Skip to main content

Targeting Cancer Using Nanocarriers

  • Chapter
  • First Online:
Book cover Nanomedicine

Abstract

Nanotechnology is an emerging multidisciplinary field that offers unprecedented access to living cells of target (i.e. cancer cells) and promises the state of the art in cancer detection and treatment. Development of nanocarriers that target cancer for diagnostics and therapy draws upon principles in the field of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by over 7000 published journal articles on the topic and given the promise of recent clinical results, nanocarrier-based approaches are anticipated to soon have a profound impact on cancer medicine and as a consecuence on human health. The versatility in size, material, and targeting agents of nanocarriers permits potential targeting for individual cancer cells. This chapter addresses nanocarriers spanning liposomes to polymeric nanoparticles, inorganic nanoparticles,polymers conjugates and dendrimers. The targeting approaches include conjugation of molecules such as receptor-specific ligands, antibodies and aptamers to the surface of the carrier. Targeting cancer with nanocarriers represent the next important milestone that is already impacts the lives of millions around the world. One such example, is of DaunoXome (Liposomal Daunorubicin) for Acute myeloid Leukemia (AML) treatment that shows an increased intratumor and intracellular levels of the drug, while normal tissue toxicity, including cardiotoxicity, may be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fassas A, Anagnostopoulos A (2005) The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma 46(6):795–802

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  PubMed  CAS  Google Scholar 

  3. Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103(16):6315–6320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Peer D, Margalit R (2004) Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 108(5):780–789

    Article  PubMed  CAS  Google Scholar 

  5. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  PubMed  CAS  Google Scholar 

  6. Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  PubMed  CAS  Google Scholar 

  7. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  PubMed  CAS  Google Scholar 

  8. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    Article  PubMed  CAS  Google Scholar 

  9. Lucas AT, Madden AJ, Zamboni WC (2015) Formulation and physiologic factors affecting the pharmacology of carrier-mediated anticancer agents. Expert Opin Drug Metab Toxicol 11(9):1419–1433

    Article  PubMed  CAS  Google Scholar 

  10. Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    PubMed  CAS  Google Scholar 

  11. Scomparin A et al (2015) A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index. J Control Release 208:106–120

    Article  PubMed  CAS  Google Scholar 

  12. Quintana A et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316

    Article  PubMed  CAS  Google Scholar 

  13. Benns JM, Mahato RI, Kim SW (2002) Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J Control Release 79(1–3):255–269

    Article  PubMed  CAS  Google Scholar 

  14. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A 88(13):5572–5576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269(5):3198–3204

    PubMed  CAS  Google Scholar 

  16. Scomparin A et al (2011) Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 42(5):547–558

    Article  PubMed  CAS  Google Scholar 

  17. Prost AC et al (1998) Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875

    PubMed  CAS  Google Scholar 

  18. Iinuma H et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137

    Article  PubMed  CAS  Google Scholar 

  19. Ishida O et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048

    Article  PubMed  CAS  Google Scholar 

  20. Gijsens A et al (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 101(1):78–85

    Article  PubMed  CAS  Google Scholar 

  21. Kolhatkar R, Lote A, Khambati H (2011) Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors. Curr Drug Discov Technol 8(3):197–206

    Article  PubMed  CAS  Google Scholar 

  22. Yu B et al (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cinci M et al (2015) Targeted delivery of siRNA using transferrin-coupled lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack. Target Oncol 10(3):405–413

    Article  PubMed  Google Scholar 

  24. Kuang Y et al (2013) T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 454(1):11–20

    Article  PubMed  CAS  Google Scholar 

  25. Bartolazzi A et al (1994) Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 180(1):53–66

    Article  PubMed  CAS  Google Scholar 

  26. Stamenkovic I, Aruffo A (1994) Hyaluronic acid receptors. Methods Enzymol 245:195–216

    Article  PubMed  CAS  Google Scholar 

  27. Zeng C et al (1998) Inhibition of tumor growth in vivo by hyaluronan oligomers. Int J Cancer 77(3):396–401

    Article  PubMed  CAS  Google Scholar 

  28. Thomas RG et al (2015) Paclitaxel loaded hyaluronic acid nanoparticles for targeted cancer therapy: in vitro and in vivo analysis. Int J Biol Macromol 72:510–518

    Article  PubMed  CAS  Google Scholar 

  29. Lesley J, Hyman R (1998) CD44 structure and function. Front Biosci 3:D616–D630

    Article  PubMed  CAS  Google Scholar 

  30. Sneath RJ, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 51:191–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cohen ZR et al (2015) Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9(2):1581–1591

    Article  PubMed  CAS  Google Scholar 

  32. Mizrahy S et al (2014) Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles. Nanoscale 6(7):3742–3752

    Article  PubMed  CAS  Google Scholar 

  33. Narayanan D, Jayakumar R, Chennazhi KP (2014) Versatile carboxymethyl chitin and chitosan nanomaterials: a review. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(6):574–598

    Article  PubMed  CAS  Google Scholar 

  34. Kawakami S et al (2000) Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 7(4):292–299

    Article  PubMed  CAS  Google Scholar 

  35. Shan D et al (2015) RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of alphavbeta 3 integrin-overexpressing breast cancer cells. Drug Deliv Transl Res 5(1):15–26

    Article  PubMed  CAS  Google Scholar 

  36. Wang K et al (2014) Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 35(30):8735–8747

    Article  PubMed  CAS  Google Scholar 

  37. Dagar S et al (2003) VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 91(1–2):123–133

    Article  PubMed  CAS  Google Scholar 

  38. Dagar S et al (2001) VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery. J Control Release 74(1–3):129–134

    Article  PubMed  CAS  Google Scholar 

  39. Dagar A et al (2012) VIP-targeted cytotoxic nanomedicine for breast cancer. Drug Deliv Transl Res 2(6):454–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Guan YY et al (2014) Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials 35(9):3060–3070

    Article  PubMed  CAS  Google Scholar 

  41. Mei L et al (2014) Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. J Control Release 196:324–331

    Article  PubMed  CAS  Google Scholar 

  42. Warenius HM et al (1981) Attempted targeting of a monoclonal-antibody in a human-tumor xenograft system. Eur J Cancer Clin Oncol 17(9):1009–1015

    Article  PubMed  CAS  Google Scholar 

  43. von Mehren M, Adams GP, Weiner LM (2003) Monoclonal antibody therapy for cancer. Annu Rev Med 54:343–369

    Article  CAS  Google Scholar 

  44. Weiner LM, Adams GP (2000) New approaches to antibody therapy. Oncogene 19(53):6144–6151

    Article  PubMed  CAS  Google Scholar 

  45. James JS, Dubs G (1997) FDA approves new kind of lymphoma treatment. Food and Drug Administration. AIDS Treat News (No 284):2–3

    Google Scholar 

  46. Albanell J, Baselga J (1999) Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 35(12):931–946

    CAS  Google Scholar 

  47. Zhou Y et al (2015) Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel. Eur J Pharm Biopharm 89:107–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16

    Article  PubMed  CAS  Google Scholar 

  49. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335

    Article  PubMed  CAS  Google Scholar 

  50. Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65(3):671–680

    PubMed  CAS  Google Scholar 

  51. Gibson AD (2002) Phase III trial of a humanized anti-CD33 antibody (HuM195) in patients with relapsed or refractory acute myeloid leukemia. Clin Lymphoma 3(1):18–19

    Article  PubMed  Google Scholar 

  52. Javle M, Smyth EC, Chau I (2014) Ramucirumab: successfully targeting angiogenesis in gastric cancer. Clin Cancer Res 20(23):5875–5881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106(8):929–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  PubMed  CAS  Google Scholar 

  55. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  PubMed  CAS  Google Scholar 

  56. Blank M et al (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels, selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276(19):16464–16468

    Article  PubMed  CAS  Google Scholar 

  57. Morris KN et al (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A 95(6):2902–2907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Beigelman L et al (1995) Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem 270(43):25702–25708

    Article  PubMed  CAS  Google Scholar 

  59. Aurup H, Williams DM, Eckstein F (1992) 2′-Fluoro- and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31(40):9636–9641

    Article  PubMed  CAS  Google Scholar 

  60. Pieken WA et al (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253(5017):314–317

    Article  PubMed  CAS  Google Scholar 

  61. Eulberg D, Klussmann S (2003) Spiegelmers: biostable aptamers. Chembiochem 4(10):979–983

    Article  PubMed  CAS  Google Scholar 

  62. Wang DL et al (2014) Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun 453(4):681–685

    Article  PubMed  CAS  Google Scholar 

  63. Farokhzad OC et al (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  PubMed  CAS  Google Scholar 

  64. Rosenberg JE et al (2014) A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 32(1):178–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gref R et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603

    Article  PubMed  CAS  Google Scholar 

  66. Langer R, Peppes NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J 49(12):2990–3006

    Article  CAS  Google Scholar 

  67. Gref R et al (1997) Poly(ethylene glycol)-coated nanospheres: potential carriers for intravenous drug administration. Pharm Biotechnol 10:167–198

    Article  PubMed  CAS  Google Scholar 

  68. Santini JT Jr, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397(6717):335–338

    Article  PubMed  CAS  Google Scholar 

  69. Chertok B et al (2013) Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. Mol Pharm 10(10):3531–3543

    Article  PubMed  CAS  Google Scholar 

  70. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  PubMed  CAS  Google Scholar 

  71. Brigger I et al (2004) Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J Control Release 100(1):29–40

    Article  PubMed  CAS  Google Scholar 

  72. Garcia-Carbonero R, Supko JG (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8(3):641–661

    PubMed  CAS  Google Scholar 

  73. Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31(4):359–397

    Article  CAS  Google Scholar 

  74. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 12:660–668

    Article  Google Scholar 

  75. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  PubMed  CAS  Google Scholar 

  76. Horne RW, Bangham AD, Whittaker VP (1963) Negatively stained lipoprotein membranes. Nature 200:1340

    Article  PubMed  CAS  Google Scholar 

  77. Forssen EA, Ross ME (1994) Daunoxome® treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 4(1):481–512

    Article  Google Scholar 

  78. Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49–60

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7(2):223–225

    PubMed  CAS  Google Scholar 

  80. Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19(4):424–436

    Article  PubMed  CAS  Google Scholar 

  81. Safra T et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11(8):1029–1033

    Article  PubMed  CAS  Google Scholar 

  82. Olson F et al (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    Article  PubMed  CAS  Google Scholar 

  83. Slingerland M, Guchelaar HJ, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 17(3–4):160–166

    Article  PubMed  CAS  Google Scholar 

  84. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  PubMed  CAS  Google Scholar 

  85. Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013:705265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Blume G et al (1993) Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149(1):180–184

    Article  PubMed  CAS  Google Scholar 

  87. Allen TM, Mumbengegwi DR, Charrois GJ (2005) Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 11(9):3567–3573

    Article  PubMed  CAS  Google Scholar 

  88. Park JW et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    PubMed  CAS  Google Scholar 

  89. Gao J et al (2009) Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int J Pharm 374(1–2):145–152

    Article  PubMed  CAS  Google Scholar 

  90. Gabizon A et al (2010) Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66(1):43–52

    Article  PubMed  CAS  Google Scholar 

  91. Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51(1):10–14

    Article  PubMed  CAS  Google Scholar 

  92. Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63(3):161–169

    Article  PubMed  CAS  Google Scholar 

  93. Jones RA (2004) Tough and smart. Nat Mater 3(4):209–210

    Article  PubMed  CAS  Google Scholar 

  94. Sawant RM et al (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17(4):943–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ghanbarzadeh S et al (2014) Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes. Colloids Surf B Biointerfaces 115:323–330

    Article  PubMed  CAS  Google Scholar 

  96. Ducat E et al (2011) Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int J Pharm 420(2):319–332

    Article  PubMed  CAS  Google Scholar 

  97. Mizrahy S et al (2011) Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J Control Release 156(2):231–238

    Article  PubMed  CAS  Google Scholar 

  98. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  PubMed  CAS  Google Scholar 

  99. Landesman-Milo D et al (2013) Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett 334(2):221–227

    Article  PubMed  CAS  Google Scholar 

  100. Peer D, Margalit R (2004) Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 6(4):343–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Eliaz RE, Szoka FC Jr (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 61(6):2592–2601

    PubMed  CAS  Google Scholar 

  102. Peer D et al (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kandra P, Kalangi HP (2015) Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges. Appl Microbiol Biotechnol 99(5):2055–2064

    Article  PubMed  CAS  Google Scholar 

  104. Sahu SK et al (2011) Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target 19(2):104–113

    Article  PubMed  CAS  Google Scholar 

  105. Yang R et al (2009) Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci 98(3):970–984

    Article  PubMed  CAS  Google Scholar 

  106. Malhotra M et al (2013) Systemic siRNA delivery via peptide-tagged polymeric nanoparticles, targeting PLK1 gene in a mouse xenograft model of colorectal cancer. Int J Biomater 2013:252531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang X et al (2014) Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials 35(24):6439–6453

    Article  PubMed  CAS  Google Scholar 

  108. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles—new colloidal drug delivery system. Pharm Acta Helv 53(1):17–23

    PubMed  CAS  Google Scholar 

  109. Alonso MJ et al (1994) Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine 12(4):299–306

    Article  PubMed  CAS  Google Scholar 

  110. Qaddoumi MG et al (2002) Molecular mechanisms mediating the cEdocytosis of biodegradable PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Invest Ophthalmol Vis Sci 43:U875

    Google Scholar 

  111. Deng JS et al (2003) In vitro characterization of polyorthoester microparticles containing bupivacaine. Pharm Dev Technol 8(1):31–38

    Article  PubMed  CAS  Google Scholar 

  112. Molpeceres J et al (1999) A polycaprolactone nanoparticle formulation of cyclosporin-a improves the prediction of area under the curve using a limited sampling strategy. Int J Pharm 187(1):101–113

    Article  PubMed  CAS  Google Scholar 

  113. Sommerfeld P, Sabel BA, Schroeder U (2000) Long-term stability of PBCA nanoparticle suspensions. J Microencapsul 17(1):69–79

    Article  PubMed  CAS  Google Scholar 

  114. Gao JM et al (1998) Surface modification of polyanhydride microspheres. J Pharm Sci 87(2):246–248

    Article  PubMed  CAS  Google Scholar 

  115. Huang G et al (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94(2–3):303–311

    Article  PubMed  CAS  Google Scholar 

  116. Eastoe J, Warne B (1996) Nanoparticle and polymer synthesis in microemulsions. Curr Opin Colloid Interface Sci 1(6):800–805

    Article  CAS  Google Scholar 

  117. Roy I et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125(26):7860–7865

    Article  PubMed  CAS  Google Scholar 

  118. Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16(1):89–92

    Article  PubMed  CAS  Google Scholar 

  119. Bergen JM et al (2006) Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci 6(7):506–516

    Article  PubMed  CAS  Google Scholar 

  120. Kohler N et al (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864

    Article  PubMed  CAS  Google Scholar 

  121. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  PubMed  CAS  Google Scholar 

  122. Hirsch LR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Tomalia DA et al (1985) A new class of polymers—starburst-dendritic macromolecules. Polym J 17(1):117–132

    Article  CAS  Google Scholar 

  124. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717

    Article  CAS  Google Scholar 

  125. Bielinska A et al (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24(11):2176–2182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hong SP et al (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 15(4):774–782

    Article  PubMed  CAS  Google Scholar 

  127. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    Article  PubMed  CAS  Google Scholar 

  128. Khan MK et al (2005) In vivo biodistribution of dendrimers and dendrimer nanocomposites—implications for cancer imaging and therapy. Technol Cancer Res Treat 4(6):603–613

    Article  PubMed  CAS  Google Scholar 

  129. Lee CC et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  PubMed  CAS  Google Scholar 

  130. Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  PubMed  CAS  Google Scholar 

  131. Malik N et al (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J Control Release 65(1–2):133–148

    Article  PubMed  CAS  Google Scholar 

  132. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46(1):169–185

    Article  PubMed  CAS  Google Scholar 

  133. Petersen WC Jr et al (2014) Comparison of allergic reactions to intravenous and intramuscular pegaspargase in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 31(4):311–317

    Article  PubMed  CAS  Google Scholar 

  134. Duncan R (2014) Polymer therapeutics: top 10 selling pharmaceuticals—what next? J Control Release 190:371–380

    Article  PubMed  CAS  Google Scholar 

  135. Markovsky E et al (2012) Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 161(2):446–460

    Article  PubMed  CAS  Google Scholar 

  136. Pisal DS, Kosloski MP, Balu-Iyer SV (2010) Delivery of therapeutic proteins. J Pharm Sci 99(6):2557–2575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Hays JL et al (2013) A phase II clinical trial of polyethylene glycol-conjugated l-asparaginase in patients with advanced ovarian cancer: early closure for safety. Mol Clin Oncol 1(3):565–569

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Zhang R et al (2016) N-(2-hydroxypropyl)methacrylamide copolymer-drug conjugates for combination chemotherapy of acute myeloid leukemia. Macromol Biosci 16(1):121–128

    Article  PubMed  CAS  Google Scholar 

  139. Duncan R et al (1987) Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers: I. Evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer 55(2):165–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Satchi-Fainaro R et al (2004) Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10(3):255–261

    Article  PubMed  CAS  Google Scholar 

  141. Seymour LW et al (2009) Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 34(6):1629–1636

    Article  PubMed  CAS  Google Scholar 

  142. Chipman SD et al (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine 1(4):375–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Galic VL et al (2011) Paclitaxel poliglumex for ovarian cancer. Expert Opin Investig Drugs 20(6):813–821

    Article  PubMed  CAS  Google Scholar 

  144. O'Brien ME et al (2008) Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 3(7):728–734

    Article  PubMed  Google Scholar 

  145. Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977–1992

    Article  PubMed  CAS  Google Scholar 

  146. Lindgren M et al (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103

    Article  PubMed  CAS  Google Scholar 

  147. Li ZJ, Cho CH (2012) Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 10(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zhao Y et al (2014) CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine (Lond) 10(6):1221–1230

    CAS  Google Scholar 

  149. Journo-Gershfeld G et al (2012) Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res 29(4):1121–1133

    Article  PubMed  CAS  Google Scholar 

  150. Bonnet ME et al (2013) Systemic delivery of sticky siRNAs targeting the cell cycle for lung tumor metastasis inhibition. J Control Release 170(2):183–190

    Article  PubMed  CAS  Google Scholar 

  151. Shen J et al (2013) Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials 34(5):1581–1590

    Article  PubMed  CAS  Google Scholar 

  152. Rajeev KG et al (2015) Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem 16(6):903–908

    Article  PubMed  CAS  Google Scholar 

  153. Sehgal D, Vijay IK (1994) A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem 218(1):87–91

    Article  PubMed  CAS  Google Scholar 

  154. Majoros IJ et al (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Article  PubMed  CAS  Google Scholar 

  155. Majoros IJ et al (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48(19):5892–5899

    Article  PubMed  CAS  Google Scholar 

  156. Klibanov AL, Torchilin VP, Zalipsky S (2003) Chemical conjugation. In: Torchilin VP, Weissig V (eds) Liposomes: practical approach. Oxford University Press, Oxford, pp 193–265

    Google Scholar 

  157. Gupta B et al (2005) Monoclonal antibody 2C5-mediated binding of liposomes to brain tumor cells in vitro and in subcutaneous tumor model in vivo. J Drug Target 13(6):337–343

    Article  PubMed  CAS  Google Scholar 

  158. Spragg DD et al (1997) Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci U S A 94(16):8795–8800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Prabhakar U et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yhee JY et al (2013) Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjug Chem 24(11):1850–1860

    Article  PubMed  CAS  Google Scholar 

  161. Park HK et al (2015) Smart nanoparticles based on hyaluronic acid for redox-responsive and CD44 receptor-mediated targeting of tumor. Nanoscale Res Lett 10(1):981

    PubMed  Google Scholar 

  162. Rashidi LH et al (2015) Investigation of the strategies for targeting of the afterglow nanoparticles to tumor cells. Photodiagnosis Photodyn Ther 2015. doi:10.1016/j.pdpdt.2015.08.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Peer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Landesman-Milo, D., Qassem, S., Peer, D. (2016). Targeting Cancer Using Nanocarriers. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_7

Download citation

Publish with us

Policies and ethics