

  52. Bytzek AK, Reithofer MR, Galanski M, Groessl M, Keppler BK, Hartinger CG (2010) The first example of MEEKC-ICP-MS coupling and its application for the analysis of anticancer platinum complexes. Electrophoresis 31:1144–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pedersen-Bjergaard S, Naess O, Moestue S, Rasmussen KE (2000) Microemulsion electrokinetic chromatography in suppressed electroosmotic flow environment. Separation of fat-soluble vitamins. J Chromatgr A 876:201–211

    Article  CAS  Google Scholar 

  54. Oledzka I, Kowalski P, Baluch A, Baczek T, Paradziej-Lukowicz J, Taciak M, Pastuszewska B (2014) Quantification of the level of fat-soluble vitamins in feed based on the novel microemulsion electrokinetic chromatography (MEEKC) method. J Sci Food Agric 94:544–551

    Article  CAS  PubMed  Google Scholar 

  55. Yin C, Cao Y, Ding S, Wang Y (2008) Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography. J Chromatogr A 1193:172–177

    Article  CAS  PubMed  Google Scholar 

  56. Altria KD (1999) Application of microemulsion electrokinetic chromatography to a wide range of pharmaceuticals and excipients. J Chromatogr A 844:371–386

    Article  CAS  PubMed  Google Scholar 

  57. Miksik I, Gabriel J, Deyl Z (1997) Microemulsion electrokinetic chromatography of diphenylhydrazones of dicarbonyl sugars. J Chromatogr A 772:297–303

    Article  CAS  Google Scholar 

  58. Miksik I, Deyl Z (1998) Microemulsion electrokinetic chromatography of fatty acids as phenacyl esters. J Chromatogr A 807:111–119

    Article  CAS  Google Scholar 

  59. Abromeit H, Werz O, Scriba GKE (2013) Separation of 5-lipoxygenase metabolites using cyclodextrin-modified microemulsion electrokinetic chromatography and head column field-amplified sample stacking. Chromatographia 76:1187–1192

    Article  CAS  Google Scholar 

  60. Sun S-W, Yeh P-C (2005) Analysis of rhubarb anthraquinones and bianthrones by microemulsion electrokinetic chromatography. J Pharm Biomed Anal 36:995–1001

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Lin Z, Zhang L, Cai Y, Zhang L (2012) Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking. Analyst 137:1723–1729

    Article  CAS  PubMed  Google Scholar 

  62. Darji V, Boyce MC, Bennett I, Breadmore MC, Quirino J (2010) Determination of food grade antioxidants using microemulsion electrokinetic chromatography. Electrophoresis 31:2267–2271

    Article  CAS  PubMed  Google Scholar 

  63. Huang H-Y, Chuang C-L, Chiu C-W, Yeh J-M (2005) Application of microemulsion electrokinetic chromatography for the detection of preservatives in foods. Food Chem 89:315–322

    Article  CAS  Google Scholar 

  64. Huang H-Y, Chuang C-L, Chiu CW, Chung M-C (2005) Determination of food colorants by microemulsion electrokinetic chromatography. Electrophoresis 26:867–877

    Article  CAS  PubMed  Google Scholar 

  65. Javor T, Buchberger W, Tanzcos I (2000) Determination of low-molecular-mass phenolic and non-phenolic lignin degradation compounds in wood digestion solutions by capillary electrophoresis. Microchim Acta 135:45–53

    Article  CAS  Google Scholar 

  66. Klampfl CW, Leitner T (2003) Quantitative determination of UV filters in sunscreen lotions using microemulsion electrokinetic chromatography. J Sep Sci 26:1259–1262

    Article  CAS  Google Scholar 

  67. Jiang T-F, Lv Z-H, Wang Y-H, Yue M-E, Lian S (2009) Separation and determination of nitrofuran antibiotics in turbot fish by microemulsion electrokinetic chromatography. Anal Sci 25:861–864

    Article  CAS  PubMed  Google Scholar 

  68. Wei S, Lin J, Li H, Lin J-M (2007) Separation of seven fluoroquinolones by microemulsion electrokinetic chromatography and application to ciprofloxacin, lomefloxacin determination in urine. J Chromatogr A 1163:333–336

    Article  CAS  PubMed  Google Scholar 

  69. Macia A, Borrull F, Calull M, Aguilar C (2005) Separation and on-column preconcentration of some nonsteroidal anti-inflammatory drugs by microemulsion electrokinetic capillary chromatography using high-speed separations. Electrophoresis 26:970–979

    Article  CAS  PubMed  Google Scholar 

  70. Fogarty B, Dempsey E, Regan F (2003) Potential for microemulsion electrokinetic chromatography for the separation of priority endocrine disrupting compounds. J Chromatogr A 1014:129–139

    Article  CAS  PubMed  Google Scholar 

  71. Lin Z, Zhang J, Cui H, Zhang L, Chen G (2010) Determination of phthalate esters in soil by microemulsion electrokinetic chromatography coupled with accelerated solvent extraction. J Sep Sci 33:3717–3725

    Article  CAS  PubMed  Google Scholar 

  72. Li R-H, Liu D-H, Yang Z-H, Zhou Z-Q, Wang P (2012) Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction for the determination of triazine herbizides in water samples by microemulsion electrokinetic chromatography. Electrophoresis 33:2176–2183

    Article  CAS  PubMed  Google Scholar 

  73. Huang H-Y, Wei M, Lin Y-R, Lu P-H (2009) Determination of organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography. J Chromatogr A 216:2560–2566

    Article  Google Scholar 

  74. Altria KD (2000) Background theory and applications of microemulsion electrokinetic chromatography. J Chromatogr 892:171–186

    Article  CAS  Google Scholar 

  75. Poole SK, Durham D, Kibbey C (2000) Rapid method for estimating the octanol-water partition coefficient by microemulsion electrokinetic chromatography. J Chromatogr B 745:117–126

    Article  CAS  Google Scholar 

  76. Henchoz Y, Romand S, Schappler J, Rudaz S, Veuthey J-L, Carrupt P-A (2010) High-throughput log P determination by MEEKC coupled with UV and MS detections. Electrophoresis 31:952–964

    Article  CAS  PubMed  Google Scholar 

  77. Jiang X, Xia Z, Deng L, Wei W, Chen J, Xu J, Li H (2012) Evaluation of accuracy for the measurement of octanol–water partition coefficient by MEEKC. Chromatographia 75:347–352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Buchberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Buchberger, W. (2016). Microemulsion Electrokinetic Chromatography. In: Schmitt-Kopplin, P. (eds) Capillary Electrophoresis. Methods in Molecular Biology, vol 1483. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6403-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6403-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6401-7

  • Online ISBN: 978-1-4939-6403-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics